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 An unsteady visco-elastic fluid flow through an annulus with heat and mass transfer has been 

studied. The visco-elastic fluid is characterized by Oldroyd fluid constitutive model consisting 

of rheological parameters namely relaxation time (λ1) and retardation time (λ2). The annulus is 

bounded by two infinite co-axial circular cylinders of radius c and d respectively. Fluid flow 

in the annular region is governed by periodic pressure gradient. A magnetic field of uniform 

strength B0 has been applied perpendicular to the axis of annulus. The governing partial 

differential equations from conservation laws of momentum, energy and concentration 

principles are converted into the ordinary differential equations and these equations are solved 

analytically using modified Bessel functions of first kind Iυ(z) and second kind Kυ(z).  
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1. INTRODUCTION 

 

In recent time, visco-elastic fluid flow has attracted many 

scientists and researchers because of its uses in various 

industries such as polymer solution, suspension, paints, 

cosmetic products etc. Oldroyd [1, 2] has proposed the model 

of Oldroyd fluid to study flow pattern of visco-elastic fluid 

and its constitutive equation is given by 

 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗 & 

 (1 + 𝜆1
𝑑

𝑑𝑡
) 𝜏𝑖𝑗 = 2𝜇 (1 + 𝜆2

𝑑

𝑑𝑡
) 𝑒𝑖𝑗                                         (1) 

 

where, σij  = stress tensor, p = hydrostatic pressure, δij  = 

Kronecker delta, τij  = viscous-stress tensor, λ1  = relaxation 

time, λ2 = retardation time, μ = co-efficient of viscosity, eij = 

strain tensor and 
d

dt
 = material derivative. 

Messiha [3] has formulated the flow problem of laminar 

boundary layer past an infinite flat plate with variable suction. 

Cogley et al. [4] have analyzed the differential approximation 

for radiative heat transfer in a non-gray gas near equilibrium. 

Free convective heat transfer of the incompressible fluid flow 

restricted among a long vertical wavy wall and parallel flat 

wall has been investigated by Vajravelu and Sastri [5]. Ray et 

al. [6] have evaluated exact periodical explanation of 

Oldroyd fluid governed by magnetic field in a channel. 

Chamkha [7] has carried out the solution of time dependent 

hydro-magnetic flow with thermal diffusion in channels and 

circular pipes. Hayat et al. [8] have analyzed some simple 

flow problems using Oldroyd-B fluid model. Hydro-magnetic 

Couette flow of Oldroyd-B fluid in rotating system has been 

investigated by Hayat et al. [9]. Hayat et al. [10] have 

analyzed the Hall current effect on the flows of Oldroyd-B 

fluid through porous medium using cylindrical geometries. 

MHD oscillatory Couette flow with radiative heat diffusion 

in a porous medium with periodic wall temperature has been 

investigated by Israel-Cookey et al. [11]. Biswas and 

Chakraborty [12] have investigated the pulsatile blood flow 

through catheterized artery with an axially nonsymmetrical 

stenosis. Pires and Sequeira [13] have studied the flow of 

generalized Oldroyd B fluids in curved pipe. Some exact 

solutions of Oldroyd-B fluid flows due to time dependent 

shear stresses have been analyzed by Jamil et al. [14]. Shahid 

et al. [15] have carried out the exact solution of Oldroyd-B 

fluid flow over an infinite flat plate with oscillating shear 

stress. Singh [16] have analyzed the exact solution of hydro-

magnetic flow problem with mixed convection through a 

rotating vertical channel with heat radiation. Deka and Paul 

[17] have investigated the nature of transient free convective 

MHD flow past an infinite vertical cylinder. Ahmed and 

Dutta [18] have studied the effects of radiative thermal 

diffusion in a time dependent MHD flow through an infinite 

annulus.  Time dependent thin film flow of Oldroyd-B fluid 

above an oscillating inclined belt under the influence of 

magnetic field have been analyzed by Gul et al. [19].  

Application of visco-elastic fluid flow is seen in the blood 

circulatory system; some parts of energy are stored due to 

elastic nature of blood and another part is dissipated to heat 

due to viscosity and the remaining part is used for the 

movement of blood [20]. Dey and Khound [21] have 

investigated the relaxation and retardation effects on free 

convective visco-elastic fluid flow past an oscillating plate 

and the governing equations of motion are solved analytically 

using perturbation scheme. Hall current effects on the binary 

mixture flow of Oldroyd-B fluid through a porous channel 

have been analyzed using separation of variable technique by 

Dey and Khound [22]. Dey [23] has formulated the solution 

of the visco-elastic fluid flow problem through an annulus 

with relaxation, retardation effects and external heat 

source/sink. In our work, we have extended the work of [23] 

by introducing the mass transfer effects.  
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2. MATHEMATICAL FORMULATIONS: 
 

The unsteady free convective hydro-magnetic Oldroyd 

fluid flow through the annular region formed by two infinite 

co-axial circular cylinders has been considered. In this 

problem, we have used the cylindrical polar co-ordinate 

system (𝑟, 𝜃, 𝑧).The flow is taken along the z-axis (axis of 

annulus), so the radial and cross radial velocity components 

are zero (𝑢′ = 𝑣′ = 0) and the assumption of axial symmetry 

states that the motion is independent of 𝜃. Further, we have 

assumed that the pressure gradient is varying periodically 

with time. The magnetic field of uniform strength B0 is 

applied perpendicular to the axis of annulus. Body forces 

generated during the fluid motion are Lorentz force (result of 

applied magnetic field) and buoyancy force (leads to the free 

convection). All fluidic properties are considered as constant, 

except the density variation in the buoyancy term. Energy 

dissipation due to viscosity is neglected. Induced magnetic 

field is neglected as the magnetic Reynolds number is very 

small for weekly conducting system. Rate of radiative heat 

transfer in optically thin fluid is given by term 4𝐼(𝑇 ′ − 𝑇𝑠) 

(Cogley et al. [4]). The geometry of the problem is given by 

figure 1. 

 

 
 

Figure 1. Geometry of the problem [23] 

 

From continuity equation, 𝑤 ′ = 𝑤 ′(𝑟, 𝑡) 

Using the above assumptions, the governing equations of 

fluid motion are: 

 
 𝜕𝑤′

𝜕𝑡′
= − [

1

𝜌
 
𝜕𝑝′

𝜕𝑧′
+ 𝑔] +

1

𝜌
(

𝜕

𝜕𝑟′
+ 

1

𝑟′
 ) 𝜏′𝑟𝑧 −

𝜎𝐵0
2𝑤′

𝜌
                    (2) 

 
𝜕𝑇′

𝜕𝑡′
=

𝐾

𝜌𝐶𝑝
(

𝜕2𝑇′

𝜕𝑟′2
+  

1

𝑟′
 
𝜕𝑇′

𝜕𝑟′
) −

4𝐼

𝜌𝐶𝑝
(𝑇 ′ − 𝑇𝑠) +

𝑄0

𝜌𝐶𝑝
(𝑇 ′ −

𝑇𝑠)                                                                                           (3) 

 
𝜕𝐶′

𝜕𝑡′
= 𝐷 (

𝜕2𝐶′

𝜕𝑟′2
+ 

1

𝑟′
 
𝜕𝐶′

𝜕𝑟′
) − 𝑘1(𝐶 ′ − 𝐶𝑠)                                     (4) 

 

and the constitutive equation is given by 

 

(1 + 𝜆1
𝜕

𝜕𝑡′
) 𝜏′𝑟𝑧 = 𝜇 (1 +  𝜆2

𝜕

𝜕𝑡′
) 

𝜕𝑤′

𝜕𝑟′
                                     (5) 

 

In static case, equation (2) reduces to 0 = − [ 
𝜕𝑝𝑠

𝜕𝑧′
+ 𝜌𝑠𝑔], 

where 𝜌𝑠 density of static fluid and 𝑝𝑠 is static fluid pressure. 

Then from (2), we get 

 
𝜕𝑤′

𝜕𝑡′
= − [

1

𝜌
 
𝜕(𝑝′−𝑝𝑠)

𝜕𝑧′
+

(𝜌−𝜌𝑠)

𝜌
𝑔] +

1

𝜌
(

𝜕

𝜕𝑟′
+  

1

𝑟′
 ) 𝜏′𝑟𝑧 −

𝜎𝐵0
2𝑤′

𝜌
                                                                                            (6) 

 

The equation of state following [18] is given by, 

 

𝜌𝑠 = 𝜌[1 + 𝛽(𝑇′ − 𝑇𝑠) + 𝛽∗(𝐶′ − 𝐶𝑠)]                                  (7) 

 

Using (5), (6) and (7), we get 

 
 𝜕𝑤′

𝜕𝑡′
+ 𝜆1

 𝜕2𝑤′

𝜕𝑡′2 = − (1 + 𝜆1
 𝜕

𝜕𝑡′
)

𝜎𝐵0
2𝑤′

𝜌
+ 𝜈 [

 𝜕2𝑤′

𝜕𝑟′2 +
1

𝑟

 𝜕𝑤′

𝜕𝑟′
+

𝜆2 (
 𝜕3𝑤′

𝜕𝑟′2𝜕𝑡′
+

1

𝑟

 𝜕2𝑤′

𝜕𝑟′𝜕𝑡′
)] −

1

𝜌
(1 + 𝜆1

 𝜕

𝜕𝑡′
)

 𝜕𝑝∗

𝜕𝑧′
+ (1 +

𝜆1
 𝜕

𝜕𝑡′
) (𝑔𝛽(𝑇 ′ − 𝑇𝑠) + 𝑔𝛽∗(𝐶 ′ − 𝐶𝑠))                                     (8) 

 

where, 𝑝∗ = 𝑝′ − 𝑝𝑠. The boundary conditions of the problem 

are: 

 

𝑤 ′ = 0 at 𝑟 = 𝑐 & 𝑤 ′ = 0 at r = d 

𝑇 ′ = 𝑇𝑠 +  𝑇𝑠𝑛1𝑒 𝑖𝜔′𝑡 ′ at r = c & 

𝑇 ′ = 𝑇𝑠 +  𝑇𝑠𝑛2𝑒 𝑖𝜔′𝑡′ at r = d   

𝐶 ′ = 𝐶𝑠 + 𝐶𝑠𝑚1𝑒 𝑖𝜔′𝑡 ′ at r = c & 

𝐶 ′ = 𝐶𝑠 + 𝐶𝑠𝑚2𝑒 𝑖𝜔′𝑡′ at r = d. 

 

 

3. METHOD OF SOLUTION 
 

To convert the equations (8), (3) and (4) into 

dimensionless forms, we have introduced the following 

dimensionless quantities: 

 

𝑤 =
𝑤 ′𝑐

𝜈
, 𝑟 =

𝑟′

𝑐
, 𝑧 =

𝑧 ′

𝑐
, 𝑝 =

𝑝∗𝑐2

𝜇𝜐
, 𝑡 =

𝑡 ′𝜈

𝑐2
,  

𝜆 =
𝑑

𝑐
, 𝜓 =

𝑇 ′ − 𝑇𝑠

𝑇𝑠

, 𝜙 =
𝐶 ′ − 𝐶𝑠

𝐶𝑠

, 𝑎 =
𝜆1𝜈

𝑐2
  

, 𝑏 =
𝜆2𝜈

𝑐2
, 𝑀 =

𝜎𝐵0
2c2

𝜇
, 𝐺𝑟 =

𝑔𝛽𝑇𝑠𝜈2

𝑐3
, 

 𝐺𝑚 =
𝑔𝛽∗𝐶𝑠𝜈2

𝑐3
, 𝑁 =

4𝐼𝑐2

𝜇𝐶𝑝

, ℎ𝑐 =
𝑘1𝑐2

𝐷
 

 , 𝑄𝑟 =
𝑄0𝑐2

𝜇𝐶𝑝

, 𝑃𝑟 =
𝜇𝐶𝑝

𝐾
, 𝑆𝑐 =

𝜈

𝐷
, 𝜏 =

𝜏′

𝜌
𝜈2

𝑐2

 , 

 

and the non-dimensional equations are: 

 
𝜕𝑤

𝜕𝑡
+ 𝑎

𝜕2𝑤

𝜕𝑡2 = − (1 + 𝑎
𝜕

𝜕𝑡
) [𝑀𝑤 +

1

𝜌
 

𝜕𝑝∗

𝜕𝑧
− 𝐺𝑟𝜓 − 𝐺𝑚𝜙] +

(1 +  𝑏
𝜕

𝜕𝑡
) (

𝜕2𝑤

𝜕𝑟2 + 
1

𝑟
 

𝜕𝑤

𝜕𝑟
)                                                      (9) 

  
𝜕𝜓

𝜕𝑡
=

1

𝑃𝑟
(

𝜕2𝜓

𝜕𝑟2 +  
1

𝑟
 
𝜕𝜓

𝜕𝑟
) + (𝑄𝑟 − 𝑁)𝜓                                    (10) 

 

𝑆𝑐
𝜕𝜙

𝜕𝑡
= (

𝜕2𝜙

𝜕𝑟2 +  
1

𝑟
 
𝜕𝜙

𝜕𝑟
) + ℎ𝑐𝜙                                                 (11) 

 

The relevant boundary conditions are 

 

𝑤 = 0 at 𝑟 = 1 ,   𝑤 = 0 at r = λ  

𝜓 = 𝑛1𝑒 𝑖𝜔𝑡  at r = 1,  𝜓 = 𝑛2𝑒 𝑖𝜔𝑡  at r = λ,  

𝜙 = 𝑚1𝑒 𝑖𝜔𝑡 at r = 1,  𝜙 = 𝑚2𝑒 𝑖𝜔𝑡 at r = λ 

 

where, w is dimensionless velocity, r and z are dimensionless 

displacement variables, p = pressure, t = dimensionless time, 

𝜆 = non zero constant, 𝜓 = dimensionless temperature, 𝜙  = 

dimensionless concentration, 𝑎  = dimensionless relaxation 

parameter, 𝑏  = dimensionless retardation parameter, M = 

42



 

magnetic parameter, Gr = Grashoff number for heat transfer, 

Gm = Grashoff number for mass transfer, N = radiation 

parameter, Qr = heat source/ sink parameter, Pr = Prandtl 

number, Sc = Schmidt number, hc = chemical reaction 

parameter. 

To solve the equation (10), we assume that 𝜓 = 𝑓(𝑟)𝑒 𝑖𝜔𝑡 , , 
then we get 

 

𝑓 ′′ +
1

𝑟
𝑓 ′ − 𝜂2𝑓 = 0                                                                  (12) 

 

where, prime denotes the differentiation with respect to r. To 

solve the equation (9), we follow the method of complex 

variable used by Messiha [3], Vajravelu and Sastri [5] and 

Ahmed and Dutta[18]. The periodic pressure gradient is 

given as follows [18]: 

 

−
𝜕𝑝

𝜕𝑧
= 𝑃0𝑒𝑖𝜔𝑡  

 

Let 𝑠 = 𝑖𝑟𝜂 and𝑓(𝑟) = 𝑓 (
𝑠

𝑖𝜂
) = 𝑓1(𝑠), then (12) becomes 

 

𝑠2𝑓1
′′

+ 𝑠𝑓1
′ + 𝑠2𝑓1 = 0                                                            (13) 

 

Equation (13) is a Bessel equation and its solution is given 

by: 

 

𝑓(𝑟) = 𝐴1𝐼0(𝑟𝜂) + 𝐵1 [−
2

𝜋
 𝐾0(𝑟𝜂) −

1

𝑖
 𝐼0(𝑟𝜂)]                (14) 

 

Now, to solve the equation (11), we assume that 𝜙 =
𝑓∗(𝑟)𝑒 𝑖𝜔𝑡, then we get 

 

𝑓∗ ′′ +
1

𝑟
𝑓∗ ′ − 𝜉2𝑓∗ = 0                                                              (15) 

 

Let 𝑠∗ = 𝑖𝑟𝜉  and 𝑓∗(𝑟) = 𝑓∗ (
𝑠∗

𝑖𝜉
) = 𝑓∗

1
(𝑠∗) , then (15) 

becomes 

 

𝑠∗2𝑓∗
1

′′
+ 𝑠∗𝑓∗

1
′ + 𝑠∗2𝑓∗

1
= 0                                               (16) 

 

Equation (16) is a Bessel equation and its solution is given 

by: 

 

𝑓∗(𝑟) = 𝐴2𝐼0(𝑟𝜉) + 𝐵2 [−
2

𝜋
 𝐾0(𝑟𝜉) −

1

𝑖
 𝐼0(𝑟𝜉)]              (17) 

 

To solve the equation (9), we assume that 𝑤 =

𝑔(𝑟)𝑒 𝑖𝜔𝑡 , ℎ = 𝑖𝑟𝛾, 𝑔(𝑟) = 𝑔 (
ℎ

𝑖𝛾
) = 𝑔1(ℎ)  then we get 

 

𝑔′′ +
1

𝑟
𝑔′ − 𝛾2𝑔 = 𝐷3 + 𝑖𝐷4 + (𝐷5 + 𝑖𝐷6)𝑓(𝑟) +

(𝐷7 + 𝑖𝐷8)𝑓∗(𝑟)                                                                    (18) 

 

Using variation of parameter technique, the equation is 

solved and the solution in terms of following constants  

 

𝜂2 = 𝑁 − 𝑄𝑟 + 𝑖𝜔, 𝜉2 = 𝑆𝑐𝑖𝜔 + ℎ𝑐 , 𝛾2 = 𝐷1 + 𝑖𝐷2  

𝐵1 =
𝑛2𝐼0(𝜂) − 𝑛1𝐼0(𝜆𝜂)

−2

𝜋
[𝐾0(𝜆𝜂)𝐼0(𝜆) − 𝐾0(𝜂)𝐼0(𝜆𝜂)]

, 

 𝐴1 =
𝑛1 + 𝐵1 {

2

𝜋
𝐾0(𝜂) +

1

𝑖
𝐼0(𝜂)}

𝐼0(𝜂)
,   

𝐵2 =
𝑚2𝐼0(𝜉) − 𝑚1𝐼0(𝜆𝜉)

−2

𝜋
[𝐾0(𝜆𝜉)𝐼0(𝜉) − 𝐾0(𝜉)𝐼0(𝜆𝜉)]

, 

 𝐴2 =
𝑚1 + 𝐵2 {

2

𝜋
𝐾0(𝜉) +

1

𝑖
𝐼0(𝜉)}

𝐼0(𝜉)
, 

𝐷1 =
(𝑀 − 𝑎𝜔2) + (𝑎𝑀 + 1)𝑏𝜔2

1 + 𝑏2𝜔2
 , 

 𝐷2 =
𝑏(𝑎𝜔2 − 𝑀)𝜔 + (𝑎𝑀 + 1)𝜔

1 + 𝑏2𝜔2
, 

 𝐷3 = −
𝑃0 + 𝑎𝑃0𝑏𝜔2

1 + 𝑏2𝜔2
, 

 𝐷4 =
𝑏𝑃0𝜔 − 𝑎𝑃0𝑏𝜔

1 + 𝑏2𝜔2
 , 𝐷5 = −𝐺𝑟

1 + 𝑎𝑏𝜔2

1 + 𝑏2𝜔2
, 

 𝐷6 = −𝐺𝑟
(𝑎 − 𝑏)𝜔

1 + 𝑏2𝜔2
, 𝐷7 = −𝐺𝑚

1 + 𝑎𝑏𝜔2

1 + 𝑏2𝜔2
,

𝐷8 = −𝐺𝑚
(𝑎 − 𝑏)𝜔

1 + 𝑏2𝜔2
 

 

is given by 

 

3 4 1

3

4 1

1 05 6 1

12 2

0 1

0 15 6 1 1

2 2 2

1 0

2
1 05 6

12 2 2

2
( ) ( )

( ) ( )

( ) ( )2( )
( )

( ) ( )( )

( ) ( )( )
( )

( ) ( )( )

( ) ( )2 ( )

( )

2

r
D iD K r

D r
D I r

i

I r K rD iD r B
A

I r K ri

I r I rD iD r A B

I r I rii i

K r K rD iD r
B

g






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    

  

   

  

  


− +

+ +

 +
+ −  

+−  

 +
+ −  

−−  

+
−

−−
= −

0 1

0 15 6

12 2

0 1

1 07 8 2

22 2

0 1

0 17 8 2 2

2 2 2

1 0

2

7

( ) ( )

( ) ( )2( )

( ) ( )( )

( ) ( )2( )
( )

( ) ( )( )

( ) ( )( )
( )

( ) ( )( )

2 (

K r K r

I r K rD iD r
B

K r I ri

I r K rD iD r B
A

I r K ri

I r I rD iD r A B

I r I rii i

D

 

  

    

  

    

  

   

 
 
 

 +
−  

+−  

 +
+ −  

+−  

 +
+ −  

−−  

−

4

1 08

22 2 2

0 1

0 17 8

22 2

0 1

( ) ( ))

( ) ( )( )

( ) ( )2( )

( ) ( )( )

C

K r K riD r
B

K r K r

I r K rD iD r
B

K r I ri
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  (19) 

 

The constants of the above solutions are given below: 

 

 

4. RESULTS AND DISCUSSIONS: 

  

To get the exact solutions, analytical method has been used. 

After solving the equations using Bessel equations, finally 
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MATLAB software have been used to get the numerical 

values for plotting the graphs. 

The dimensionless shearing stress of the fluid motion is 

expressed in the form of first order linear differential 

equation given as follows: 

 

(1 + 𝑎
𝜕

𝜕𝑡
) 𝜏 = (1 + 𝑏

𝜕

𝜕𝑡
)

𝜕𝑤

𝜕𝑟
 

 

The shearing stress at the inner cylinder is given by 

 

𝜏𝑒
𝑡

𝑎 =  𝐿1𝑎 (
1 + 𝑖𝑏𝜔

1 + 𝑖𝑎𝜔
) {𝑒(

1

𝑎
+𝑖𝜔)𝑡 −  1} 

 

Figure 2 to 6 represent the periodical shearing stress 

against the time variable for various values of flow 

parameters involved in the solution. It is seen that during the 

increment of Prandtl number by 66.67 % (from Pr=3 to Pr=5), 

the shearing stress increases by 60 % (approximately) [Figure 

2], it can be interpreted that the Prandtl number (ratio of 

viscosity to thermal diffusivity) enhances the viscosity of the 

fluid and as a consequence, shear stress (directly proportional 

to viscosity of the medium) on the wall increases.  

 
Figure 2. Shearing stress at the lower surface against time t 

for 𝜔 =0.5, Sc=2, hc=3.5, N=0.1, Qr=0.4, 𝜆 =0.8, r=1.6, 

n1=0.1, n2=0.2, m1=0.03, m2=0.4, a=0.3, b=0.2, Gr=2, Gm=3, 

M=2, P0=0.1 

Figure 3. Shearing stress at the lower surface against time t 

for 𝜔 =0.5, Sc=2, Pr=5, hc=3.5, N=0.1, Qr=0.4, 𝜆 =0.8, 

r=1.6, n1=0.1, n2=0.2, m1=0.03, m2=0.4, a=0.3, b=0.2, Gr=2, 

Gm=3, M=2 

Figure 4. Shearing stress at the lower surface against time t 

for 𝜔 =0.5, Sc=2, Pr=5, hc=3.5, N=0.1, Qr=0.4, 𝜆 =0.8, 

r=1.6, n1=0.1, n2=0.2, m1=0.03, m2=0.4, a=0.3, b=0.2, Gr=2, 

Gm=3, P0=0.1 

 

Figure 3 represents the variation of shearing stress for 

various values of pressure gradient. It is noticed that fluid 

flow experiences lesser viscous drag at the surface during the 

enhancement of pressure gradient. This encourages the 

researchers that to reduce the shear stress, the pressure 

gradient may be increased. Statistically, it is seen that there is 

a decline trend in shearing stress possibly by 71.43 % during 

the growth in pressure gradient by 200 %. 

In general, the Lorentz force has a resistive impact on the 

fluid motion and it increases the shearing stress. This 

physical phenomenon is matched with the result obtained 

from figure 4. Statistically, it is seen that the shearing stress 

significantly by almost 200 % for 18 % enhancement in 

magnetic parameter [Figure 4].  

Grashoff numbers generally characterize the free 

convective properties of fluid motion. It is seen that the 

magnitude of shearing stress is increased during the increase 

of Grashof number for heat transfer [Figure 5] but an 

opposite trend is observed for increasing values of Grashof 

number for mass transfer [Figure 6].  

 

 
Figure 5. Shearing stress at the lower surface against time t 

for 𝜔 =0.5, Sc=2, Pr=5, hc=3.5, N=0.1, Qr=0.4, 𝜆 =0.8, 

r=1.6, n1=0.1, n2=0.2, m1=0.03, m2=0.4, a=0.3, b=0.2, Gm=3, 

M=2, P0=0.1 
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Figure 6. Shearing stress at the lower surface against time t 

for 𝜔 =0.5, Sc=2, Pr=5, hc=3.5, N=0.1, Qr=0.4, 𝜆 =0.8, 

r=1.6, n1=0.1, n2=0.2, m1=0.03, m2=0.4, a=0.3, b=0.2, Gr=2, 

M=2, P0=0.1 

  

 
Figure 7. Temperature against time t for 𝜔 =0.5, Sc=2, Pr=5, 

hc=3.5, Qr=0.4, 𝜆 =0.8, r=1.6, n1=0.1, n2=0.2, m1=0.03, 

m2=0.4, a=0.3, b=0.2, Gr=2, Gm=3, M=2, P0=0.1 

 

 
Figure 8. Temperature against time t for 𝜔 =0.5, Sc=2, 

hc=3.5, N=0.1, Qr=0.4, 𝜆 =0.8, r=1.6, n1=0.1, n2=0.2, 

m1=0.03, m2=0.4, a=0.3, b=0.2, Gr=2, Gm=3, M=2, P0=0.1 

Figure 9. Temperature against time t for 𝜔 =0.5, Sc=2, Pr=5, 

hc=3.5, N=0.1, 𝜆 =0.8, r=1.6, n1=0.1, n2=0.2, m1=0.03, 

m2=0.4, a=0.3, b=0.2, Gr=2, Gm=3, M=2, P0=0.1 

 
Figure 10. Concentration against time t for 𝜔 =0.5, Sc=2, 

Pr=5, N=0.1, Qr=0.4, 𝜆 =0.8, r=1.6, n1=0.1, n2=0.2, m1=0.03, 

m2=0.4, a=0.3, b=0.2, Gr=2, Gm=3, M=2, P0=0.1 

 
Figure 11. Concentration against time t for 𝜔 =0.5, Pr=5, 

hc=3.5, N=0.1, Qr=0.4, 𝜆 =0.8, r=1.6, n1=0.1, n2=0.2, 

m1=0.03, m2=0.4, a=0.3, b=0.2, Gr=2, Gm=3, M=2, P0=0.1 
 

0 2 4 6 8 10 12 14 16 18 20
-35

-30

-25

-20

-15

-10

-5

0

5

10

t

S
H

E
A

R
IN

G
 S

T
R

E
S

S

Gm=1

Gm=5

Gm=9

0 2 4 6 8 10 12 14 16 18 20
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t

T
E

M
P

E
R

A
T

U
R

E

N=0.1

N=0.2

N=0.3

0 2 4 6 8 10 12 14 16 18 20
-3

-2

-1

0

1

2

3

t

T
E

M
P

E
R

A
T

U
R

E

Pr=2

Pr=4

Pr=6

0 2 4 6 8 10 12 14 16 18 20
-5

-4

-3

-2

-1

0

1

2

3

4

5

t

T
E

M
P

E
R

A
T

U
R

E

Qr=0.2

Qr=0.4

Qr=0.6

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t

C
O

N
C

E
N

T
R

A
T

IO
N

hc=2

hc=3

hc=4

0 2 4 6 8 10 12 14 16 18 20
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t

C
O

N
C

E
N

T
R

A
T

IO
N

Sc=1

Sc=5

Sc=9

45



 

Figure 7-9 depict the periodical variation of temperature 

profiles against the time for various flow parameters. 

Radiation is a mode of heat transfer, i.e., there is a heat flow 

with the higher values of radiation. As a result, the net 

temperature of the system declines. This physical 

phenomenon is seen in figure 7. 

Figure 8 states that during the enhancement of Prandtl 

number, there is an increment of temperature. Physically, it 

may be interpreted that due to higher Prandtl number, the 

frictional force (form of viscosity) increases and as a result, 

temperature enhances.  

Effects of heat source/sink parameter (Qr) on temperature 

profile is shown by Figure 9. Qr>0 characterizes heat source 

and Qr<0 characterizes heat sink. There is significant 

enhancement in temperature during external heat source 

agent. Statistically, it is observed that the temperature 

increases by 345.45 % (approximately) during 200% rise in 

Qr. 

Figures 10 & 11 portray the periodical nature of 

concentration profiles against time for various flow 

parameters. It is also revealed that there is significant 

increment in concentration profile during the increment in 

chemical reaction parameter (Figure 10) and Schmidt number 

(Figure 11). Physically it is possible because, the chemical 

reaction parameter and Schmidt number are inversely 

proportional to the molecular diffusion rate and as a 

consequence the concentration of the fluid increases. 

 

 

5. CONCLUSIONS 

 

From the above study, the following points are concluded 

• Fluid dynamics have been used extensively in various 

industries. Lots of industrial works such as chemical 

mixing devices, bearings, drilling of oil wells etc. are 

based on fluid flow through a cylindrical pipe or 

between two concentric circular pipes. The presence 

of friction might damage the surface. So, to overcome 

this, shearing stress formed at the surface must be in 

control. Shearing stress on the surface can be 

controlled by increasing the pressure gradient and 

Grashoff number for mass transfer or by reducing the 

Prandtl number, magnetic parameter, Grashoff 

number for heat transfer 

• By increasing the radiation parameter the temperature 

of the system may be reduced. 

• Prandtl number and heat source have a positive impact 

on temperature. 

• Concentration of the fluid is increased with the 

increase of chemical reaction parameter and Schmidt 

number. 

 

 

6. FUTURE SCOPE 

 

The present work of free convective Oldroyd fluid flow 

through an annulus with applied magnetic field has been 

done using Bessel functions. In future, this work may be 

extended into following directions: 

• To cover all hydro-magnetic aspects, induced 

magnetic field may be included.  

• Suction at the both the walls may be taken for broader 

applications in engineering 

• Suitable numerical methods may be used and then it 

may be compared with the results obtained by 

analytical methods. 

• Some other fluid models like micro-polar fluid, nano 

fluid etc. may be used in place of Oldroyd fluid. 
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NOMENCLATURE 

𝑤′=velocity of fluid at time 𝑡′ , 𝑝′=pressure, 𝑝∗ = 𝑝′ − 𝑝𝑠 ,

𝜌=density of fluid, 𝑇 ′=temperature of fluid, 𝑇𝑠=temperature

of fluid at static case,  𝐶 ′ =concentration of fluid, 

𝐶𝑠 =concentration of the fluid at static case, 𝜈 =kinematics

viscosity, 𝑔 =acceleration due to gravity, 𝛽 =co-efficient of 

volume expansion for heat transfer, 𝛽∗ =co-efficient of

volume expansion for mass transfer, B0=strength of the 

magnetic field,  𝜎 =electrical conductivity of the fluid, 

c=radius of inner cylinder, d=radius of outer cylinder (d>c), 

Cp=specific heat at constant pressure, 𝜏′𝑟𝑧 =viscous stress,

D=molecular diffusivity, 𝑘1 =chemical reaction parameter,

and n1, n2, m1, m2 are non-zero constants, w is dimensionless 

velocity, r and z are dimensionless displacement variables, 

p=pressure, t=dimensionless time, 𝜆 =non zero constant, 

𝜓 =dimensionless temperature,  𝜙 =dimensionless 

concentration, 𝑎 =dimensionless relaxation parameter, 

𝑏 =dimensionless retardation parameter, M=magnetic 

parameter, Gr=Grashoff number for heat transfer, 

Gm=Grashoff number for mass transfer, N=radiation 

parameter, Qr=heat source/sink parameter, Pr=Prandtl 

number, Sc=Schmidt number, hc=chemical reaction 

parameter.
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