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In the present paper the exact similarity solution for spherical shock wave propagation in 
a non-ideal gas in the case of isothermal flow with azimuthal magnetic field is studied. In 
the ambient medium the initial density is assumed to be constant and the magnetic field 
is taken to be varying according to power law. Exact self-similar solutions are obtained 
using Mc. Vittie method in the case of isothermal flow in non-ideal gas with magnetic 
field first time. To obtain the solution similarity transformations are used to transfer the 
system of PDE’s into a system of ODE’s. The product solution of Mc Vittie is used to 
obtain the exact self-similar solution of the problem under consideration. The effects of 
an increase in the values of the ratio of the gas specific heats 𝛾𝛾, the parameter of the non-
idealness of the gas and the strength of initial magnetic field 𝑀𝑀𝐴𝐴

−2 are discussed in detail.
It is shown that the shock strength decreases and isothermal compressibility increases 
with an increase in the values of these parameters. The total energy of the shock wave 
increases with time. The solutions obtained show that the density, fluid velocity, magnetic 
field and pressure tend to zero as the point of symmetry is reached. 
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1. INTRODUCTION

Shock waves are plentiful in the Universe. Shock waves are
generated when cosmic obstacles are exposed to high-speed 
(super-magneto-sonic) flows or, vice versa, when objects such 
as planets, comets, galaxies and so on pass across their gaseous 
environments at high speeds. Shock wave also forms due to 
rapid flows interaction in head-on collisions, overturn each 
other are stopped by their resting environments. From point of 
view of observation, though, astrophysics depends solely on 
the detection of radiation emitted, i.e. from radio waves to 
cosmic rays and does not allow to performed the 
measurements in situ on any of those objects with possibly the 
exclusion of shocks in the solar system and the heliosphere. 
Due to this limitation, only those shocks can be observed and 
recognized from Earth or with the help of spacecraft from 
Earth’s orbit which radiate in one of the observable bands of 
the total electromagnetic spectrum. Shocks must be ionized in 
order to radiate, and in the majority of cases they also involve 
magnetic fields [1]. 

Pressure reduction of a moving shock wave propagating in 
a duct is of great significance in various applications such as 
safety and health, transportation (car silencers and high-speed 
trains), and pipe loading (the chemical industry). Shock waves 
propagation in tunnels from explosions creates damage and 
may result in loss of lives. The attenuation of shock waves in 
tunnels and mines, for example, is of great significance to 
safety point of view [2]. 

The self-similar problem formulations describing the 
adiabatic motion in gas model of stars are studied in [3-6]. In 
the study of astrophysical phenomena, the problem of 
magnetogasdynamic shock waves in interplanetary 
atmosphere assumes special significance. Magnetic fields 

permeate the universe and have vital role in a number of 
astrophysical situations and most likely affect all astrophysical 
plasmas [7, 8]. A vital role is played by magnetic fields and 
radiation flux in momentum and energy transport and can 
rapidly release energy in flares. In the field of 
magnetogasdynamic flows a thorough review can be seen in 
the work by Shang [9]. Lock and Mestel [10] studied the 
annular self-similar solutions in ideal magnetogasdynamics by 
casting the ideal magnetogasdynamic equations to a three-
dimensional independent system in which either the fluid 
pressure or magnetic pressure vanish. Also shock waves in the 
influence of magnetic fields have a variety of industrial and 
astrophysical applications for details readers are refer to the 
important works [7, 8, 11].  

In order to obtain the similarity solution, the magnetic field 
in the ambient medium and shock velocity are assumed to vary 
as some power of the distance from the point of symmetry. 
Also, the initial density of the ambient medium is assumed to 
be constant. The radiation heat transfer equations are not used 
explicitly, whereas the radiation flux and other flow variables 
in the flow field behind the shock are evaluated from the 
equation of motion by the use of “product solution” of Mc 
Vittie [12]. Other important work related to shock wave 
problem using the “product solution” of Mc Vittie et al. [12-
18]. Nath et al. [17] have studied the shock wave propagation 
in a self-gravitating perfect gas with variable density in the 
presence of magnetic field in isothermal flow condition and 
they obtained the exact similarity solutions using the similarity 
method [12].  

In extreme situation that overcome in most of the problems 
linked with shock waves, the supposition that the gas is ideal 
is no more valid. In recent years, numerous studies have been 
performed related to the problem of shock waves in non-ideal 
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gases [19-26] 
Also, Nath [18] have obtained the exact similarity solutions 

in the case of isothermal flow using the ‘Product Solutions’ of 
Mc Vittie [12] for shock propagation in a non-ideal gas under 
the influence of gravitational field for Roche model. The 
numerical solution for the propagation of shock waves in 
rotational axis symmetric perfect or non-ideal gas with the 
presence of magnetic field in the case of isothermal flow using 
similarity method was obtained in Nath and others [27, 28]. 

In all of the works mentioned above and known to us, the 
exact self-similar solution have not investigated by any of the 
authors using the “product solution” of Mc Vittie [12] for the 
propagation of shock wave in a non-ideal gas with azimuthal 
magnetic field in the case of isothermal flow. The motivation 
for the present study is the pioneering work on exact solution 
on shock wave propagation by Mc Vittie et al. [12, 13, 15-18]. 
In the present study we adopted van der Waal gas model to 
obtain an exact self-similar solution for the unsteady 
isothermal flow behind a spherical shock wave in a non-ideal 

gas with azimuthal magnetic field with constant initial density. 
The present study may be considered as the generalization of 
the work of Vishwakarma and Patel [13] to the case of 
isothermal flow and the work of Nath [18] for 
magnetogasdynamics without gravitational effect. The 
supposition of isothermal flow is physically realistic, when 
radiation heat transfer effects are implicitly present. The 
temperature behind the shock increase as the shock wave 
propagates and it becomes extremely high so that there is 
intense transfer of energy by radiation. Due to this the 
temperature gradient to approach zero; that is, the dependent 
temperature tends to become uniform behind the shock front, 
and the flow become isothermal [29-33]. With this supposition, 
we obtain the exact self-similar solution in Section 4. The 
effects of various parameters on the flow variables and on 
shock strength are discussed via Table 1 and Figures 1 (a-e) in 
result and discussion section 5. Also, a comparison between 
the solution for perfect gas and non-ideal gas is made. 

 

 

 

 

 

 
(a) pressure 𝑃𝑃(𝑥𝑥)  (b) density 𝐷𝐷(𝑥𝑥)  (c) fluid velocity 𝑊𝑊(𝑥𝑥) 

 

 

 

 
(d) azimuthal magnetic field𝐻𝐻(𝑥𝑥)  (e) isothermal compressibility (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ)𝜌𝜌𝑎𝑎𝑉𝑉2 

 
Figure 1. Flow variables distribution in the flow field region behind the shock for 𝛼𝛼 = 0.5: Perfect gas (dashed curves) and Non-

ideal gas (solid curves) 
 
Note: 1. 𝑀𝑀𝐴𝐴

−2 = 0.2, 𝛾𝛾 = 4/3, 𝑏𝑏 = 0;2. 𝑀𝑀𝐴𝐴
−2 = 0.2,𝛾𝛾 = 4/3, 𝑏𝑏 = 0.1; 3. 𝑀𝑀𝐴𝐴

−2 = 0.2,𝛾𝛾 = 4
3

, 𝑏𝑏 = 0.2;4. 𝑀𝑀𝐴𝐴
−2 = 0.2, 𝛾𝛾 = 5/3, 𝑏𝑏 = 0;5. 𝑀𝑀𝐴𝐴

−2 = 0.2, 𝛾𝛾 = 5/3, 𝑏𝑏 =
0.1; 6. 𝑀𝑀𝐴𝐴

−2 = 0.2, 𝛾𝛾 = 5/3, 𝑏𝑏 = 0.2; 7. 𝑀𝑀𝐴𝐴
−2 = 0.25,𝛾𝛾 = 4/3, 𝑏𝑏 = 0;8. 𝑀𝑀𝐴𝐴

−2 = 0.25,𝛾𝛾 = 4/3, 𝑏𝑏 = 0.1; 9. 𝑀𝑀𝐴𝐴
−2 = 0.25, 𝛾𝛾 = 4/3, 𝑏𝑏 = 0.2;10. 𝑀𝑀𝐴𝐴

−2 = 0.25, 𝛾𝛾 =

5/3, 𝑏𝑏 = 0;11. 𝑀𝑀𝐴𝐴
−2 = 0.25,𝛾𝛾 = 5/3, 0.1b = ; 12. 𝑀𝑀𝐴𝐴

−2 = 0.25,𝛾𝛾 = 5/3,𝑏𝑏 = 0.2. 
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Table 1. The density ration across the shock front and the 
problem parameter values for different values of 𝑀𝑀𝐴𝐴

−2, 𝛾𝛾 and 
𝑏𝑏 

𝑀𝑀𝐴𝐴
−2 𝛾𝛾 M2 𝑏𝑏� 𝛽𝛽 𝜆𝜆 = (

3
𝛽𝛽 − 1) > 2 

0.2 

4/3 7.5 
0 0.75158 2.99159 

0.1 0.761341 2.94042 
0.2 0.772920 2.88138 

5/3 6.0 
0 0.683013 3.39230 

0.1 0.686539 3.36974 
0.2 0.690945 3.34188 

0.25 

4/3 6.0 
0 0.790161 2.79669 

0.1 0.800835 2.74609 
0.2 0.813476 2.68788 

5/3 5/3 0 0.733026 3.09262 
0.1 0.738764 3.06084 
0.2 0.745832 3.02235 

 
 
2. BASIC EQUATIONS OF MOTIONS  

 
The basic equations governing the one-dimensional 

isothermal and spherically symmetric motion of an electrically 
conducting non-ideal gas in the presence of azimuthal 
magnetic field, may be written as (10, 13, 16, 17, 30-35) 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑖𝑖

+ 𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 2𝜕𝜕𝜕𝜕
𝜕𝜕

= 0,  (1) 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑖𝑖

+ 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝜕𝜕
�𝜇𝜇ℎ 𝜕𝜕ℎ

𝜕𝜕𝜕𝜕
+ 𝜇𝜇ℎ2

2
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� = 0,  (2) 

 
𝜕𝜕ℎ
𝜕𝜕𝑖𝑖

+ 𝑢𝑢 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

+ ℎ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕ℎ
𝜕𝜕

= 0,  (3) 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,  (4) 
 

where 𝑡𝑡 and 𝑟𝑟 are the independent time and space coordinates, 
𝜌𝜌  is the density, 𝑢𝑢  is the fluid velocity, ℎ  is the azimuthal 
magnetic field, 𝑝𝑝  is the pressure, 𝜇𝜇  is the magnetic 
permeability and 𝑇𝑇  is the temperature. The electrical 
conductivity of the gas is assumed to be infinite, the electrical 
resistivity is ignored and the diffusion term from the magnetic 
field equation is omitted. In the present problem the effect of 
rotation, viscosity and gravitation on the flow of the gas is 
neglected. 

The supposition that the gas is ideal is no longer valid when 
the flow takes place at higher temperature [24]. We adopt a 
simple model to obtain the deviation in solution from the case 
of ideal gas to the non-ideal gas. We suppose that the gas 
follow a simplified van der Waal state equation [21, 22, 26, 
28]. 

 
𝑝𝑝 = 𝛤𝛤𝜕𝜕𝜕𝜕

1−𝑏𝑏𝜕𝜕
,𝐸𝐸 = 𝐶𝐶𝑣𝑣𝑇𝑇 = 𝜕𝜕(1−𝑏𝑏𝜕𝜕)

𝜕𝜕(𝛾𝛾−1)
,  (5) 

 
where, 𝛤𝛤 is the gas constant, 𝛾𝛾 is the ratio of specific heats, 𝐸𝐸 
is the internal energy per unit mass of the gas, 𝐶𝐶𝑣𝑣 = 𝛤𝛤

𝛾𝛾−1
 is the 

specific heat at constant volume, constant b is the van der Waal 
excluded volume, it places a limit, 𝜌𝜌 1

𝑏𝑏𝑚𝑚𝑎𝑎𝑚𝑚
, on the density of 

the gas. 
For the self-similar solution [6], the shock velocity 𝑉𝑉 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑖𝑖
 

is assumed to vary as [15-17]: 
 

𝑉𝑉2 = 𝐵𝐵2𝑅𝑅−𝛿𝛿 ,  (6) 
 

where, 𝑅𝑅 is the shock radius, 𝐵𝐵 and 𝛿𝛿 are constants. 
A spherical strong shock wave is supposed to be 

propagating in the undisturbed medium under the influence of 
azimutha magnetic field. Immediately ahead of shock front the 
flow variables are 
 

𝑢𝑢𝑎𝑎 = 0,𝜌𝜌 = 𝜌𝜌𝑎𝑎 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡, ℎ = ℎ𝑎𝑎 = ℎ0𝑅𝑅−𝛼𝛼 ,  (7) 
 
where, ℎ0  and 𝛼𝛼  are constants, subscript ‘a’ refers to the 
conditions immediately ahead of the shock front. 

Using momentum equation (2), the initial pressure is found 
to be 

 
𝑝𝑝𝑎𝑎 = (1−𝛼𝛼)𝜇𝜇ℎ0

2

2𝛼𝛼
𝑅𝑅−2𝛼𝛼 , (0 < 𝛼𝛼 < 1). (8) 

 
 

3. BOUNDARY CONDITIONS 
 
The Rankine-Hugoniot shock jump conditions across the 

shock wave in an electrically conducting non-ideal gas are 
given by the principal of conservation of mass, momentum and 
energy, namely, [16, 24, 25, 27, 28] 

 
𝜌𝜌𝑛𝑛 = 𝜕𝜕𝑎𝑎

𝛽𝛽
, ℎ𝑛𝑛 = ℎ𝑎𝑎

𝛽𝛽
, 𝑢𝑢𝑛𝑛 = (1 − 𝛽𝛽)𝑉𝑉, 

𝑝𝑝𝑛𝑛 = �(1 − 𝛽𝛽) + 1
𝛾𝛾𝑀𝑀2 + 1

2
(1 − 1

𝛽𝛽2
)𝑀𝑀𝐴𝐴

−2� 𝜌𝜌𝑎𝑎𝑉𝑉2,  
(9) 

 
where the subscript n denotes the condition immediately 
behind the shock front, the density ratio β (0<β<1) across the 
shock front is obtained by the cubic relation 
 

(𝛾𝛾 + 1)𝛽𝛽3 − � 2
𝑀𝑀2 + 2𝑏𝑏 + (𝛾𝛾 − 1) + 𝛾𝛾𝑀𝑀𝐴𝐴

−2� 𝛽𝛽2  

+𝛽𝛽(𝑏𝑏 + 𝛾𝛾 − 2) + 𝑏𝑏𝑀𝑀𝐴𝐴
−2 = 0  

(10) 

 
where, (𝐹𝐹𝑛𝑛 − 𝐹𝐹𝑎𝑎)

 
is neglected in comparison with the product 

of𝑝𝑝𝑛𝑛 and 𝑉𝑉 as the shock is strong to derive equation (10) above, 
𝐹𝐹 is the radiation flux,𝑀𝑀2 = 𝑉𝑉2𝜕𝜕𝑎𝑎

𝛾𝛾𝜕𝜕𝑎𝑎
 is the shock Mach number 

referred to the frozen speed of sound (𝛾𝛾𝑝𝑝𝑎𝑎/𝜌𝜌𝑎𝑎)1/2, 𝑀𝑀𝐴𝐴
2 = 𝑉𝑉2𝜕𝜕𝑎𝑎

𝜇𝜇ℎ𝑎𝑎2
 

is the Alfven Mach number and 𝑏𝑏 = 𝑏𝑏𝜌𝜌𝑎𝑎 [27, 28, 31].  
The expressions for shock Mach number M and Alfven 

Mach number 𝑀𝑀𝐴𝐴 are  
 

𝑀𝑀2 = 𝑉𝑉2𝜕𝜕𝑎𝑎
𝛾𝛾𝜕𝜕𝑎𝑎

= 𝜕𝜕𝑎𝑎𝐵𝐵2𝑑𝑑−𝛿𝛿

𝛾𝛾�(1−𝛼𝛼)𝜇𝜇ℎ0
2

2𝛼𝛼 �𝑑𝑑−2𝛼𝛼
,
 
and  

𝑀𝑀𝐴𝐴
2 = 𝑉𝑉2𝜕𝜕𝑎𝑎

𝜇𝜇ℎ𝑎𝑎
2 = 𝜕𝜕𝑎𝑎𝐵𝐵2𝑑𝑑−𝛿𝛿

𝜇𝜇ℎ0
2𝑑𝑑−2𝛼𝛼

. 
(11) 

 
The shock Mach number ‘M’ and Alfven Mach number ‘MA’ 

must be constant for the flow to be self-similar. Thus the 
conditions for M and 𝑀𝑀𝐴𝐴 to be constant are 

 
𝛿𝛿 = 2𝛼𝛼 (12) 

 
Equation (4) together with (5) gives 
 

𝜕𝜕
𝜕𝜕𝑛𝑛

= 𝜕𝜕(1−𝑏𝑏𝜕𝜕𝑛𝑛)
𝜕𝜕𝑛𝑛(1−𝑏𝑏𝜕𝜕)

  (13) 
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We may calculate the so-called isothermal speed of sound 
in non-ideal gas for a given internal volume of the gas b as 
follows 

 

𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ = �𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕
�
𝜕𝜕

1
2 = � 𝜕𝜕

(1−𝑏𝑏𝜕𝜕)𝜕𝜕
�
1
2,  (14) 

 
where, the subscript ‘T’ refers to the process of constant 
temperature.  

The isothermal compressibility of non-ideal gas may be 
calculated as [26]  

 
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ = 1

𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ
2   (15) 

 
 

4. SIMILARITY TRANSFORMATIONS 
 
To obtain the self-similar solution, the unknown variables 

are written in the following form [13, 15] 
 

𝑢𝑢 = 𝑉𝑉𝑊𝑊(𝑥𝑥), 𝜌𝜌 = 𝜌𝜌𝑎𝑎𝐷𝐷(𝑥𝑥), 𝑝𝑝 = 𝜌𝜌𝑎𝑎𝑉𝑉2𝑃𝑃(𝑥𝑥),  
√𝜇𝜇ℎ = �𝜌𝜌𝑎𝑎𝑉𝑉𝐻𝐻(𝑥𝑥),  (16) 

 
where, x=r/R is the similarity variable (dimensionless 
variable), W(x), D(x), P(x) and H(x) are the function of x only. 

Equation (13) with the help of the equations (9) and (16) 
gives a relation between D(x) and P(x) in the form  

 

𝑃𝑃(𝑥𝑥) =
𝐷𝐷(𝑥𝑥)𝐿𝐿(𝛽𝛽 − 𝑏𝑏)
(1 − 𝑏𝑏𝐷𝐷(𝑥𝑥))

 (17) 

 
where, 𝐿𝐿 = �(1 − 𝛽𝛽) + 1

𝛾𝛾𝑀𝑀2 + 1
2

(1 − 1
𝛽𝛽2

)𝑀𝑀𝐴𝐴
−2�. 

Using equation (17) and similarity transformations (16), 
equations (1)-(3) can be transformed and simplified to 

  
(𝑊𝑊 − 𝑥𝑥) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑚𝑚
+ 𝐷𝐷 𝑑𝑑𝑑𝑑

𝑑𝑑𝑚𝑚
+ 2𝑑𝑑𝑑𝑑

𝑚𝑚
= 0,  (18) 

 
(𝑊𝑊 − 𝑥𝑥) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑚𝑚
− 𝛿𝛿𝑑𝑑

2
  

+ 1
𝑑𝑑
� 𝐿𝐿(𝛽𝛽−𝑏𝑏)

(𝛽𝛽−𝑏𝑏𝑑𝑑)2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑚𝑚

+ 𝐻𝐻 𝑑𝑑𝑑𝑑
𝑑𝑑𝑚𝑚

+ 𝑑𝑑2

𝑚𝑚
� = 0,  

(19) 

 

(𝑊𝑊 − 𝑥𝑥)
𝑑𝑑𝐻𝐻
𝑑𝑑𝑥𝑥

+ �
𝑑𝑑𝑊𝑊
𝑑𝑑𝑥𝑥

−
𝛿𝛿
2
�𝐻𝐻 +

𝐻𝐻𝑊𝑊
𝑥𝑥

= 0, (20) 

 
Using the similarity transformations (16), the shock 

conditions (9), transformed into  
 
𝑾𝑾(𝟏𝟏) = (𝟏𝟏 − 𝜷𝜷), 𝑫𝑫(𝟏𝟏) = 𝟏𝟏

𝜷𝜷
, 𝑯𝑯(𝟏𝟏) = 𝑨𝑨

𝜷𝜷
𝑹𝑹(𝜹𝜹−𝟐𝟐𝟐𝟐)/𝟐𝟐, 

,(1)P L=   
(21) 

 

where, 𝐴𝐴 = ℎ0
𝐵𝐵 �

𝜇𝜇
𝜕𝜕𝑎𝑎

. 

We assume the product solution of the “progressive wave” 
in the form [12] 

 
𝑢𝑢 = 𝑟𝑟 𝑎𝑎(𝑖𝑖)

𝑖𝑖
  (22) 

 
𝜌𝜌 = (𝜆𝜆 + 1)𝑡𝑡−2𝜏𝜏𝑓𝑓(𝑡𝑡)𝜂𝜂𝜆𝜆−2, (23) 

𝑝𝑝 = 𝜏𝜏2𝑡𝑡−2𝑏𝑏(𝑡𝑡)𝑓𝑓(𝑡𝑡)𝜂𝜂𝜆𝜆−2,  (24) 
 

ℎ = 𝜏𝜏𝑡𝑡−1𝑓𝑓
1
2(𝑡𝑡)𝑐𝑐(𝑡𝑡)𝜂𝜂

𝜆𝜆
2 ,  (25) 

 
where, 𝜂𝜂 = 𝑟𝑟𝑡𝑡−𝜏𝜏 ,𝜆𝜆  and 𝜏𝜏  are constants, and 𝑐𝑐, 𝑓𝑓, 𝑏𝑏and 𝑐𝑐  are 
functions of 𝑡𝑡 that satisfy the following equation 

 

𝑐𝑐(𝑡𝑡) =
𝜏𝜏𝜆𝜆−𝑖𝑖𝑓𝑓′(𝑖𝑖)

𝑓𝑓(𝑖𝑖)

𝜆𝜆+1
=

(2−2𝑖𝑖𝑐𝑐′(𝑖𝑖)
𝑐𝑐(𝑖𝑖) )

3
  (26) 

 
(𝜆𝜆 − 2)𝑏𝑏(𝑡𝑡) + 𝜇𝜇𝑐𝑐2(𝑡𝑡) �1 + 𝜆𝜆

2
� 𝜂𝜂2  

= (𝑐𝑐(𝑡𝑡) − 𝑐𝑐2(𝑡𝑡) − 𝑡𝑡𝑐𝑐′(𝑡𝑡)) (𝜆𝜆+1)𝜂𝜂2

𝜏𝜏2
.  

(27) 

 
These equations satisfy equations (1) to (3) identically it can 

be easily seen. After converting this solution to a similarity 
one, it follows that '𝑐𝑐 ' should be a constant 𝑐𝑐 = 2(1−𝛽𝛽)

(𝛿𝛿+2)
, we 

apply the boundary conditions (21) in (22), (23) and (25), we 
obtain the solution as 

 
𝑊𝑊(𝑥𝑥) = (1 − 𝛽𝛽)𝑥𝑥,  (28) 

 
𝐷𝐷(𝑥𝑥) = 1

𝛽𝛽
𝑥𝑥𝜆𝜆−2,  (29) 

 

𝐻𝐻(𝑥𝑥) = 𝐴𝐴
𝛽𝛽
𝑅𝑅(𝛿𝛿−2𝛼𝛼)/2𝑥𝑥

𝜆𝜆
2  (30) 

 
These solutions (28)-(30) satisfy differential equations (18) 

to (20) identically, and thus they form a solution of these 
differential equations (18)-(20). From equations (17) and (29)  

 
𝑃𝑃(𝑥𝑥) = 𝐿𝐿(𝛽𝛽−𝑏𝑏)𝑚𝑚𝜆𝜆−2

(𝛽𝛽−𝑏𝑏𝑚𝑚𝜆𝜆−2)
  (31) 

 
Now, substituting equations (28)–(30) into equations (18)–

(19), we obtain 
 

𝜆𝜆 = (3
𝛽𝛽
− 1)  (32) 

 
𝐴𝐴
𝛽𝛽
𝑅𝑅(𝛿𝛿−2𝛼𝛼)/2 =

(1−𝛽𝛽)𝑚𝑚2(2𝛽𝛽+𝛿𝛿)(𝛽𝛽−𝑏𝑏𝑚𝑚𝜆𝜆−2)2−2𝛽𝛽2(𝛽𝛽−𝑏𝑏)(𝜆𝜆−2)𝐿𝐿
𝑚𝑚2𝛽𝛽(𝜆𝜆+2)(𝛽𝛽−𝑏𝑏𝑚𝑚𝜆𝜆−2)2

  
(33) 

 
The total energy 𝐸𝐸𝜕𝜕𝑖𝑖𝑖𝑖𝑎𝑎𝑇𝑇  of the flow field behind the 

spherical shock front is given by 
 

𝐸𝐸𝜕𝜕𝑖𝑖𝑖𝑖𝑎𝑎𝑇𝑇 = 4𝜋𝜋 ∫ �𝜕𝜕(1−𝑏𝑏𝜕𝜕)
(𝛾𝛾−1)𝜕𝜕

+ 𝜇𝜇ℎ2

2𝜕𝜕
+ 1

2
𝑢𝑢2� 𝜌𝜌𝑟𝑟2𝑑𝑑𝑟𝑟𝑑𝑑

0   (34) 
 
Using equation (17) the above equation (34) transformed 

into  
 

𝐸𝐸𝜕𝜕𝑖𝑖𝑖𝑖𝑎𝑎𝑇𝑇 = 4𝜋𝜋𝜌𝜌𝑎𝑎𝐵𝐵2𝑅𝑅3−𝛿𝛿 ∫ �𝑃𝑃�1−𝑏𝑏𝑑𝑑�
(𝛾𝛾−1)

+ 1
2

(𝐻𝐻2 +1
0

𝑊𝑊2𝐷𝐷)� 𝑥𝑥2𝑑𝑑𝑥𝑥  
(35) 

 
This equation (35) shows that the total energy of the 

disturbance is not constant and varies as 𝑅𝑅3−𝛿𝛿.  
Using equations (14) and (16) in (15), we obtain the 

expression for the isothermal compressibility as 
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(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ)𝜌𝜌𝑎𝑎𝑉𝑉2 = (1−𝑏𝑏𝑑𝑑)
𝑃𝑃(𝑚𝑚)

  (36) 
 

Equations (28)-(31) provide the solution of our considered 
problem. The solution we have obtained is an illustration of 
exact similarity solution in magnetogasdynamic in a non-ideal 
gas with constant density in the case of isothermal flow and 
similar to exact solutions obtained in ordinary gas dynamics 
by Mc Vittie [12], in magnetogasdynamic with radiative heat 
flux by Vishwakarma et al. [16] in the case of adiabatic flow, 
and in self-gravitating perfect gas by Nath et al. [17] in the 
case of isothermal flow with magnetic field. The exact 
solutions using Mc Vittie [12], method in the case of 
isothermal flow in non-ideal gas with magnetic field is 
reported first time. 

 
 

5. RESULTS AND DISCUSSION 
 
From equations (11) and (12) the relation between the shock 

Mach number M and Alfven Mach number 𝑀𝑀𝐴𝐴 is given by 
 

𝑀𝑀2 = 2𝛼𝛼
𝛾𝛾(1−𝛼𝛼)𝑀𝑀𝐴𝐴

−2  (37) 
 

For density and pressure to remain finite at the point of 
symmetry the inequality obtained from (28) and (30) i.e. 𝜆𝜆 >
2 should hold. To obtain the solution the values of the physical 
parameters are taken as: 𝛾𝛾 = 4/3, 5/3,𝑀𝑀𝐴𝐴

−2 = 0.2,0.25; 𝛼𝛼 =
0.5 ; 𝑏𝑏 = 0,0.1,0.2 . The obtained solutions are shown in 
Figures 1 and Table 1 [13, 27, 28, 35]. 

Figures 1(a-d) show that the pressure𝑃𝑃(𝑥𝑥), density𝐷𝐷(𝑥𝑥), 
fluid velocity 𝑊𝑊(𝑥𝑥)  andazimuthal magnetic field 𝐻𝐻(𝑥𝑥) 
decrease as we move from shock front to the point of 
symmetry. These flow variables are maximum at the shock 
and minimum near the point of symmetry. The isothermal 
compressibility increases as we move inwards from the shock 
front to the point of symmetry and it becomes maximum near 
the point of symmetry. Also, the flow variables except the 
isothermal compressibility (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ)𝜌𝜌𝑎𝑎𝑉𝑉2 vanish at the point of 
symmetry. Table 1 shows the values of the problem 
parameters for different values of 𝑀𝑀𝐴𝐴

−2, 𝛾𝛾, 𝑏𝑏with 𝛼𝛼 = 0.5. 
Effects of an increase in the value of the strength of the 

initial magnetic field i.e. 𝑀𝑀𝐴𝐴
−2 from Table 1 and Figures 1(a-e) 

are:  
(1) to increase the density ratio 𝛽𝛽 across the shock front (see 

Table 1), i.e., to decrease the shock strength; 
(2) to decrease the magnetic field 𝐻𝐻(𝑥𝑥) near shock and to 

increase it near point of symmetry for𝑏𝑏 = 0.1 ; whereas it 
increases for 𝑏𝑏 = 0.2 in the whole flow field region behind the 
shock front (see Figure 1(c)).  

(3) to decrease the pressure 𝑃𝑃(𝑥𝑥)  and density 𝐷𝐷(𝑥𝑥)  near 
shock and to increase these near point of symmetry (see Figure 
1(a, b));  

(4) to decrease the fluid velocity 𝑊𝑊(𝑥𝑥)  and isothermal 
compressibility (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ)𝜌𝜌𝑎𝑎𝑉𝑉2 (see Figure 1(c, e)).  

Effects of an increase in the value of the parameter of non-
idealness of the gas 𝒃𝒃 are:  

(1) to increase the density ratio 𝛽𝛽 across the shock front (see 
Table 1), i.e., to decrease the shock strength; 

(2) to decrease the isothermal compressibility(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ)𝜌𝜌𝑎𝑎𝑉𝑉2 
for 𝛾𝛾 = 4

3
 and to increase it for 𝛾𝛾 = 5

3
 (see Figure 1(e)). 

(3) to decrease the density 𝐷𝐷(𝑥𝑥) near shock and to increase 

it near point of symmetry (see Figure 1(b));  
(4) to decrease the fluid velocity 𝑊𝑊(𝑥𝑥) (see Figure 1(c)).  
(5) to decrease the magnetic field 𝐻𝐻(𝑥𝑥) and pressure 𝑃𝑃(𝑥𝑥) 

in general (see Figure 1(a, d)).  
Effects of an increase in the value of adiabatic exponent γ 

are  
(1) to decrease the density ratio 𝛽𝛽 across the shock front 

(see Table 1), i.e., to increase the shock strength; 
(2) to increase the magnetic field 𝐻𝐻(𝑥𝑥) near shock and to 

decrease it near point of symmetry for 𝑏𝑏 = 0.1; whereas it 
decreases for 𝑏𝑏 = 0.2 in the whole flow field region behind 
the shock front (see Figure 1(c)).  

(3) to increase the pressure 𝑃𝑃(𝑥𝑥)  and density 𝐷𝐷(𝑥𝑥)  near 
shock and to decrease these near point of symmetry (see 
Figure 1(a, b));  

(4) to increase the fluid velocity 𝑊𝑊(𝑥𝑥)  and isothermal 
compressibility (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ)𝜌𝜌𝑎𝑎𝑉𝑉2 (see Figure 1(c, e)). 
 
 
6. CONCLUSION  

 
The exact similarity solutions for spherical shock wave 

propagation in a non-ideal gas with azimuthal magnetic field 
under isothermal flow condition have been studied. On the 
basis of the present work, we may draw the following 
conclusions: 

(1) An increase in the strength of the initial magnetic field 
or the parameter of non-idealness 𝒃𝒃 of the gas decreases the 
shock strength; whereas the shock strength increases with 
adiabatic exponent 𝛾𝛾.  

(2) the density 𝐷𝐷(𝑥𝑥) decreases near shock and it increases 
near point of symmetry and the fluid velocity 𝑊𝑊(𝑥𝑥) decreases 
with parameter of non-idealness 𝑏𝑏 of the gas. The parameter 𝑏𝑏 
and 𝑀𝑀𝐴𝐴

−2  have similar effect on fluid velocity 𝑊𝑊(𝑥𝑥)  and 
density 𝐷𝐷(𝑥𝑥). 

(3) The adiabatic exponent𝛾𝛾 and parameter of non-idealness 
of the gas 𝑏𝑏 have opposite effect on velocity 𝑊𝑊(𝑥𝑥)  and 
density𝐷𝐷(𝑥𝑥).  

(4) the isothermal compressibility(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ)𝜌𝜌𝑎𝑎𝑉𝑉2  decreases 
with an increase in the value of the strength of the initial 
magnetic field i.e. 𝑀𝑀𝐴𝐴

−2. The parameter of non-idealness 𝑏𝑏 of 
the gas and 𝑀𝑀𝐴𝐴

−2  have similar effect on isothermal 
compressibility(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ)𝜌𝜌𝑎𝑎𝑉𝑉2 for 𝛾𝛾 = 4

3
 and reverse effect on it 

for 𝛾𝛾 = 5
3
.  

(5) With an increase in  𝑀𝑀𝐴𝐴
−2 the magnetic field 𝐻𝐻(𝑥𝑥) 

increases near shock and it decreases near point of symmetry 
for𝑏𝑏 = 0.1; whereas it decreases for 𝑏𝑏 = 0.2 in the whole flow 
field behind the shock. The pressure 𝑃𝑃(𝑥𝑥) and density 𝐷𝐷(𝑥𝑥) 
increases near shock and these decreases near point of 
symmetry with an increase in 𝑀𝑀𝐴𝐴

−2 .Also, the fluid velocity 
𝑊𝑊(𝑥𝑥) and isothermal compressibility (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ)𝜌𝜌𝑎𝑎𝑉𝑉2 increases 
with an increase in 𝑀𝑀𝐴𝐴

−2. The adiabatic exponent 𝛾𝛾 the strength 
of the initial magnetic field i.e. 𝑀𝑀𝐴𝐴

−2 have similar effect on the 
flow variables𝐻𝐻(𝑥𝑥), 𝑊𝑊(𝑥𝑥), 𝑃𝑃(𝑥𝑥),𝐷𝐷(𝑥𝑥), (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ)𝜌𝜌𝑎𝑎𝑉𝑉2.  
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NOMENCLATURE 
 
A Abbreviation 
a(t) Function of 𝒕𝒕 
aisoth Isothermal sound speed 
B Constant 
b Van der Waal excluded volume  
𝑏𝑏 Non-idealness parameter  
b(t) Function oft  
c(t) Function oft 
Cisoth Isothermal compressibility  
Cv Specific heat at constant volume 
D(x) Non-dimensional density 
E Internal energy per unit mass 
ETotal Total energy  
F Radiation heat flux 
f(t) Function oft 
H(x) Non-dimensional magnetic field 
h Azimuthal magnetic field 
h0 Constant 
L Abbreviation 
M Shock Mach number  
𝑀𝑀𝐴𝐴

−2 Alfven Mach number  
P(x) Non-dimensional fluid pressure 

p Pressure 
R Shock radius 
r Independent space coordinate  
T Temperature of the gas 
t Independent time coordinate 
u Fluid velocity 
V Shock velocity 
W(x) Non-dimensional fluid velocity 
x Similarity variable 
 
Greek letters 
 
𝜌𝜌 Fluid density 
𝛼𝛼 Magnetic field variation index 
𝛽𝛽 Ratio of density across the shock  
𝛤𝛤 Gas constant 
𝛾𝛾 Ratio of specific heats 
𝛿𝛿 Constant 
𝜂𝜂 Arbitrary function of r and t 
𝜆𝜆 Constant 
𝜇𝜇 Magnetic permeability 
𝜏𝜏 Constant 
 
Subscripts 
 
a Immediately ahead the shock 
n Immediately behind the shock 
T Process of constant temperature 
 
Superscript 
 
' Derivative with respect to t  
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