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The propagation of strong spherical shock wave in non-ideal gas under the influence of 
gravitational field is discussed. The total energy of the shock wave increases with time. 
An exact similarity solution is obtained in the case when the medium is non-ideal under 
the influence of a central mass (m). The effects of variation of the parameter of non-
idealness of the gas and the ratio of the specific heats of the gas are workout in detail. It 
is shown that the shock strength and the isothermal compressibility decrease with an 
increase in the value of the ratio of specific heats of the gas or the parameter of non-
idealness of the gas. Also, it is obtained that an increase in the value of the parameter of 
non-idealness of the gas and the ratio of the specific heats has same effect on the flow 
variables and on the shock strength. 
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1. INTRODUCTION

Due to sudden released of a large amount of energy in a
small region, for example an explosion, a disturbance headed 
by a strong shock wave called the blast wave is produced and 
propagates into the surround medium. The mathematical 
formulation for this phenomena is studied in [1-2] in the case 
of adiabatic fluid dynamics with Rankine-Hugoniot conditions 
which comes from the conservation of mass, momentum and 
energy through the shock front. The jump conditions for strong 
shock depend on the shock velocity and the density ahead of 
the front only. For the strong shock, some authors have 
constracted exact solutions of the blast wave in a sphereical 
geometry because the study of spherical symmetry motion is 
important for the theory of explosion in various medium, for 
example air and water (see [1, 3, 4-7]). 

Carrus et al. [6] studied the propagation of shock waves in 
a gas under the gravitational attraction of a central body of the 
fixed mass (Roche model) and obtained similarity solutions by 
using numerical method. The method for obtaining analytical 
solution of the same problem was discussed by Rogers [5]. The 
formation of self-similar problems and examples describing 
the adiabatic motion of gas models of star are considered in [1, 
8-10].

In extreme conditions that prevail in most of the problems
associated with shock waves, the assumption that the gas is 
ideal is no longer valid. In recent years, several studies have 
been performed concerning the problem of shock waves in 
non-ideal gases (see [11-17] among others). In all of the works 
mentioned above, the influence of gravitational field under the 
isothermal flow condition is not considered by any of the 
author to obtain the exact similarity solution. The gravitational 
force has considerable effect on many astrophysical problems. 
Also, we have considered the gas to be non-ideal. The popular 
alternative to the ideal gas is a simplified van der Waals model. 
In the present work, we too adopt this as our model of a non-
ideal gas to extend the problem treated by Vishwakarma et al. 

[18] and to obtain the self-similar solutions for unsteady
isothermal flow behind a strong spherical shock wave
propagating in a non-ideal gas under the influence of
gravitational field. In order to obtain exact similarity solutions,
the initial density of the medium is taken to be constant. The
exact similarity solutions are obtained in the case of isothermal 
flow with the strong shock conditions by using the ‘Product
Solutions’ of McVittie [19] to evaluate the flow variables
distribution behind the shock front. The exact solution using
‘Product Solutions’ of McVittie [19] in the case of adiabatic
flow with or without gravitation are also, studied in [20-24].
The assumption of isothermal flow is physically realistic,
when radiation heat transfer effects are implicitly present. As
the shock propagates, the temperature behind it increases and
becomes very large so that there is intense transfer of energy
by radiation. This causes the temperature gradient to approach
zero; that is, the dependent temperature tends to become
uniform behind the shock front, and the flow becomes
isothermal [25-28]. With this assumption, we obtain the exact
solution in Section 4. The effects of various parameters on the
shock velocity, shock strength and on the flow variables are
shown in Figures 1-2 and Table 1 and discussed in Section 5.

The effects of variation of the parameter of non-idealness of 
the gas and the ratio of the specific heat of the gas on the shock 
strength, isothermal compressibility and on the flow variables 
are investigated. It is found that the shock strength and 
isothermal compressibility decrease with an increase in the 
ratio of the specific heat of the gas or the parameter of non-
idealness of the gas. Also, it is found that an increase in the 
value of the parameter of non-idealness of the gas and the 
adiabatic exponent have similar effect on the flow variables 
and on the shock strength. 

2. BASIC EQUATIONS OF MOTIONS

The fundamental equations governing the one-dimensional,
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unsteady isothermal and spherically symmetric motion of a 
non-ideal gas under the influence of a gravitational field may 
be written as ([6-7,18,25]). 
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where, r and t are the independent space and time coordinates, 
u is the fluid velocity, ρ is the density, p is the pressure, T is 
the temperature, m is the central mass at the origin, and G is 
the gravitational constant.  

The assumption that the gas is ideal is no longer valid when 
the flow takes place at higher temperature [16]. To obtain the 
deviation in solution from the case of ideal gas in the non-ideal 
gas, we adopt a simple model. We assume that the gas obey a 
simplified van der Waal equation of state of form (Wu and 
Roberts [13], Roberts and Wu [14], Nath [15]) 
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where, R is the gas constant , γ is the ratio of specific heats, E 
is the internal energy per unit mass of the gas, 𝑪𝑪𝒗𝒗 = 𝑹𝑹

𝜸𝜸−𝟏𝟏
 is the 

specific heat at constant volume, constant b is the van der Waal 
excluded volume, it places a limit, 𝜌𝜌 1

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
, on the density of 

the gas. 
For the self-similar solution (Sedov [1]) the relation the 

shock velocity 𝑊𝑊𝑠𝑠 = 𝑑𝑑𝑟𝑟𝑠𝑠
𝑑𝑑𝑑𝑑

 is assumed to vary as ([18-24]) 
 

2 2 ,s srW A α−=  (5) 
 

where, rs is the shock radius, A and α are constant. 
A strong spherical shock wave is supposed to be 

propagating in the undisturbed medium under the influence of 
gravitational field. The flow variables immediately ahead of 
shock front are  

 
0,a au ρ ρ= = = constant (6) 

 
where, subscript ‘a’ refers to the conditions immediately ahead 
of the shock front. 
 
 
3. BOUNDARY CONDITIONS 

 
As the pressure ahead of a strong shock is very small in 

comparison to the pressure behind of the shock, and therefore 
it is neglected (Zel’dovich and Raizer [8], Vishwakarma and 
Nath [16]) i.e. pa≈0, Ea≈0. Therefore, the Rankine-Hugoniot 
jump conditions across the strong shock wave propagating in 
a non-ideal gas are given by the principal of conservation of 
mass, momentum and energy, namely,  
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where, the subscript n denotes the condition immediately 
behind the shock front, the density ratio β(0<β<1) across the 
shock front is obtained by the relation 
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where, (Fn-Fa) 

is neglected in comparison with the product of 
pn and WS as the shock is strong (Laumbach and Probstein [27], 
Nath [15, 25], Vishwakarma and Nath [16]) to derive equation 
(8) above, F is the radiation flux and 𝒃𝒃 = 𝒃𝒃𝝆𝝆𝒂𝒂. 

Eq. (4) together with (5) gives 
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For an isentropic change of state of the non-ideal gas, we 

may calculate the so-called speed of sound in non-ideal gas for 
a given internal volume of the gas b as follows, 

 

2
1

)1(
 2

1

S

p 







−

=







=

ρρ
γ

ρ b
p

d
dasound

 (10) 

 
where, the subscript ‘S’ refers to the process of constant 
entropy.  

The isothermal compressibility of non-ideal gas may be 
calculated as (Nath [15]). 
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isothermal sound speed and the subscript ‘T’ refers to the 
process of constant temperature.  

 
 

4. SELF-SIMILARITY TRANSFORMATIONS 
 
To obtain the similarity solution. We write the unknown 

variables in the following form (Nath et al. [21], Vishwakarma 
et al. [18]). 

 

( ) su V x W= , ( )a D xρ ρ= , 2 ( )a xp W P xρ=  (12) 
 

where, V(x), D(x), and P(X) are the function of x only, x=r/rs 
is the similarity variable (dimensionless variable).  

Eq. (9) with the aid of the Eqns. (7) and (12) yields a relation 
between P(x) and D(x) in the form  
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Using equation (13) and similarity transformations (12), 

equations (1) and (2) can be transformed and simplified to  
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where, 𝑮𝑮𝟎𝟎 = �𝑮𝑮𝑮𝑮

𝑨𝑨𝟐𝟐
�, and it is necessary to use α=1, to obtain the 

similarity solution. 
Using the similarity transformations (7), the shock 

conditions (7), transformed into  
 

(1) (1 )V β= − ,
 

1(1)D
β
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We assume the product solution of the “progressive wave” 

in the form (c.f. Mc. Vittie [14]) 
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where, η=rt-τ, 𝜆𝜆 and τ are constants, and a, f and b are functions 
of t that satisfy the following equation  
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It can be easily seen that these equations satisfy the Eqns. 

(1) and (2) identically. After converting this solution to a 
similarity one, it follows that ‘a’ should be a constant 
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+

, we apply the boundary conditions (16) in (17) 

and (18), we obtain the solution as  
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These solutions (22) and (23) satisfy differential equations 

(14) and (15) identically, and therefore they constitute a 
solution of these differential equations (13) and (14). From 
equations (12) and (24),  
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Now, substituting equations (22)–(24) into equations (13)–

(15), we obtain 
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The total energy ETotal of the flow field behind the spherical 

shock front is given by 
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Using Eq. (12) the above Eq. (27) transformed into  
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This Eq. (28) shows that the total energy of the disturbance 

is not constant and varies as 3
sr

α− . Eqns. (22)–(24) give the 
solution of our considered problem. The solution we have 
obtained is an example of exact solution in a non-ideal gas 
with constant density in the case of isothermal flow under the 
influence of a gravitational field and similar to exact solutions 
obtained in ordinary gas dynamics by Mc.Vittie [19] in the 
case of adiabatic flow, and in magnetogasdynamics with 
radiative heat flux by Vishwakarma et al. [18]. The exact 
solutions using Mc.Vittie [19], method in the case of 
isothermal flow in non-ideal gas under the influence of 
gravitational field is reported first time. 

Using equations (12) in (11), we obtain the expression for 
the isothermal compressibility as 

 
2 (1 )( )

( )a s
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5. RESULTS AND DISCUSSION 

 
Table 1. Problem parameter values for different values of γ 

and 𝑏𝑏� 
 

γ 𝒃𝒃� β 𝝀𝝀 = (𝟑𝟑
𝜷𝜷
− 𝟏𝟏)  

4/3 0 0.14285 20 
0.05 0.18571 15.1538 
0.1 0.22857 12.1250 

5/3 0 0.25000 11 
0.05 0.28750 9.43478 
0.1 0.32500 8.23077 

 
For density and pressure to remain finite at the point of 

symmetry the inequality obtained from (23). i.e. λ>2 should 
hold. To obtain the solution the values of the physical 
parameters are taken as (see Refs. [15,22-23]): γ=4/3, 5/3

0, 0.05, 0.1b = . The obtained solutions are shown in Figures 
1 and 2 and Table 1. Figures 1(a-c) and 2(a, b) show that the 
fluid velocity U(x), density D(x) and pressure P(x) decrease as 
we move from shock front to the point of symmetry. These 
flow variables are minimum at the point of symmetry and 
maximum at the shock. The isothermal compressibility 

69



2( ) a sC Wisoth ρ  increases and tends to positive infinity near the
point of symmetry in general. The flow variables velocity, 
density and pressure vanish at the point of symmetry. Table 1 
shows the values of the problem parameters for different 
values of 𝛾𝛾 and 𝑏𝑏�. 

The shock strength, fluid velocity U(x), and isothermal 
compressibility 2( ) a sC Wisoth ρ decrease; whereas the density D(x) 
and pressure P(x) increase with an increase in the parameter of 
non-idealness of the gas 𝑏𝑏�  or the specific heat ratio 𝛾𝛾  (see 
Figures 1 and 2 and Table 1). 

Figure 1. Flow variables distribution in the flow field region behind the shock at γ and 𝑏𝑏� : 
(a) fluid velocity U(x),   (b) density D(x),    (c) pressure P(x): 

1. 𝛾𝛾 = 4 3⁄ , 𝑏𝑏� = 0; 2. 𝛾𝛾 = 4 3⁄ , 𝑏𝑏� = 0.05; 3. 𝛾𝛾 = 4 3⁄ , 𝑏𝑏� = 0.1;
4. 𝛾𝛾 = 5 3⁄ ,  𝑏𝑏� = 0; 5. 𝛾𝛾 = 5 3⁄ ,  𝑏𝑏� = 0.05; 6. 𝛾𝛾 = 5 3⁄ ,   𝑏𝑏� = 0.1.

Figure 2. Variation of the isothermal compressibility 
2( ) a sC Wisoth ρ : 

(a) for different values of 𝑏𝑏� and γ ;     (b) for different values of 𝑏𝑏� with γ=5/3.

6. CONCLUSION

The similarity solutions for the propagation of strong
spherical shock wave in a non-ideal gas under the influence of 
a gravitational field in the case of isothermal flow have been 
obtained. On the basis of the present study, we may draw the 
following conclusions: 

An increase in 𝑏𝑏 � i.e. in the parameter of non-idealness of the 
gas decreases the shock strength, fluid velocity and isothermal 
compressibility. Moreover, it increases the density, pressure, 
and increase.  

An increase in the value of the ratio of the gas specific heats 
has similar effects on the shock strength and on the flow 

variables. 
The fluid velocity, density and pressure vanish at the point 

of symmetry. 
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NOMENCLATURE 
 
A constant 
asound speed of sound in non-ideal gas 
a(t) function of t  
aisoth isothermal sound speed 
b van der Waal excluded volume  
𝑏𝑏 non-idealness parameter  
b(t) function of t 
Cisoth isothermal compressibility  
Cv specific heat at constant volume   
D non-dimensional density 
ETotal total energy of the flow-field behind shock front 
F radiation flux 
f(t) function of t 
G the gravitational constant 
G0 the gravitational parameter 
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m central mass at the origin  
P non-dimensional fluid pressure 
p is the pressure 
R gas constant 
r independent space coordinate  
rs Shock radius 
T temperature of the gas 
t independent time coordinate 
u fluid velocity 
V non-dimensional fluid velocity 
Ws shock velocity 
X similarity variable 
 
Greek letters 
 
ρ fluid density 
α shock velocity variation index 

γ ratio of specific heats 
β ratio of density across the shock front 
η arbitrary function of r and t  
λ constant 
τ constant 
 
Subscripts 
 
a immediately ahead the shock 
n immediately behind the shock 
S process of constant entropy 
T process of constant temperature 
 
Superscript 
 
’ derivative with respect to t 
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