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The object of this paper is the modeling a supersonic flow of inviscid fluid around a 
dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary 
Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtain 
a solution for the downstream velocity potential of the oblique shock at the second order 
of relative thickness. This result has been dealt by the asymptotic analysis and 
characteristics method.  
In order to validate our model, the results are discussed in comparison with theoretical 
and experimental results. Indeed, firstly, the comparison of the results of our model, has 
shown that they are quantitatively acceptable compared to the existing theoretical results. 
Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. 
In this experiment, we have considered the incident upstream Mach number over a 
symmetrical dihedral airfoil wing. The validation and the accuracy of the results support 
our model. 
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1. INTRODUCTION

Supersonic flows are frequently encountered in many fields
of application. Indeed, many aerospace applications are 
concerned regular by highly compressible flows (aircraft, 
spaceship, missile...). In general, all these flows are very 
complex, despite, for simple geometries involving straight and 
oblique shocks, detachments and attachments and strong 
interactions between shock waves and boundary layers. For 
these studies, several resolutions have been adopted based on 
numerical simulation or experimental measurements [1-2]. 
The numerical modeling of supersonic flow around the airfoils 
has been the topic of wide research, in the engineering 
applications [3]. The combination of analytical and numerical 
methods is conceivable by study of chaotic motions [4]. 

Others studies interested to local existence and the 
uniqueness of weak shock solution in steady supersonic flow 
past a wedge [5]. An analytical solution for the generation of 
shock wave obtained a result of supersonic flow around a 
wedge [6]. Others methods are deployed to study the 
supersonic flow profile: the method of hydraulic analog 
simulation (the method of gas-hydraulic analogy) [7] and 
simulation using both continuum and particle approaches with 
inter-molecular collision modeling [8]. 

In this work, we use asymptotic methods to develop a model 
of a supersonic flow around thin wing airfoil. Then, we 
employ an application on the dihedral airfoil and an 
experimental study to validate the developed model. 

2. PROBLEM FORMULATION

For a compressible, isentropic, and irrotational Eulerian
fluid flow, and in a two-dimensional steady-state case, the 
Steichen Equation for the Velocity is, namely: 

2 * 2 * *
*2 2 *2 2 * *

*2 *2 * *
*( ) ( ) ( ) 0∂ ∂ ∂ ∂

− + − + + =
∂ ∂ ∂ ∂

u w w uu c w c u w
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(1) 

where, u*(x*, z*), w*(x*, z*) are the velocity components 
(dimensional quantities are characterized by a ∗), and c the 
speed of sound for the isentropic fluid flow. 

At this level, we introduce scaled variables, namely: 

* * * *

 ;   ;  ; 
∞ ∞

= = = =
u w x zu w x z
U U L L

(2) 

where, U∞ is the uniform constant velocity at upstream infinity; 
L is the length of the body. 

The non-dimensional boundary condition associated to Eq. 
(1), is the slip-condition, as: 

. 0=
 u n (3) 

where, 𝑛𝑛�⃗  is the unit normal vector to body. 
Let us linearize equations (1) about the particular solution, 

far upstream of an obstacle, as: 

1 ϕε ∂= +
∂

u
x

ϕε ∂=
∂

w
z

(4) 

where, φ(x, z) is the velocity potential around the body, and 𝜀𝜀 
characterizes a perturbation parameter. Thus, taking into 
account (2) and substituting (4) into (1), we obtain the non-
dimensional Steichen Equation, namely: 
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where 𝑀𝑀∞
𝑈𝑈∞
𝐶𝐶

 is the characteristic Mach number. 
Indeed, the Steichen equation (5) is a single equation for 

𝜙𝜙(𝑥𝑥, 𝑧𝑧,𝑀𝑀∞
2, 𝜀𝜀) only because it is possible to express the square 

of the sound speed c2, as a function of φ. We assume the 
existence of a uniform flow region (for example, far upstream 
of an obstacle disturbing the given uniform flow), with a 
constant velocity module U∞ and constant thermodynamic 
function c∞. Taking into account (4), the Bernoulli integral 
gives the following relation at the order ε2 included: 
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where, γ is a constant with the value 1.40 for dry air. Then, 
Substituting (5) in (5) gives: 
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The Steichen Eq. (7) is hyperbolic. But, the signal speed of 

disturbances is finite in compressible flow.  
Now, if we consider fluid flow around a profile, which has 

as dimensionless equation in, the (x, y) plane: 
 

( )β=z f x     ;    [ ]0,1∈x
 (8) 

 

where, maxh
L

β = (hmax maximal thickness) is a parameter 

characterizing the maximal relative thickness of the obstacle. 
Then for this last, we must reformulate the boundary condition 
(3).  

Indeed, the boundary conditions are imposed on the border 
of the wall where the flow takes place. In our case, taking into 
account (8), the equation of the border is: 

 
( , ) 0F x z =  (9) 

 
with: 

( , )  ( )F x z f x zβ= −  (10) 
 
In the case of a perfect fluid, the fluid must slip (necessary 

and sufficient condition) on the wall (9), namely: 
 

( , ) . 0DF x z u F
Dt

= ∇ =
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

 
(11) 

 
The relation (11) replaces the slip condition (3), since the 

normal to the wall is given by Fn
F

∇
=

∇







. Thus, taking into 

account the relations (4) and (8), we can write the following 
boundary conditions: 

 

(1 ) df
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ϕ ϕ βε

ε
∂ ∂
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∂ ∂

 on ( )z f xβ= , [ ]0,1x∈  (12) 

 
In the above relation, there exists a term characterizing an 

interaction between the two parameters β and ε. According to 
the “Least Degeneration Principle”, of keeping the maximum 
terms in (12) and consequently a lot of information, 
asymptotic significant constraint is, namely:  

 

(1)β
ε
= Ο  or β ε≡  (13) 

 
The relation (13) shows that the flow perturbation is caused 

by the relative thickness of the obstacle. 
In most applications, the bodies of interest are thin, so that 

generally ɛ is a small parameter. So, an interesting case, from 
the point of view of asymptotic methods, is the so-called 
supersonic case when: 

 
1M∞   and 1ε   (14) 

 
Thus, we suppose that the velocity potential φ(x, z, ε) admits 

a generalized asymptotic expansion [9-14] with respect to ε 
with the parameters γ and M∞ fixed, as: 
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Taking into account (15) and using the Taylor expansion in 

the vicinity of z=εf(x), for the slip condition (12), we obtain at 
the order ε2 included:  
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Thus, according to above, the appropriate equations of our 

problem with the boundary conditions associated with the 
limits are written: 

 
At order 0 in ɛ: 
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At order 1 in ɛ: 
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The systems (17) and (18) show that if the solution at order 

0 in ɛ is known then we can deduce the solution at order 1 in 
ɛ. 

 
 

3. RESOLUTION PROCESS 
 

 
 

Figure 1. Right and left leaning characteristics on a thin 2D 
airfoil 

 
where: η=x-nz and ζ=x+nz.  

Experience has shown that the leading edge and the trailing 
edge of supersonic airfoils should be sharp (or only slightly 
rounded) and the section relatively thin. If the leading edge is 
not sharp (or only slightly rounded), the leading-edge shock 
wave will be detached and relatively strong. For the thin 
airfoils the thickness, camber, and angle of attack of the 
section are such that the local flow direction at the airfoil 
surface deviates only slightly from the free-stream direction.  

The compressive changes in flow direction are sufficiently 
small that the inviscid flow is everywhere isentropic. In reality, 
a shock wave is formed as the supersonic flow encounters the 
two-dimensional double-wedge airfoil. Since the shock wave 
is attached to the leading edge and is planar, the downstream 
flow is isentropic. 

If we restrict our attention to supersonic flow, the first 
equation of the system (17), at order 0 in ɛ, is the 2-D wave 
equation and has solutions of hyperbolic type. Who’s the 
general solution can be expressed as a sum of two arbitrary 
functions: 

 

0 1 2( , ) ( ) ( )x z F x nz F x nzϕ = − + +  (19) 
 
where: 2 1n M∞= − . 

Supersonic flow is analyzed using the fact that the 
properties of the flow are constant along the characteristic 
lines x ± nz = constant. Figure 1 illustrates supersonic flow past 

a thin airfoil with several characteristics shown. Notice that in 
the linear approximation the characteristics are all parallel to 
one another and lie at the Mach angle μ∞ of the free stream. 
Information about the flow is carried in the value of the 
potential assigned to a given characteristic and in the spacing 
between characteristics for a given flow change. 

All properties of the flow, velocity, pressure, temperature 
are constant along the characteristics. Since disturbances only 
propagate along downstream running characteristics we can 
write the velocity potential for the upper and lower surfaces. 
Indeed, by making the change of variables η and ζ in the first 
equation of the system (17), we obtain: 
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(+) And (-) denote, respectively, the upper and lower 

surfaces. 
Knowing that: () () ()

x ξ η
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slip condition (17), at order 0 in ɛ and taking into account (20), 
allows to obtain: 
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Similarly, making the change of variables η and ζ in the first 

equation of the system (18), we obtain: 
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The solution, at order 1 in ɛ, is obtained by integrating twice 

the equation (22) and taking into account the slip condition 
(2nd equation of the system (18)). Indeed, on the upper side, 
we obtain: 
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where: 
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Similarly, on the lower side, we obtain: 
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The relations (21) and (23) - (26) allow to determine the 
velocity field at each point of the profile, and consequently to 
deduce the Mach number along the upper and lower surfaces. 
Indeed, the velocity field for the upper and lower, at order 2 in 
ɛ, are expressed respectively as: 
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(28) 

Then the Mach number along the profile is defined as: 
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In relation (29), the denominator is defined at order ε3 (i.e. 

all terms proportional to ε3 will be neglected). We note that the 
model developed depends on several physical parameters as 
the upstream Mach number, the relative thickness and 
equation of the profile, and the nature of the gas. 

 
 

4. APPLICATIONS AND VALIDATION 
 
In a wide variety of physical situations, a compression 

shock wave occurs which is inclined at an angle to the flow. 
Such a wave is called an oblique shock. This type, either 
straight or curved, can occur in such varied examples as 
supersonic flow over a thin airfoil or the presence of a wedge 
in a supersonic stream or during a supersonic compression in 
a corner (see Figure 2). 

 

 
 

Figure 2. Attached an oblique shock for a corner flow 
 
We consider a supersonic flow passes over a slender semi-

wedge of θ angle, as shown in Figure 2; the plane shock wave 
is formed and is inclined by an angle of β with respect to the 
incoming flow direction. When the upstream supersonic 
stream encounters a compression corner, the downstream flow 

is deflected by an angle δ. We note that the subscript “1” is 
relative to the region upstream of the shock and the subscript 
“2” to the region behind the shock. 

Indeed, a slender semi-wedge profile, which has as 
dimensionless equation in, the (x, z) plane: 

 
( )z tg xθ=  with ( )tgε θ=  (30) 

 
The deviation angle δ is determinate, namely: 
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Then, we can deduce: 
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In our case, for weak disturbances from presence of body, 

we have: 
 

1
1 1

sin( ) sin( )
M

β µ∞

= =  (34) 

 
According to relations (33) and (34), δ as a unique function 

of θ, M1, and β. This relation is vital to an analysis of oblique 
shocks. 
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Now we will look for the relationship between the deviation 
angle δ and the slender semi-wedge of θ angle. For example, 
the value of M1 is fixed and we consider air as fluid (γ=1.4). 

The relationship (33) draws the δcurve as a function of θ (see 
figures below). 

 

  
Figure 3. Relationship between the angles δ and θ. a) M1=1.4; b) M1=2 

 
For any given M1, according to figure (3), there is a linear 

relation between δ delta and θ. Then: 
 

δ θ≅  (35) 
 
Thus, for a supersonic flow over the wedge-shaped body, a 

straight, oblique shock wave is attached to the sharp nose of 
the wedge. Across this shock wave, the streamline direction 
changes discontinuously. Ahead of the shock, the streamlines 
are straight, parallel, and horizontal; behind the shock they 
remain straight and parallel but in the direction of the wedge 
surface. 

In order to validate our model, we compare the results of 
our model with those of the theory. Indeed, we refer to the 
existing theoretical data to extract different Mach number 
downstream. The values for downstream Mach number of 
oblique shock, as a function of the deflection angle and the 
Mach number upstream are shown in Figures 4, 5 and 6. 

 

  
Figure 4. Weak oblique shock for Mupstream=1.35 

 
In Figure 4, for the Mach number (Mupstream=1.35), we 

remark that the results of our model are in good agreement 
with theoretical data for a deflection angle between 0° and 5°. 
But beyond, a great divergence between our model and the 
theoretical data is observed when the downstream flow 
becomes subsonic. 

 
 

Figure 5. Weak oblique shock for Mupstream=1,4 
 
In Figure 5, for the Mach number (Mupstream=1.4), we remark 

that the results of our model are in good agreement with 
theoretical data for a deflection angle between 1° and 7°. But 
beyond, a great divergence between our model and the 
theoretical data is observed when the downstream flow 
becomes subsonic. 

 

 
 

Figure 6. Weak oblique shock for Mupstream=1.5 
 

In Figure 6, for the Mach number (Mupstream=1.5), we 
observe the same phenomenon as previously. Finally, we note 
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that in the weak shock solution, M2 is supersonic, except for a 
small region near θmax. 

Now, we consider the deflection angle θ= 1°. For different 

values of Mupstream, the Mdownstream of our model (at ε2 order) and 
the Mdownstream of theoretical are presented and compared 
(Table 1). 

 
Table 1. Comparison the Mdownstream of theoretical data and model results 

 
Mupstream Mdownstream 

 ( theoretical data) 
Mdownstream  

(model at 𝜺𝜺𝟐𝟐 𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨) 
Relative error   

(in %) 
1.3 1.2629 1.262966767 0.007 

1.35 1.3142 1.314229432 0.003 
1.4 1.365 1.365075134 0.008 

1.45 1.4156 1.415630095 0.003 
1.5 1.466 1.465971748 0.003 

1.55 1.5161 1.516150466 0.005 
1.6 1.5662 1.566200557 0.001 

1.65 1.6161 1.616146257 0.005 
1.7 1.666 1.666005208 0.001 

1.75 1.7158 1.715790578 0.001 
1.8 1.7655 1.765512404 0.001 

1.85 1.8152 1.815178480 0.002 
1.9 1.8648 1.864794958 0.001 

1.95 1.9144 1.914366748 0.003 

The table.1 shows that our model, when applied to calculate 
the number of downstream Mach, is quantitatively acceptable 
with an error at order 10-5 when the upstream Mach number ≥ 
1.3. 

 
 

5. EXPERIMENTAL STUDY 
 
Experimentation was carried out in the AF300 supersonic 

wind tunnel. The test section has a rectangular shape, the top 
wall has the convergent-divergent profile and the bottom wall 
plate has 25 pressure taps, see Figure 7.  

 

 
 

Figure 7. AF300 supersonic wind tunnel TecQuipment 
Company 

 
The double-wedge airfoil dimensions are 25 by 25 mm with 

the angle of 10°. The double-wedge airfoil is showed in Figure 
8. 

 

 
 

Figure 8. The double-wedge airfoil: (a) experimental setup; 
(b) dimensions (mm) 

 

In Figure 7, circle containing double wedge airfoil 
represents the Schlieren window. On the other hand, with the 
aim to know the flow behavior in the double-wedge airfoil, an 
experiment was realized at 1.4 Mach number and the static 
pressure data were registered at this condition. The static 
pressure used to compute the Mach number, temperature and 
density in the wind tunnel test section. These results are 
showed in Figure 9, for upstream pressure of 0.391 bar. 

 

 
 

Figure 9. Evolution of downstream Mach number on the 
dihedral airfoil 

 
The Figure 9 presents the experimental development that 

includes the procedure of oblique shock. Also shows, in Figure 
10b, the compression area (1st zone), and the Mach number 
decreases to 1.22 due at change of flow direction, while 
expansion area (2nd zone) the flow is accelerating to reach a 
1.61 Mach number.  

 

 
 

Figure 10. Oblique shock waves on double-wedge airfoil: (a) 
visualization characteristics; (b) schematic of compression 

and expansion zones  
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The Figure 10a, wave visualization characteristics in the 
leading edge and trailing edge on the double-wedge airfoil, at 
1.4 Mach number, by means of the Schlieren method. The 
Mach angle in oblique shock wave in the leading edge is 46°. 
The shock wave is visible only on the top side of the profile. 

In order to validate our model, we compare the model 
results with the experimental data above. Indeed, we consider 
a 10° angle dihedral airfoil (ϴ=5°), in which equation profile 
is split in two zones (Figure 10b), as:  

+
1  
+

2nd 

          0 1 2

1     1 2 1
st zone

zone

f x x

f x x

 = ≤ ≤


= − ≤ ≤
(36) 

Then, using the relations (27) and (29), we finds according 
to our model that, for an upstream mach number M1= 1.4, in 
the compression zone M2=1.220724175 and the M3 
=1.569034156 in expansion area. The estimated differences 
between model results and experience are, respectively, of 
order 0.07% in the 1st region and 4% in the 2nd region. 

6. CONCLUSION

In this work, the two-dimensional isentropic and inviscid
supersonic flow, and around a wedge has been modeled using 
the asymptotic analysis and characteristics method. Various 
parameters of our model (Mach number, deviation) were 
found in good agreement with the results of the theory. The 
results achieved demonstrate a very high accuracy: the errors 
△𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑀𝑀 − 𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒  in the 

proposed model are estimated at about 10−5. These solutions 
allow us to estimate the flow parameters downstream the 
shock.  

The exploitation of the results of the experimental study, 
indicates that on the first zone of the dihedral airfoil is a 
compression area and the second is an expansion area. The 
estimated differences between model results and experience 
are, respectively, of order 0.07% in the 1st region and 4% in 
the 2nd region. The acquisition of Mach number values shows 
a good agreement. The schlieren photographs of the shock 
waves were not satisfactory for quantitive comparisons with 
the theoretical shapes. However, definite qualitative 
agreement was observed.  

As is evident from the comparison with the experimental 
data shows, our model is capable of predicting physically 
realistic distributions of much numbers on the airfoil. 
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