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In this paper, a well-known mathematical model of electric power transmission line under 
steady state conditions is considered. From this model, the mathematical expressions that 
describe the two components of the resultant voltage i.e. voltage travelling and refracted 
waves along a power transmission line have been developed taking as starting point the 
end of the line. 
We use the fore-mentioned mathematical expressions and the data of a typical electric 
transmission line to calculate how the voltage travelling and refracted waves vary. The 
results are also graphed in order to have an optical view of how the voltage travelling and 
refracted waves behave. Finally, the results are analysed and the relative conclusions are 
drawn. 
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1. INTRODUCTION

Most people think of the voltage as an element that when it
is put on, it is applied immediately. They cannot imagine that 
the voltage is a wave (an electromagnetic wave) that travels 
and refracts with almost the speed of light. This understanding 
is due to the length of line and the inability that people have to 
perceive the very small time intervals (psecs, μsecs, msecs 
depending on the line length) that the wave needs to cover 
these distances. 

In this paper, the length under consideration is that of a 
power transmission line of an electric power system [1-9], a 
length of some hundred kilometers. The equivalent electric 
circuit under steady state conditions is drawn and the 
respective differential equations are extracted from it using as 
independent variable the distance x from either the rears of the 
line. The above mathematical model already exists in the 
literature and can easily be found [1-5]. 

Solving the differential equations, the mathematical 
expressions describing the voltage travelling and refracted 
waves are obtained (section 2). The proof that the above 
voltages are the travelling and refracted wave respectively is 
the mathematical expressions themselves. They are the 
mathematical expressions of a travelling and refracted wave 
respectively. 

As far as I know and search in the literature, I could not find 
calculation and graphical representation of the voltage 
travelling and refracted waves along an electric power 
transmission line. Thus, in this paper, the above mathematical 
expressions are tested on a typical electric power transmission 
line and the results are presented in section 3. Furthermore, in 
section 3, the above results are graphed in order to have an 
optical image of how the voltage travelling and refracted 
waves along the line behave. Finally, in section 4, a discussion 
is developed, the results are studied, analysed and in section 5, 
the relative conclusions are drawn. 

2. DEVELOPMENT AND ANALYSIS OF THE
MATHEMATICAL EXPRESSIONS OF VOLTAGE
TRAVELLING AND REFRACTED WAVES

In Figure 1, the electric equivalent representation of power 
transmission line under steady state conditions and using 
divided elements has been drawn. 

Where z dx=the infinitesimal long-wise complex 
impedance of dx 

y dx=the infinitesimal transversal complex conductance of 
dx 

From the infinitesimal element dx, the following equations 
are drawn: 

1st law of Kirchhoff: [I(x)+dI(x)]=I(x) + dI(x) 
2nd law of Kirchhoff: [V(x)+dV(x)]=V(x) + dV(x) 
Voltage drop on element zdx:  

dV(x)=[I(x)+dI(x)]zdx≅I(x)zdx→dV(x)
dx

=I(x) z (1) 

Voltage drop on element ydx: 

dI(x)=V(x) ydx  → dI(x)
dx

=V(x) y (2) 

Figure 1. Electric equivalent representation of electric power 
transmission line 
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Differentiating Eq. (1) and replacing it into Eq. (2), we get: 
 

d2V(x)
dx2

=yz V(x) (3) 

 
Differentiating Eq. (2) and replacing it into Eq. (1), we also 

get: 
 

d2I(x)
dx2

=yz I(x) (4) 

 
From Eqns. (3) and (4), V(x) and I(x) are described by the 

same differential equations. The above implies that V(x) and 
I(x) are described by similar mathematical functions. 

We take as initial conditions: 
 

V(x=0)=VR   (5) 
 

and 
 

I(x=0)=IR   (6) 
 
i.e. we take as x=0 the end of electric power transmission 

line 
Then, from Eqns. (3), (4), (5) and (6), we extract the 

following mathematical expressions of voltage travelling and 
refracted wave respectively: 

 
Vtrav(x)=VR+IR zC 

2
 eγx (7) 

 

Vrefr(x)=VR−IR zC 
2

 e-γx (8) 

 
The above Eqns. (7) and (8) are the mathematical 

expressions of a wave. 
Then, the voltage refraction co-efficient ρV(x) can be 

defined as a function of distance x. The voltage refraction co-
efficient is set as : 

 
ρV(x)=

Vrefr(x)
Vtrav(x)

 (9) 
 
 

3. CALCULATION AND GRAPHICAL 
PRESENTATION OF VOLTAGE TRAVELLING AND 
REFRACTED WAVES 

 
We consider a typical electric power transmission line with 

the following parameters: 
 

R=0.107 Ω/km                 L=1.362 mH/km 
 

G=0  S/km                       C=0.0085 μF/km 
f=50 Hz                            l=360 km 

 
VR=115470< 0° V          IR=360.844< 0° A 

 
Then using the list of symbols and the analysis of section 2, 

we can calculate the other complex parameters of the above 
line in polar and/or cartesian form: 

 
γ=1.085x10-3 <82.98°  km-1=(0.1326x10-3 + j 1.07687x10-

3) km-1 

α=0.1326x10-3 neper/km              β=1.07687x10-3 rad/km 
 

zC=406.41 <-7.02° Ω 
 

VR+IR zC 
2

=130817.935 <-3.93°  V 
 

VR−IR zC 
2

=17507.97 <149.213°  V 
 

λ=5834.674 km 
 

υ=291733.696 km/sec τ=1.234 msecs 
 

Δ=22.212° Δ/l=0.0617°/km 
 
Then, Eqns. (7), (8) and (9) using the above parameters 

become: 
 

Vtrav(x)=130817.935 <-3.93°  e(0.1326x10-3 + j 1.07687x10-3)x     
V (10) 

 
Vrefr(x)=17507.97 <149.213° e-(0.1326x10-3 + j 1.07687x10-

3)x     V   (11) 

 

ρV(x) =
17507.97 <149.213° e−(0.1326x10−3 + j 1.07687x10−3)x

130817.935 <−3.93°   e(0.1326x10−3 + j 1.07687x10−3)x
 (12) 

 
Using Eqns. (10), (11) and (12) and taking step Δx=10km, 

we calculate the values of voltage travelling and refracted 
wave as well as voltage refraction co-efficient and the results 
are presented in Table 1. Since the voltages are vectors, the 
results are complex numbers and are given in polar form i.e. 
in voltage magnitude (Volts) and voltage phase ( ° ) 
representation. The voltage refraction co-efficient ρV(x) is a 
pure complex number since is derived from the division of the 
voltage waves and is also given in table 1 in polar form ie. in 
magnitude(pure real number) and phase (°) form. 

The graphical presentations of results obtained in table 1 are 
given in Figures 2 to 4. 

 

 
 

Figure 2. Absolute value (intensity) and phase (angle) of 
voltage travelling wave from the beginning towards the end 

of line i.e. along the direction the travelling wave moves 
(direction right to left of electric power transmission line of 

figure 1) 
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Figure 3. Absolute value (intensity) and phase (angle) of 
voltage refracted wave from the end towards the beginning of 

line i.e. along the direction the refracted wave moves 
(direction opposite to that of graph 1, i.e. left to right of 

electric power transmission line of figure 1) 
 

 
 

Figure 4. Absolute value and phase (angle) of voltage 
refraction co-efficient from the end where the refraction 

occurs towards the beginning of line (direction opposite to 
that of graph 1, i.e. left to right of electric power transmission 

line of figure 1) 
 

Table 1. Calculation results of voltage travelling and refracted wave 
 

α/α x (km) Vtrav(x) 
(Volts) 

φVtrav(x) 
(°) 

Vrefr(x) 
(Volts) 

φVrefr(x) 
(°) ρV(x) φρV(x) 

(°) 
1 0 130818.0 -3.928010 17507.96 149.2129 0.1338345 153.1409 
2 10 130991.6 -3.310870 17484.75 148.5958 0.1334799 151.9066 
3 20 131165.5 -2.693720 17461.58 147.9786 0.1331263 150.6723 
4 30 131339.6 -2.076570 17438.43 147.3615 0.1327736 149.4381 
5 40 131513.9 -1.459430 17415.32 146.7443 0.1324219 148.2038 
6 50 131688.4 -0.842280 17392.23 146.1272 0.1320711 146.9695 
7 60 131863.2 -0.225130 17369.18 145.5100 0.1317212 145.7352 
8 70 132038.2 0.392014 17346.16 144.8929 0.1313722 144.5009 
9 80 132213.5 1.009160 17323.17 144.2757 0.1310242 143.2666 
10 90 132389.0 1.626307 17300.21 143.6586 0.1306771 142.0323 
11 100 132564.7 2.243454 17277.28 143.0415 0.1303309 140.7980 
12 110 132740.6 2.860600 17254.37 142.4243 0.1299856 139.5637 
13 120 132916.8 3.477747 17231.50 141.8072 0.1296413 138.3294 
14 130 133093.2 4.094893 17208.67 141.1900 0.1292979 137.0951 
15 140 133269.8 4.712040 17185.86 140.5729 0.1289553 135.8608 
16 150 133446.7 5.329186 17163.08 139.9557 0.1286137 134.6265 
17 160 133623.8 5.946333 17140.33 139.3386 0.1282730 133.3922 
18 170 133801.2 6.563480 17117.61 138.7214 0.1279332 132.1579 
19 180 133978.8 7.180626 17094.92 138.1043 0.1275942 130.9237 
20 190 134156.6 7.797773 17072.26 137.4871 0.1272562 129.6894 
21 200 134334.6 8.414919 17049.63 136.8700 0.1269191 128.4551 
22 210 134512.9 9.032066 17027.03 136.2528 0.1265829 127.2208 
23 220 134691.5 9.649212 17004.46 135.6357 0.1262475 125.9865 
24 230 134870.2 10.266360 16981.93 135.0185 0.1259131 124.7522 
25 240 135049.2 10.883510 16959.42 134.4014 0.1255795 123.5179 
26 250 135228.5 11.500650 16936.94 133.7843 0.1252468 122.2836 
27 260 135408.0 12.117800 16914.49 133.1671 0.1249150 121.0493 
28 270 135587.7 12.734950 16892.07 132.5500 0.1245841 119.8150 
29 280 135767.6 13.352090 16869.68 131.9328 0.1242541 118.5807 
30 290 135947.8 13.969240 16847.32 131.3157 0.1239249 117.3464 
31 300 136128.3 14.586390 16824.99 130.6985 0.1235966 116.1121 
32 310 136308.9 15.203530 16802.69 130.0814 0.1232692 114.8778 
33 320 136489.8 15.820680 16780.42 129.4642 0.1229426 113.6436 
34 330 136671.0 16.437820 16758.17 128.8471 0.1226169 112.4093 
35 340 136852.4 17.054970 16735.96 128.2299 0.1222921 111.1750 
36 350 137034.0 17.672120 16713.78 127.6128 0.1219681 109.9407 
37 360 137215.9 18.289260 16691.62 126.9956 0.1216450 108.7064 

 
 

4. DISCUSSION 
 
The curves of graphs 1, 2 and 3 may appear common but 

they are not. Some of them may look straight lines or almost 
straight lines but they are not. The above quantities have an 

exponential behavior as someone can verify from the 
respective equations in section 2. Their graphical 
representations depend on the values of their exponential 
constant factors (α and β). If their values are small and as 
variable x increases, the values αx and βx do not change 
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enough in order their exponential behavior to appear on the 
graphs. This is the reason they seem to be straight or almost 
straight lines.  

The above explanation is given regarding their form. 
Regarding now their variation, the following reasoning is 
developed. 

On one hand, the terms (VR+IRzC) and (VR-IRzC) of Eqns. (7) 
and (8) in section 2 are constant complex numbers since VR, 
IR and zC are constant complex numbers. That implies that they 
have a constant absolute value and a constant phase as shown 
in section 3. 

On the other hand, the terms eγx and e-γx vary with distance 
x from the end of power transmission line. 

The term eγx can be written as e(α+jβ)x=eαx ejβx=eαx[cos(βx) + 
j sin(βx)] 

The values of α and β are real positive numbers for a typical 
real power transmission line. This will be understood from the 
following analysis. 

The term eαx is the absolute value of the above term while 
the ejβx is the phase (angle) of the above term. 

The term eαx increases as x increases i.e. the absolute value 
of voltage travelling wave increases as we approach the 
beginning of line. In other words, the absolute value (intensity) 
of voltage travelling wave (Eq. (7)) diminishes as the wave 
travels from the beginning of line (where the voltage is applied 
and the voltage travelling wave starts) to the end of line as one 
expects in real world (the intensity of signal diminishes as it 
moves away from source). 

The term βx similarly increases as x increases. With similar 
as above reasoning, the term βx i.e. the phase of voltage 
travelling wave (Eq. (7)) diminishes as the wave travels from 
the beginning of line and moves to the end of line. 

Similarly, the term e-γx can be written as e-(α+jβ)x=e-αx e-jβx=e-

αx[cos(-βx) + j sin(-βx)] 
At the end of electric power transmission line a part of 

voltage travelling wave is refracted and moves in the opposite 
direction of that of the voltage travelling wave ie. from the end 
towards the beginning of the line. This is implied by the 
negative value of -γx. With similar as above reasoning, the 
term e-αx decreases as x increases. In other words, the absolute 
value (intensity) of voltage refracted wave (Eq. (8)) decreases 
as the wave moves from the end towards the beginning of line 
as one expects. It is really the part of voltage travelling wave 
that arrives at the end of line and refracts travelling in the 
opposite direction of line. 

Additionally, the term -βx decreases as x increases i.e. the 
phase (angle) of voltage refracted wave (Eq. (8)) decreases as 
the wave moves from the end towards the beginning of line. 

Using similar thinking, the term e-2γx of Eq. (9) regarding 
the voltage refraction co-efficient can be written as follows: 

 
e-2(α+jβ)x=e-2αx e-j2βx=e-2αx[cos(-2βx) + j sin(-2βx)] 

 
Thus, using similar as above reasoning, both the magnitude 

and the phase angle of the voltage refraction co-efficient 
decrease as we move from the end (where the refraction occurs) 
towards the beginning of line as one expects. 

 
 

5. CONCLUSIONS 
 
Studying the results presented in Table 1 and their graphs 1 

to 3 of section 3, we can observe and conclude the following: 

(1) the intensity (absolute value) of voltage travelling 
wave decreases as the wave travels from the beginning 
towards the end of line i.e. along the direction the voltage 
travelling wave moves 

(2) the phase (angle) of voltage travelling wave decreases 
as the wave travels from the beginning towards the end of line 
i.e. along the direction the voltage travelling wave moves 

(3) the intensity (absolute value) of voltage refracted 
wave decreases as the wave moves from the end towards the 
beginning of line i.e. along the direction the current refracted 
wave moves 

(4) the phase (angle) of voltage refracted wave decreases 
as the wave moves from the end towards the beginning of line 
i.e. along the direction the current refracted wave moves 

(5) the percentage (absolute value) of voltage refraction 
co-efficient decreases from the end (where the refraction 
occurs) towards the beginning of line 

(6) the phase (angle) of voltage refraction co-efficient 
also decreases from the end towards the beginning of line  

Regarding now the information that is drawn from the 
graphs 1 to 2 is discussed in the following paragraphs. 

Looking at graphs 1 and 2, the magnitude of voltage 
travelling and refracted wave decreases as one moves from the 
left rear of the line where the power source is towards the right 
rear of the line where the load is and then back to the beginning. 
This observation implies that both line and load present an 
ohmic-inductive behaviour. In other words, we have a reactive 
power flow from the source to line and load. Regarding the 
load is pure ohmic as one can see in section 3 from the data of 
the typical power line given. Thus, the above statement is right. 

The line from the data given in section 3 has an ohmic (R) 
as well as an inductive (L) long-wise elements plus a 
capacitive (C) transversal element. The above statement that 
the line presents an ohmic-inductive behaviour means that the 
capacitive element of the line does not produce enough 
reactive power to cover the needs of the inductive long-wise 
element of the line and thus the source comes to cover the rest 
reactive power needed. 

Looking again at graphs 1 and 2, we can see that the phase 
of voltage travelling and refracted wave also decrease as one 
moves from the left rear of the line where the power source is 
towards the right rear of the line and then back to the beginning. 
The above observation implies and cannot be otherwise that 
we have an active power flow from the left rear of the line 
where the power source is towards the right rear of the line 
where the load is and back to the beginning in order to cover 
the needs in active power of both the ohmic element of the line 
and load. 

Then, we can conclude that the above observations verify 
the analysis and discussion developed in section 4 of the paper. 
For better understanding of electric transmission line voltage 
as a wave, we propose to study it using cartesian co-ordinates. 
This will be the subject of a future paper. 
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LIST OF SYMBOLS 
 

R=long-wise omhic resistance of power transmission line 
(under sinusoidal voltage) per unit length of line (Ω/km) 

L=long-wise inductance of power transmission line (under 
sinusoidal voltage) per unit length of line (H/km) 

C=transversal capacitance of power transmission line 
(under sinusoidal voltage) per unit length of line (F/km) 

G=transversal conductance of power transmission line 
(under sinusoidal voltage) per unit length of line (S/km) 

l=length of power transmission line (km) 
z=R+jωL=long-wise complex impedance of power 

transmission line per unit length of line (Ω/km) 
y=G+jωC=transversal complex conductance of power 

transmission line per unit length of line (S/km) 
Z=z.l=total long-wise complex impedance of power 

transmission line (Ω) 
Y=y.l=total transversal complex conductance of power 

transmission line (S) 

VS=complex line to earth voltage at the beginning of power 
transmission line, Sending voltage (V) 

VR=complex line to earth voltage at the end of power 
transmission line, Receiving voltage (V) 

IS=complex phase current at the beginning of power 
transmission line, Sending current (A) 

IR=complex phase current at the end of power transmission 
line, Receiving current (A) 
γ= �zy =α+jβ=transmission co-efficient of power 

transmission line (km-1) 
α=reduction co-efficient of power transmission line 

(neper/km) 
β=phase co-efficient of power transmission line (rad/km) 

zC=�
z
y

=characteristic impedance of power transmission 

line (Ω) 
ejφ=cosφ +jsinφ=Euler’s equation 

λ=
2π
β

=wave length of power transmission line (km) 

υ=wave transmission velocity of power transmission line 
(km/sec) 
τ=wave travelling time in order to cover the length of power 

transmission line (sec) 
Δ=electric phase (angle) of power transmission line (rad) 
Δ
l
=electric phase (angle) of power transmission line per unit 

length of line (rad/km) 
Vtrav(x)=voltage travelling wave as a function of distance x 

(V) 
Vrefr(x)=voltage refracted wave as a function of distance x 

(V) 

ρV(x)=
Vrefr(x)
Vtrav(x)

=voltage refraction co-efficient as a 

function of distance x 
φ(x)=electric phase(angle) of respective complex quantity as 

function of distance x (°) 
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