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In this paper, we present a new sliding mode control strategy applied to the doubly fed 
induction machine, this control combines sliding mode and type-2 fuzzy logic to find 
robust control. The proposed control kept the part of the equivalent control by sliding 
mode and will change the part of the switching by a type-2 fuzzy controller has an input 
is the error between the measured value and the reference value. In this command we 
apply the orientation of the stator flux to have the decoupling between the flux and the 
current. The results obtained in simulation show the effectiveness of this command. 
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1. INTRODUCTION

Currently, AC motors are more used because these
machines are characterized by their robustness and longevity 
but internal structures and control strategies more complex. 

Nowadays, several works have been directed towards the 
study of the doubly-fed induction machine (DFIM) [1-3], it is 
a three-phase asynchronous machine with a wound rotor that 
can be powered by two voltage sources [4], one to the stator 
and the other to the rotor. For variable speed operation, a PWM 
(Pulse Width Modulation) inverter must be inserted between 
the machine and the network. 

Thanks to the recent technological evolution of power 
electronics and the emergence of modern control techniques, 
the DFIM presents an ideal solution for high performance and 
variable speed drives [5]. The interest of such a machine is 
ensured operation at a very low speed. The potential 
application of the MADA has been a topic of research over the 
last decade. 

Despite all the advantages of the DFIM: low manufacturing 
cost, relatively simple construction, overload support, higher 
rotation speed and no need for permanent maintenance. The 
control of this machine is more complex because of the 
coupling existing between their different state variables (non-
linear and strongly coupled) and a large number of control 
variables [6, 7]. 

The control techniques classics (for example PI and PID 
controllers) require a perfect knowledge of the system model 
to be adjusted. These approaches lead to control laws whose 
performance is strongly related to the fidelity of the dynamic 
model used to describe the system behavior. Modeling errors 
or variations in system parameters can affect the performance 
of the adjustment as they occur directly in the calculation of 
the control. 

Among several types of modern controls that have attracted 
the intention of many researchers in recent years, the sliding 
mode control. Recent interest in this control is primarily the 

availability of high switching frequency switches and high 
performance microprocessors. 

The algorithm of sliding mode control is classified in 
Variable Structure control System (VSS). This technique is 
based on the principle that it is easier to 1st order system than 
to nth order system, whether linear or not. The principle of this 
type of system with variable structure is to bring, whatever the 
initial conditions, the representative point of the evolution of 
the system on the surface of the phase space (representing a 
set of relations between the state variables). The considered 
surface is then designated as a sliding or switching surface. 
The resulting dynamic behavior, called the ideal sliding 
regime, is completely determined by the parameters and 
equations defining the surface [8]. 

The advantage of obtaining such a behavior is twofold: on 
the one hand, there is a reduction in the order of the system, 
and on the other hand, the sliding regime insensitive to 
disturbances occurring in the same directions as the inputs 
(matching disturbances). 

The sliding mode control is largely proven to be effective 
through the reported theoretical studies, these main fields of 
application are robotics [9, 10] and electric motors [11]. The 
advantage of this control is to ensure the robustness of 
uncertain and disturbed systems by mitigating the effects of 
external disturbances to the desired level [12, 13]. However, 
these performances are obtained at the cost of certain 
disadvantages: 

A phenomenon of chattering or chatter caused by the 
discontinuous part of this command and which can have a 
detrimental effect on the actuators, 

The system is constantly subjected to high control to ensure 
its convergence to the desired state and this undesirable.  

We propose in this work to terminate these problems a 
command that combines the sliding mode and type-2 fuzzy 
logic to obtain a robust control. This command is named type 
2 fuzzy sliding mode control, which consists of replacing the 
switching function in the sliding mode control with a type 2 
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fuzzy controller. An input is the error between the measured 
value and the reference value. In order to test its efficiency and 
robustness, the latter is applied to the control of the doubly-fed 
induction machine, taking into account the parametric 
variations of its dynamic model. 

In this paper, mathematical model of the DFIM 
in (𝑑𝑑, 𝑞𝑞) reference is presented followed by the orientation of 
the stator flux. Then, the theoretical study on type 2 fuzzy logic. 
In the fourth section, we synthesize the law of the control by 
the sliding mode and type-2 fuzzy of the MADA, following 
the strategy of the command by the sliding mode which allows 
an independent control the output state variables. Finally, the 
robustness tests of the control of the machine will be carried 
out. The simulations will be presented under Matlab/Simulink. 

 
 

2. MATHEMATICAL MODELING OF DFIM 
 
The machine used is supposed to have sinusoidal 

distribution, symmetrical and unsaturated. It is supplied with 
voltage through a PWM inverter. In a reference linked to the 
rotating field (𝑑𝑑, 𝑞𝑞), the electrical equations of the DFIM write 
in the form: 

 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝑉𝑉𝑠𝑠𝑠𝑠 = 𝑅𝑅𝑠𝑠𝐼𝐼𝑠𝑠𝑠𝑠 +

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

− 𝜔𝜔𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠

𝑉𝑉𝑠𝑠𝑠𝑠 = 𝑅𝑅𝑠𝑠𝐼𝐼𝑠𝑠𝑠𝑠 +
𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

+ 𝜔𝜔𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠

𝑉𝑉𝑟𝑟𝑠𝑠 = 𝑅𝑅𝑟𝑟𝐼𝐼𝑟𝑟𝑠𝑠 +
𝑑𝑑𝑑𝑑𝑟𝑟𝑠𝑠
𝑑𝑑𝑑𝑑

− (𝜔𝜔𝑠𝑠 − 𝜔𝜔𝑟𝑟)𝑑𝑑𝑟𝑟𝑠𝑠

𝑉𝑉𝑟𝑟𝑠𝑠 = 𝑅𝑅𝑟𝑟𝐼𝐼𝑟𝑟𝑠𝑠 +
𝑑𝑑𝑑𝑑𝑟𝑟𝑠𝑠
𝑑𝑑𝑑𝑑

+ (𝜔𝜔𝑠𝑠 − 𝜔𝜔𝑟𝑟)𝑑𝑑𝑟𝑟𝑠𝑠

 (1) 

 
where: 

 
𝜔𝜔𝑟𝑟 = 𝜔𝜔𝑠𝑠 − 𝑃𝑃.Ω 

 
The magnetic equations of the DFIM can be written: 
 

⎩
⎨

⎧
𝑑𝑑𝑠𝑠𝑠𝑠 = 𝐿𝐿𝑠𝑠𝐼𝐼𝑠𝑠𝑠𝑠 + 𝑀𝑀. 𝐼𝐼𝑟𝑟𝑠𝑠
𝑑𝑑𝑠𝑠𝑠𝑠 = 𝐿𝐿𝑠𝑠𝐼𝐼𝑠𝑠𝑠𝑠 + 𝑀𝑀. 𝐼𝐼𝑟𝑟𝑠𝑠
𝑑𝑑𝑟𝑟𝑠𝑠 = 𝐿𝐿𝑟𝑟𝐼𝐼𝑟𝑟𝑠𝑠 + 𝑀𝑀. 𝐼𝐼𝑠𝑠𝑠𝑠
𝑑𝑑𝑟𝑟𝑠𝑠 = 𝐿𝐿𝑟𝑟𝐼𝐼𝑟𝑟𝑠𝑠 + 𝑀𝑀. 𝐼𝐼𝑠𝑠𝑠𝑠

 (2) 

 
𝐿𝐿𝑠𝑠 = 𝑙𝑙𝑠𝑠 − 𝑀𝑀𝑠𝑠 and  𝐿𝐿𝑟𝑟 = 𝑙𝑙𝑟𝑟 − 𝑀𝑀𝑟𝑟 : cyclic inductances of a 

stator and rotor phase; 
[𝑙𝑙𝑠𝑠] and [𝑙𝑙𝑟𝑟]: own inductances of a stator and rotor phase; 
𝑀𝑀𝑠𝑠 and  𝑀𝑀𝑟𝑟 : mutual inductances between two phases 

respectively stator and rotor; 
𝑀𝑀: maximum mutual inductance between a stator and rotor 

phase (the axes of the two phases coincide). 
The expression of the electromagnetic torque of the DFIM 

according to the stator flows and currents is written as follows: 
 

𝐶𝐶𝑒𝑒𝑒𝑒 = 𝑃𝑃
𝑀𝑀
𝐿𝐿𝑠𝑠
�𝑑𝑑𝑠𝑠𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠 − 𝑑𝑑𝑠𝑠𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠� (3) 

 
with 𝑃𝑃: number of pairs of DFIM poles. 

The model of the doubly-fed induction machine can be 
written in matrix form as follows [5]: 

 
�̇�𝑋 = 𝐴𝐴𝑋𝑋 + 𝐵𝐵𝐵𝐵 (4) 

 

where: 
 
𝑋𝑋 = [𝑑𝑑𝑠𝑠𝑠𝑠 𝑑𝑑𝑠𝑠𝑠𝑠 𝐼𝐼𝑟𝑟𝑠𝑠 𝐼𝐼𝑟𝑟𝑠𝑠]𝑇𝑇 and  𝐵𝐵 =

[𝑉𝑉𝑠𝑠𝑠𝑠 𝑉𝑉𝑠𝑠𝑠𝑠 𝑉𝑉𝑟𝑟𝑠𝑠 𝑉𝑉𝑟𝑟𝑠𝑠]𝑇𝑇 
 

[𝐴𝐴] =

⎣
⎢
⎢
⎢
⎢
⎢
⎡−

1
𝑇𝑇𝑠𝑠

           𝜔𝜔𝑠𝑠

−𝜔𝜔𝑠𝑠        −
1
𝑇𝑇𝑠𝑠

 
𝑀𝑀
𝑇𝑇𝑠𝑠

                   0

0                    
𝑀𝑀
𝑇𝑇𝑠𝑠

𝛼𝛼         −𝛽𝛽𝜔𝜔
𝛽𝛽𝜔𝜔           𝛼𝛼

−𝛿𝛿    (𝜔𝜔𝑠𝑠 − 𝜔𝜔)
     −(𝜔𝜔𝑠𝑠 − 𝜔𝜔) −𝛿𝛿 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

[𝐵𝐵] =

⎣
⎢
⎢
⎢
⎢
⎡   1              0

0              1
0    0
0    0

−
𝑀𝑀

𝜎𝜎𝐿𝐿𝑠𝑠𝐿𝐿𝑟𝑟
    0

0 −
𝑀𝑀

𝜎𝜎𝐿𝐿𝑠𝑠𝐿𝐿𝑟𝑟

 

1
𝜎𝜎𝐿𝐿𝑟𝑟

0

0
1
𝜎𝜎𝐿𝐿𝑟𝑟⎦

⎥
⎥
⎥
⎥
⎤

 

 
with: 

 

𝜎𝜎 = 1 − 𝑀𝑀2

𝐿𝐿𝑟𝑟𝐿𝐿𝑠𝑠
 ;  𝑇𝑇𝑟𝑟 = 𝐿𝐿𝑟𝑟

𝑅𝑅𝑟𝑟
;  𝑇𝑇𝑠𝑠 = 𝐿𝐿𝑠𝑠

𝑅𝑅𝑠𝑠
 ;  𝛼𝛼 = 𝑀𝑀

𝜎𝜎𝐿𝐿𝑟𝑟𝐿𝐿𝑠𝑠𝑇𝑇𝑠𝑠
;  𝛽𝛽 =

𝑀𝑀
𝜎𝜎𝐿𝐿𝑟𝑟𝐿𝐿𝑠𝑠

; 𝛿𝛿 = 1
𝜎𝜎
� 1
𝑇𝑇𝑟𝑟

+ 𝑀𝑀2

𝐿𝐿𝑠𝑠𝑇𝑇𝑠𝑠𝐿𝐿𝑟𝑟
� 

 
The mechanical equation is of the following form: 
 

𝐽𝐽
𝑑𝑑Ω
𝑑𝑑𝑑𝑑

= 𝐶𝐶𝑒𝑒𝑒𝑒 − 𝐶𝐶𝑟𝑟 − 𝑓𝑓Ω (5) 

 
with: 
𝐶𝐶𝑒𝑒𝑒𝑒  and  𝐶𝐶𝑟𝑟 : the electromagnetic torque and the resisting 

torque (the mechanical load); 
𝑓𝑓 and 𝐽𝐽: coefficient of friction and moment of inertia of the 

rotor shaft. 
The synoptic diagram of a direct chain is given by the 

following figure: 
 

 
 

Figure 1. Block diagram of a direct chain of DFIM 
 
In our study, the frequency and the tension are constant. We 

can see, from relation (3), the strong coupling between flows 
and currents. Indeed, the electromagnetic torque is the cross 
product between the flows and the stator currents, which 
makes the control of the DFIM particularly difficult. In order 
to simplify the order, we approximate its model to that of the 
DC machine which has the advantage of having a natural 
decoupling between the flows and the currents. For this, we 
apply the flow orientation control which consists in aligning 
the stator flux 𝑑𝑑𝑠𝑠 along the d axis of the rotating reference, 
(Figure 2), [14, 15]. We thus have:  𝑑𝑑𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑠𝑠 and 
consequently 𝑑𝑑𝑠𝑠𝑠𝑠 = 0. 
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Figure 2. Stator flux orientation on the 𝑑𝑑 axis 
 
The electromagnetic torque of equation (3) is then written: 
 

𝐶𝐶𝑒𝑒𝑒𝑒 = −𝑃𝑃
𝑀𝑀
𝐿𝐿𝑠𝑠
𝑑𝑑𝑠𝑠𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠  (6) 

 
And the equation (2) of the flows becomes: 
 

�
𝑑𝑑𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑠𝑠 = 𝐿𝐿𝑠𝑠𝐼𝐼𝑠𝑠𝑠𝑠 + 𝑀𝑀. 𝐼𝐼𝑟𝑟𝑠𝑠
𝑑𝑑𝑠𝑠𝑠𝑠 = 0 = 𝐿𝐿𝑠𝑠𝐼𝐼𝑠𝑠𝑠𝑠 + 𝑀𝑀. 𝐼𝐼𝑟𝑟𝑠𝑠

 (7) 

 

So: �
𝐼𝐼𝑠𝑠𝑠𝑠 = 1

𝐿𝐿𝑠𝑠
(𝑑𝑑𝑠𝑠−𝑀𝑀𝐼𝐼𝑟𝑟𝑠𝑠)

𝐼𝐼𝑠𝑠𝑠𝑠 = − 1
𝐿𝐿𝑠𝑠
𝑀𝑀𝐼𝐼𝑟𝑟𝑠𝑠

 

 
If one takes the stator current in the axis of null, 𝐼𝐼𝑠𝑠𝑠𝑠 = 0, 

realistic hypothesis for the machines of high power, the current 
and the tension in this axis are then in phase 𝑉𝑉𝑠𝑠 = 𝑉𝑉𝑠𝑠𝑠𝑠  and 𝐼𝐼𝑠𝑠 =
𝐼𝐼𝑠𝑠𝑠𝑠 . 

 
In this case, we get: 
 

�
𝐼𝐼𝑟𝑟𝑠𝑠 =

𝑑𝑑𝑠𝑠
𝑀𝑀

𝐼𝐼𝑟𝑟𝑠𝑠 = −
𝐿𝐿𝑠𝑠

𝑃𝑃𝑀𝑀𝑑𝑑𝑠𝑠
𝐶𝐶𝑒𝑒𝑒𝑒

 (8) 

 
With the assumption of constant stator flux, we obtain the 

electric equations in the form: 
 

⎩
⎪
⎨

⎪
⎧𝑉𝑉𝑠𝑠𝑠𝑠 = 𝑅𝑅𝑠𝑠𝐼𝐼𝑠𝑠𝑠𝑠
𝑉𝑉𝑠𝑠𝑠𝑠 = 𝑅𝑅𝑠𝑠𝐼𝐼𝑠𝑠𝑠𝑠 + 𝜔𝜔𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠
𝑉𝑉𝑟𝑟𝑠𝑠 = 𝑅𝑅𝑟𝑟𝐼𝐼𝑟𝑟𝑠𝑠 − (𝜔𝜔𝑠𝑠 − 𝜔𝜔𝑟𝑟)𝑑𝑑𝑟𝑟𝑠𝑠
𝑉𝑉𝑟𝑟𝑠𝑠 = 𝑅𝑅𝑟𝑟𝐼𝐼𝑟𝑟𝑠𝑠 + (𝜔𝜔𝑠𝑠 − 𝜔𝜔𝑟𝑟)𝑑𝑑𝑟𝑟𝑠𝑠

 (9) 

 
In the principle of the orientation of the stator field �𝑑𝑑𝑠𝑠𝑠𝑠 =

0�, the model of the doubly-fed induction machine is written: 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

=
𝑀𝑀
𝑇𝑇𝑠𝑠
𝐼𝐼𝑟𝑟𝑠𝑠 −

1
𝑇𝑇𝑠𝑠
𝑑𝑑𝑠𝑠𝑠𝑠 + 𝑉𝑉𝑠𝑠𝑠𝑠

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

=
𝑀𝑀
𝑇𝑇𝑠𝑠
𝐼𝐼𝑟𝑟𝑠𝑠−𝜔𝜔𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠 + 𝑉𝑉𝑠𝑠𝑠𝑠

𝑑𝑑𝐼𝐼𝑟𝑟𝑠𝑠
𝑑𝑑𝑑𝑑

= −𝛿𝛿𝐼𝐼𝑟𝑟𝑠𝑠 + (𝜔𝜔𝑠𝑠 − 𝜔𝜔)𝐼𝐼𝑟𝑟𝑠𝑠 + 𝛼𝛼𝑑𝑑𝑠𝑠𝑠𝑠 −
𝑀𝑀

𝜎𝜎𝐿𝐿𝑠𝑠𝐿𝐿𝑟𝑟
𝑉𝑉𝑠𝑠𝑠𝑠 +

1
𝜎𝜎𝐿𝐿𝑟𝑟

𝑉𝑉𝑟𝑟𝑠𝑠

𝑑𝑑𝐼𝐼𝑟𝑟𝑠𝑠
𝑑𝑑𝑑𝑑

= −(𝜔𝜔𝑠𝑠 − 𝜔𝜔)𝐼𝐼𝑟𝑟𝑠𝑠 − 𝛿𝛿𝐼𝐼𝑟𝑟𝑠𝑠 + 𝛽𝛽𝜔𝜔𝑑𝑑𝑠𝑠𝑠𝑠 −
𝑀𝑀

𝜎𝜎𝐿𝐿𝑠𝑠𝐿𝐿𝑟𝑟
𝑉𝑉𝑠𝑠𝑠𝑠 +

1
𝜎𝜎𝐿𝐿𝑟𝑟

𝑉𝑉𝑟𝑟𝑠𝑠

 (10) 

 
The mechanical equation is written: 
 

𝑑𝑑Ω
𝑑𝑑𝑑𝑑

= −
1
𝐽𝐽
�𝑃𝑃

𝑀𝑀
𝐿𝐿𝑠𝑠
𝑑𝑑𝑠𝑠𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠 + 𝑓𝑓Ω + 𝐶𝐶𝑟𝑟� (11) 

3. BACKGROUND OF TYPE-2 FUZZY LOGIC 
CONTROL 

 
Type-1 and type-2 fuzzy logic are mainly similar. However, 

there exist two essential differences between them which are: 
the membership functions shape and the output processor. 
Indeed, an interval type-2 fuzzy controller is consisting of: a 
fuzzifier, an inference engine, a rules base, a type reduction 
and a defuzzyfier [16, 17]. 

 
3.1 Fuzzifier 

 
The fuzzifier maps the crisp input vector (𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛)𝑇𝑇 to 

a type-2 fuzzy system  �̃�𝐴𝑥𝑥 , very similar to the procedure 
performed in a type-1 fuzzy logic system. 

 
3.2 Rules 

 
The general form of the 𝑖𝑖𝑡𝑡ℎ rule of the type-2 fuzzy logic 

system can be written as: 
If 𝑒𝑒1 is 𝐹𝐹�1𝑖𝑖  and 𝑒𝑒2 is 𝐹𝐹�2𝑖𝑖  and … 𝑒𝑒𝑛𝑛 is 𝐹𝐹�𝑛𝑛𝑖𝑖, than 
 

𝑦𝑦𝑖𝑖 = 𝐺𝐺�𝑖𝑖               𝑖𝑖 = 1, … ,𝑀𝑀  (12) 
 

where: 
𝐹𝐹�𝑗𝑗𝑖𝑖  represent the type-2 fuzzy system of the input state 𝑗𝑗 of 

the  𝑖𝑖𝑡𝑡ℎ rule,  𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 are the inputs,  𝐺𝐺�𝑖𝑖  is the output of 
type-2 fuzzy system for the rule 𝑖𝑖, and 𝑀𝑀 is the number of rules. 
As can be seen, the rule structure of type-2 fuzzy logic system 
is similar to type-1 fuzzy logic system except that type-1 
membership functions are replaced with their type-2 
counterparts. 

 
3.3 Inference engine 

 
In fuzzy system interval type-2 using the minimum or 

product t-norms operations, the  𝑖𝑖𝑡𝑡ℎ activated 
rule 𝐹𝐹𝑖𝑖(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) gives us the interval that is determined 
by two extremes 𝑓𝑓𝑖𝑖(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) and 𝑓𝑓̅𝑖𝑖(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) [18]: 

 
 
𝐹𝐹𝑖𝑖(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = �𝑓𝑓𝑖𝑖(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛), 𝑓𝑓̅𝑖𝑖(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)�

≡ �𝑓𝑓𝑖𝑖 , 𝑓𝑓̅𝑖𝑖� 
(13) 

 
with 𝑓𝑓𝑖𝑖  and 𝑓𝑓̅𝑖𝑖 are given as: 

 
𝑓𝑓𝑖𝑖 = 𝜇𝜇𝐹𝐹1𝑖𝑖(𝑥𝑥1) × … × 𝜇𝜇𝐹𝐹𝑛𝑛𝑖𝑖 (𝑥𝑥𝑛𝑛)

𝑓𝑓̅𝑖𝑖 = 𝜇𝜇𝐹𝐹1𝑖𝑖(𝑥𝑥1) × … × 𝜇𝜇𝐹𝐹𝑛𝑛𝑖𝑖 (𝑥𝑥𝑛𝑛)
 (14) 

 
3.4 Type reducer 

 
After the rules are fired and inference is executed, the 

obtained type-2 fuzzy system resulting in type-1 fuzzy system 
is computed. In this part, the available methods to compute the 
centroid of type-2 fuzzy system using the extension principle 
[19] are discussed. The centroid of type-1 fuzzy system 𝐴𝐴 is 
given by: 

 

𝐶𝐶𝐴𝐴 =
∑ 𝑧𝑧𝑖𝑖𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1

 (15) 
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where:  𝑛𝑛 represents the number of discretized domain 
of 𝐴𝐴, 𝑧𝑧𝑖𝑖 ∈ 𝑅𝑅 and 𝑤𝑤𝑖𝑖 ∈ [0, 1]. 

If each  𝑧𝑧𝑖𝑖  and  𝑤𝑤𝑖𝑖  are replaced with a type-1 fuzzy 
system,  𝑍𝑍𝑖𝑖 and  𝑊𝑊𝑖𝑖 , with associated membership functions 
of  𝜇𝜇𝑍𝑍(𝑍𝑍𝑖𝑖) and  𝜇𝜇𝑊𝑊(𝑊𝑊𝑖𝑖) respectively, by using the extension 
principle, the generalized centroid for type-2 fuzzy system �̃�𝐴 is 
given by:  

 
𝐺𝐺𝐶𝐶𝐴𝐴�

= � …� � …
𝑤𝑤1∈𝑊𝑊1

�
𝑇𝑇𝑖𝑖=1𝑛𝑛 𝜇𝜇𝑍𝑍(𝑍𝑍𝑖𝑖) × 𝑇𝑇𝑖𝑖=1𝑛𝑛 𝜇𝜇𝑊𝑊(𝑊𝑊𝑖𝑖)

∑ 𝑧𝑧𝑖𝑖𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1

 
𝑤𝑤𝑛𝑛∈𝑊𝑊𝑛𝑛𝑧𝑧𝑛𝑛∈𝑍𝑍𝑛𝑛𝑧𝑧1∈𝑍𝑍1

 (16) 

 
T is a t-norm and 𝐺𝐺𝐶𝐶𝐴𝐴� is a type-1 fuzzy system. For an 

interval type-2 fuzzy system: 
 
𝐺𝐺𝐶𝐶𝐴𝐴� = [𝑦𝑦𝑙𝑙(𝑥𝑥),𝑦𝑦𝑟𝑟(𝑥𝑥)]

         = � …� � …
𝑓𝑓1∈�𝑓𝑓1,𝑓𝑓

1
�
�

1
∑ 𝑓𝑓𝑖𝑖𝑦𝑦𝑖𝑖𝑀𝑀
𝑖𝑖=1
∑ 𝑓𝑓𝑖𝑖𝑀𝑀
𝑖𝑖=1

 
𝑓𝑓𝑀𝑀∈�𝑓𝑓𝑀𝑀,𝑓𝑓

𝑀𝑀
�𝑦𝑦𝑀𝑀∈�𝑦𝑦𝑙𝑙

𝑀𝑀,𝑦𝑦𝑟𝑟𝑀𝑀�𝑦𝑦1∈�𝑦𝑦𝑙𝑙
1,𝑦𝑦𝑟𝑟1�

 (17) 

 
3.5 Defuzzifier 

 
To get a crisp output from a type-1 fuzzy logic system, the 

type-reduced set must be defuzzied. The most common 
method to do this is to find the centroid of the type-reduced set. 
If the type-reduced set 𝑌𝑌 is discretized to 𝑛𝑛 points, then the 
following expression gives the centroid of the type-reduced set 
as: 

 

𝑌𝑌(𝑥𝑥) =
∑ 𝑦𝑦𝑖𝑖𝜇𝜇(𝑦𝑦𝑖𝑖)𝑀𝑀
𝑖𝑖=1

∑ 𝜇𝜇(𝑦𝑦𝑖𝑖)𝑀𝑀
𝑖𝑖=1

 (18) 

 
We can compute the output using the iterative Karnik 

Mendel Algorithms [20, 21]. Therefore, the defuzzified output 
of an interval type-2 FLC is: 

 

𝑌𝑌(𝑥𝑥) =
𝑦𝑦𝑙𝑙(𝑥𝑥) + 𝑦𝑦𝑟𝑟(𝑥𝑥)

2
 (19) 

 
with: 

 

⎩
⎪
⎨

⎪
⎧𝑦𝑦𝑙𝑙(𝑥𝑥) =

∑ 𝑓𝑓𝑙𝑙𝑖𝑖𝑦𝑦𝑙𝑙𝑖𝑖𝑀𝑀
𝑖𝑖=1

∑ 𝑓𝑓𝑙𝑙𝑖𝑖𝑀𝑀
𝑖𝑖=1

𝑦𝑦𝑟𝑟(𝑥𝑥) =
∑ 𝑓𝑓𝑟𝑟𝑖𝑖𝑦𝑦𝑟𝑟𝑖𝑖𝑀𝑀
𝑖𝑖=1

∑ 𝑓𝑓𝑟𝑟𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (20) 

 
The structure of a fuzzy system Type-2 is shown in the 

figure 3. It is similar to the structure of a fuzzy system Type-
1. 

 

 
 

Figure 3. Structure of type-2 fuzzy logic system [22, 23] 

4. TYPE-2 FUZZY SLIDING MODE CONTROLLER 
DESIGN 

 
Sliding mode control has been very successful in recent 

years. This is due to the simplicity of implementation and 
robustness against system uncertainties and external 
disturbances affecting the process. 

The basic idea of sliding mode control is first to draw the 
states of the system in an area properly selected, then design a 
law command that will always keep the system in this region 
[12-13]. The sliding mode control goes through three stages: 

 
4.1 Choice of switching surface 

 
For a non-linear system presented in the following form: 
 

�̇�𝑋 = 𝑓𝑓(𝑋𝑋, 𝑑𝑑) + 𝑔𝑔(𝑋𝑋, 𝑑𝑑).𝑢𝑢(𝑋𝑋, 𝑑𝑑)
𝑋𝑋 ∈ ℜ𝑛𝑛 ,𝑢𝑢 ∈ ℜ

 (21) 

 
where:  𝑓𝑓(𝑋𝑋, 𝑑𝑑) ,  𝑔𝑔(𝑋𝑋, 𝑑𝑑) are two continuous and uncertain 
nonlinear functions, supposed limited. 

We take the form of general equation given by J.J. Slotine 
to determine the sliding surface given by [24]: 

 

𝑆𝑆(𝑋𝑋) = �
𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜆𝜆�
𝑛𝑛−1

𝑒𝑒 (22) 

 
where:  𝑒𝑒 = 𝑋𝑋𝑠𝑠 − 𝑋𝑋 ,  𝑋𝑋 = �𝑥𝑥, 𝑥𝑥,̇ … 𝑥𝑥(𝑛𝑛−1)�𝑇𝑇 ,  𝑋𝑋𝑠𝑠 =
[𝑥𝑥𝑠𝑠 , �̇�𝑥𝑠𝑠, �̈�𝑥𝑠𝑠 , … ]𝑇𝑇 

And  𝑒𝑒 : error on the signal to be adjusted,  λ : positive 
coefficient,  𝑛𝑛: system order,  𝑋𝑋𝑠𝑠 : desired signal,  𝑋𝑋 : state 
variable of the control signal. 

 
4.2 Convergence condition 

 
The convergence condition is defined by the equation 

Lyapunov [25], it makes the area attractive and invariant. 
 

𝑆𝑆(𝑋𝑋)�̇�𝑆(𝑋𝑋) < 0 (23) 
 

4.3 Control calculation  
 
The control algorithm is defined by the relation: 
 

𝑢𝑢 = 𝑢𝑢𝑒𝑒𝑠𝑠 + 𝑢𝑢𝑛𝑛 (24) 
 

where: 
𝑢𝑢 : is the control vector,  𝑢𝑢𝑒𝑒𝑠𝑠 : is the equivalent control 

vector, 𝑢𝑢𝑛𝑛 : is the switching part of the control (the correction 
factor). 
𝑢𝑢𝑒𝑒𝑠𝑠  can be obtained by considering the condition for the 

sliding regime, 𝑆𝑆(𝑋𝑋, 𝑑𝑑) = 0. The equivalent control keeps the 
state variable on sliding surface, once they reach it.  
𝑢𝑢𝑛𝑛 is needed to assure the convergence of the system states 

to sliding surfaces in finite time.  
In order to alleviate the undesirable chattering phenomenon, 

J. J. Slotine proposed an approach to reduce it, by the " 𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛 " 
function of the switching surface [24].  

The switching part of the control 𝑢𝑢𝑛𝑛 is defined by: 
 

𝑢𝑢𝑛𝑛 = 𝐾𝐾 𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛�𝑆𝑆(𝑋𝑋)� (25) 
 

with: 
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𝐾𝐾 is the controller gain designed from the Lyapunov stability. 
The use of the function  𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛 means that the 

command  𝑢𝑢𝑛𝑛 switches between two values  ∓𝐾𝐾 with a 
theoretically infinite frequency and is manifested by 
oscillations around the sliding surface 𝑆𝑆 [5]. 

The control algorithms based on sliding mode techniques 
suffers from a main disadvantage that is chattering effect, 
which is the high frequency oscillation of the controller output. 
To overcome this problem and in order to reduce the chattering 
phenomenon, an interval type-2 fuzzy system is used to 
approximate the hitting control term. The configuration of the 
proposed type-2 fuzzy sliding mode control scheme is shown 
in Figure 4; it contains an equivalent control part and single 
input single output interval type-2 fuzzy logic. 

 

 
 

Figure 4. Block diagram of the IT2FSMC 
 
The equivalent control 𝑢𝑢𝑒𝑒𝑠𝑠 , is calculated in such a way as to 

have �̇�𝑠 = 0. Then the discontinuous control is computed by:  
 

𝑢𝑢𝑟𝑟 = 𝑘𝑘𝑓𝑓𝑠𝑠𝑢𝑢𝑓𝑓𝑠𝑠    𝑢𝑢𝑓𝑓𝑠𝑠 = 𝐼𝐼𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶(𝑠𝑠) (26/27) 
 

where: 
𝑘𝑘𝑓𝑓𝑠𝑠 is the normalization factor of the output variable, 

and 𝑢𝑢𝑓𝑓𝑠𝑠 is the output of the IT2FLC, which is obtained by the 
normalized 𝑠𝑠. 

The fuzzy type-2 membership functions of the input sliding 
surface (𝑠𝑠), and the output discontinuous control �𝑢𝑢𝑓𝑓𝑠𝑠� sets 
are presented by Figure 5.  

 

  
(a) 

  
(b) 

 
Figure 5. Membership functions of input 𝑠𝑠 and output 𝑢𝑢𝑓𝑓𝑠𝑠 

In order to attenuate the chattering effect and handle the 
uncertainty of the six rotors helicopter, a type‐2 fuzzy 
controller has been used with single input and single output for 
each subsystem. Then, the input of the controller is the sliding 
surface and the output is the discontinuous control 𝑢𝑢𝑓𝑓𝑠𝑠. All the 
membership functions of the fuzzy input variable are chosen 
to be triangular and trapezoidal for all upper and lower 
membership functions. The used labels of the fuzzy variable 
(surface) are: {negative medium (NM), negative big (NB), 
zero (ZE), positive medium (NM), positive big (PB)}.  

The corrective control is decomposed into five levels 
represented by a set of linguistic variables: negative big (NB), 
negative medium (NM), zero (ZE), positive medium (PM) and 
positive big (PB). Table.1 presents the rules base which 
contains five rules: 

 
Table 1. Fuzzy rules for type-2 FLCs 

 
 Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 

Surface PB PM ZE NM NB 
𝑢𝑢𝑓𝑓𝑠𝑠 NB NM ZE PM PB 

 
The membership functions of the input (sliding surface) and 

output  �𝑢𝑢𝑓𝑓𝑠𝑠� has been normalized in the interval  [−1, 1] , 
therefore: �𝑢𝑢𝑓𝑓𝑠𝑠� ≤ 1. 
𝑢𝑢𝑓𝑓𝑠𝑠 given in equation (27) satisfies the following condition 
 

𝑢𝑢𝑓𝑓𝑠𝑠 = −𝐾𝐾+|𝑠𝑠| (28) 
 

where:  𝐾𝐾+ > 0 is positive constant determined by a fuzzy 
type-2 inference system. 

Proof:  
The discontinuous control laws are computed by type-2 

fuzzy logic inference using equations (19) and (20) and the 
iterative Karnik Mendel Algorithms presented in [26-30]. 
Where 𝛼𝛼𝑖𝑖 = �𝛼𝛼𝑖𝑖𝑙𝑙𝑖𝑖𝑤𝑤 ,𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖� for 𝑖𝑖 = [1, … ,5] are the membership 
interval of rules 1 to 5 presented in Table 1. Moreover, 𝑢𝑢𝑓𝑓𝑠𝑠 can 
be further analyzed as the following six conditions given 
thereafter. Only one of six conditions will occur for any value 
of the sliding surface 𝑠𝑠 according to Figure 4.  

Condition 1 
Only rule 1 is activated  �𝑠𝑠 > 0.5,𝛼𝛼1 = [0.8, 1],𝛼𝛼𝑗𝑗 =

[0, 0]� for 𝑗𝑗 = 2,3,4,5 
 

𝑢𝑢𝑓𝑓𝑠𝑠 = 𝐼𝐼𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶(𝑠𝑠) =
−0.8 − 1

2
= −0.9 (29) 

 
Condition 2 
Rule 1 and 2 are activated  �0.25 < 𝑠𝑠 < 0.5,𝛼𝛼1 =

�𝛼𝛼1𝑙𝑙𝑖𝑖𝑤𝑤 ,𝛼𝛼1𝑖𝑖𝑖𝑖�,𝛼𝛼2 = �𝛼𝛼2𝑙𝑙𝑖𝑖𝑤𝑤 ,𝛼𝛼2𝑖𝑖𝑖𝑖�,𝛼𝛼𝑗𝑗 = [0, 0]� for 𝑗𝑗 = 3,4,5 
0 ≤ 𝛼𝛼1𝑙𝑙𝑖𝑖𝑤𝑤 ,𝛼𝛼2𝑙𝑙𝑖𝑖𝑤𝑤 ≤ 0.8 and 0 ≤ 𝛼𝛼1𝑖𝑖𝑖𝑖,𝛼𝛼2𝑖𝑖𝑖𝑖 ≤ 1 
 
𝑢𝑢𝑓𝑓𝑠𝑠 = 𝐼𝐼𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶(𝑠𝑠)

=
1
2
�
−0.8 𝛼𝛼1𝑙𝑙𝑖𝑖𝑤𝑤 − 0.3 𝛼𝛼2𝑖𝑖𝑖𝑖

𝛼𝛼1𝑙𝑙𝑖𝑖𝑤𝑤 + 𝛼𝛼2𝑖𝑖𝑖𝑖

+
−𝛼𝛼1𝑖𝑖𝑖𝑖 − 0.5 𝛼𝛼2𝑙𝑙𝑖𝑖𝑤𝑤
𝛼𝛼1𝑖𝑖𝑖𝑖 + 𝛼𝛼2𝑙𝑙𝑖𝑖𝑤𝑤

�  

(30) 

 
Condition 3 
Rule 2 and 3 are activated  �0 < 𝑠𝑠 < 0.25,𝛼𝛼2 =

�𝛼𝛼2𝑙𝑙𝑖𝑖𝑤𝑤 ,𝛼𝛼2𝑖𝑖𝑖𝑖�,𝛼𝛼3 = �𝛼𝛼3𝑙𝑙𝑖𝑖𝑤𝑤 ,𝛼𝛼3𝑖𝑖𝑖𝑖�,𝛼𝛼𝑗𝑗 = [0, 0]� for 𝑗𝑗 = 1,4,5 
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0 ≤ 𝛼𝛼2𝑙𝑙𝑖𝑖𝑤𝑤 ,𝛼𝛼3𝑙𝑙𝑖𝑖𝑤𝑤 ≤ 0.8 and 0 ≤ 𝛼𝛼2𝑖𝑖𝑖𝑖,𝛼𝛼3𝑖𝑖𝑖𝑖 ≤ 1 
 
𝑢𝑢𝑓𝑓𝑠𝑠 = 𝐼𝐼𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶(𝑠𝑠)

=
1
2
�
−0.3 𝛼𝛼2𝑙𝑙𝑖𝑖𝑤𝑤 + 0.1 𝛼𝛼3𝑖𝑖𝑖𝑖

𝛼𝛼2𝑙𝑙𝑖𝑖𝑤𝑤 + 𝛼𝛼3𝑖𝑖𝑖𝑖

+
−0.5 𝛼𝛼2𝑖𝑖𝑖𝑖
𝛼𝛼2𝑖𝑖𝑖𝑖 + 𝛼𝛼3𝑙𝑙𝑖𝑖𝑤𝑤

� 

(31) 

 
Condition 4 
Rule 3 and 4 are activated  �−0.25 < 𝑠𝑠 < 0,𝛼𝛼3 =

�𝛼𝛼3𝑙𝑙𝑖𝑖𝑤𝑤 ,𝛼𝛼3𝑖𝑖𝑖𝑖�,𝛼𝛼4 = �𝛼𝛼4𝑙𝑙𝑖𝑖𝑤𝑤 ,𝛼𝛼4𝑖𝑖𝑖𝑖�,𝛼𝛼𝑗𝑗 = [0, 0]� for 𝑗𝑗 = 1,2,5 
0 ≤ 𝛼𝛼3𝑙𝑙𝑖𝑖𝑤𝑤 ,𝛼𝛼4𝑙𝑙𝑖𝑖𝑤𝑤 ≤ 0.8 and 0 ≤ 𝛼𝛼3𝑖𝑖𝑖𝑖,𝛼𝛼4𝑖𝑖𝑖𝑖 ≤ 1 
 
𝑢𝑢𝑓𝑓𝑠𝑠 = 𝐼𝐼𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶(𝑠𝑠)

=
1
2
�

0.1 𝛼𝛼3𝑙𝑙𝑖𝑖𝑤𝑤 + 0.5 𝛼𝛼4𝑖𝑖𝑖𝑖
𝛼𝛼3𝑙𝑙𝑖𝑖𝑤𝑤 + 𝛼𝛼4𝑖𝑖𝑖𝑖

+
0.3 𝛼𝛼4𝑙𝑙𝑖𝑖𝑤𝑤

𝛼𝛼3𝑖𝑖𝑖𝑖 + 𝛼𝛼4𝑙𝑙𝑖𝑖𝑤𝑤
� 

(32) 

 
Condition 5 
Rule 4 and 5 are activated  �−0.5 < 𝑠𝑠 < −0.25,𝛼𝛼4 =

�𝛼𝛼4𝑙𝑙𝑖𝑖𝑤𝑤 ,𝛼𝛼4𝑖𝑖𝑖𝑖�,𝛼𝛼5 = �𝛼𝛼5𝑙𝑙𝑖𝑖𝑤𝑤 ,𝛼𝛼5𝑖𝑖𝑖𝑖�,𝛼𝛼𝑗𝑗 = [0, 0]� for 𝑗𝑗 = 1,2,3 
0 ≤ 𝛼𝛼4𝑙𝑙𝑖𝑖𝑤𝑤 ,𝛼𝛼5𝑙𝑙𝑖𝑖𝑤𝑤 ≤ 0.8 and 0 ≤ 𝛼𝛼4𝑖𝑖𝑖𝑖,𝛼𝛼5𝑖𝑖𝑖𝑖 ≤ 1 
 

𝑢𝑢𝑓𝑓𝑠𝑠 = 𝐼𝐼𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶(𝑠𝑠)

=
1
2
�

0.5 𝛼𝛼4𝑙𝑙𝑖𝑖𝑤𝑤 +  𝛼𝛼5𝑖𝑖𝑖𝑖
𝛼𝛼4𝑙𝑙𝑖𝑖𝑤𝑤 + 𝛼𝛼5𝑖𝑖𝑖𝑖

+
0.3 𝛼𝛼4𝑖𝑖𝑖𝑖 + 0.8 𝛼𝛼5𝑙𝑙𝑖𝑖𝑤𝑤

𝛼𝛼4𝑖𝑖𝑖𝑖 + 𝛼𝛼5𝑙𝑙𝑖𝑖𝑤𝑤
� 

(33) 

 
Condition 6 
Only rule 5 is activated  �𝑠𝑠 < −0.5,𝛼𝛼5 = [0.8, 1],𝛼𝛼𝑗𝑗 =

[0, 0]� for 𝑗𝑗 = 1,2,3,4 
 

𝑢𝑢𝑓𝑓𝑠𝑠 = 𝐼𝐼𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶(𝑠𝑠) =
1 + 0.8

2
= 0.9 (34) 

 
According to six possible conditions shown in (29)-(34) we 

conclude 
 

𝑢𝑢𝑓𝑓𝑠𝑠 = 𝐼𝐼𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶(𝑠𝑠) = −𝐾𝐾+|𝑠𝑠| (35) 
 

with: 
 

𝐾𝐾+ =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

0.9                                                                     𝑖𝑖𝑓𝑓  𝑠𝑠 > 0.5 𝑎𝑎𝑛𝑛𝑑𝑑 𝑠𝑠 < −0.5

�
1
2
�
−0.8 𝛼𝛼1𝑙𝑙𝑖𝑖𝑤𝑤 − 0.3 𝛼𝛼2𝑖𝑖𝑖𝑖

𝛼𝛼1𝑙𝑙𝑖𝑖𝑤𝑤 + 𝛼𝛼2𝑖𝑖𝑖𝑖
+
−𝛼𝛼1𝑖𝑖𝑖𝑖 − 0.5 𝛼𝛼2𝑙𝑙𝑖𝑖𝑤𝑤
𝛼𝛼1𝑖𝑖𝑖𝑖 + 𝛼𝛼2𝑙𝑙𝑖𝑖𝑤𝑤

��  𝑖𝑖𝑓𝑓 0.25 < 𝑠𝑠 < 0.5

�
1
2
�
−0.3 𝛼𝛼2𝑙𝑙𝑖𝑖𝑤𝑤 + 0.1 𝛼𝛼3𝑖𝑖𝑖𝑖

𝛼𝛼2𝑙𝑙𝑖𝑖𝑤𝑤 + 𝛼𝛼3𝑖𝑖𝑖𝑖
+

−0.5 𝛼𝛼2𝑖𝑖𝑖𝑖
𝛼𝛼2𝑖𝑖𝑖𝑖 + 𝛼𝛼3𝑙𝑙𝑖𝑖𝑤𝑤

��          𝑖𝑖𝑓𝑓 0 < 𝑠𝑠 < 0.25

�
1
2
�

0.1 𝛼𝛼3𝑙𝑙𝑖𝑖𝑤𝑤 + 0.5 𝛼𝛼4𝑖𝑖𝑖𝑖
𝛼𝛼3𝑙𝑙𝑖𝑖𝑤𝑤 + 𝛼𝛼4𝑖𝑖𝑖𝑖

+
0.3 𝛼𝛼4𝑙𝑙𝑖𝑖𝑤𝑤

𝛼𝛼3𝑖𝑖𝑖𝑖 + 𝛼𝛼4𝑙𝑙𝑖𝑖𝑤𝑤
��            𝑖𝑖𝑓𝑓 − 025 < 𝑠𝑠 < 0

�
1
2
�

0.5 𝛼𝛼4𝑙𝑙𝑖𝑖𝑤𝑤 + 𝛼𝛼5𝑖𝑖𝑖𝑖
𝛼𝛼4𝑙𝑙𝑖𝑖𝑤𝑤 + 𝛼𝛼5𝑖𝑖𝑖𝑖

+
0.3 𝛼𝛼4𝑖𝑖𝑖𝑖 + 0.8 𝛼𝛼5𝑙𝑙𝑖𝑖𝑤𝑤

𝛼𝛼4𝑖𝑖𝑖𝑖 + 𝛼𝛼5𝑙𝑙𝑖𝑖𝑤𝑤
��      𝑖𝑖𝑓𝑓 − 05 < 𝑠𝑠 < −0.25

 (36) 

 
In Figure 4 the control law is computed by:  
 

𝑢𝑢 = 𝑢𝑢𝑒𝑒𝑠𝑠 + 𝑢𝑢𝑟𝑟 = 𝑢𝑢𝑒𝑒𝑠𝑠 + 𝑘𝑘𝑓𝑓𝑠𝑠𝑢𝑢𝑓𝑓𝑠𝑠 (37) 
 
Then sliding condition can be rewritten as follow: 
 

𝑠𝑠ṡ = −𝑘𝑘𝑓𝑓𝑠𝑠𝐾𝐾+|𝑠𝑠| < 0 (38) 
 

Or 
 

�̇�𝑠 = −𝑘𝑘𝑓𝑓𝑠𝑠𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶(𝑠𝑠) (39) 
 
To obtain the type-2 fuzzy sliding mode control of a doubly-

fed induction machine, the surfaces are chosen according to 
the error between the reference input signal and the measured 
signals as follows: 

 
4.4 Speed control 

 
For 𝑛𝑛 = 1, the speed control manifold can be obtained from 

equation (22) as follow: 
 

𝑆𝑆(Ω) = Ω𝑟𝑟𝑒𝑒𝑓𝑓 − Ω (40) 
 
The derivative of the surface is: 
 

�̇�𝑆(Ω) = Ω̇𝑟𝑟𝑒𝑒𝑓𝑓 − Ω̇ (41) 
 
Substituting the expression of Ω̇ equation (11) in equation 

(41), we obtain: 
 

�̇�𝑆(Ω) = Ω̇𝑟𝑟𝑒𝑒𝑓𝑓 +
1
𝐽𝐽
�
𝑝𝑝.𝑀𝑀
𝐿𝐿𝑠𝑠

𝑑𝑑𝑠𝑠𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠 + 𝑓𝑓Ω + 𝐶𝐶𝑟𝑟� (42) 

 
To find the expression of the control law equates equation 

(42) by equation (39), we obtain: 
 

Ω̇𝑟𝑟𝑒𝑒𝑓𝑓 +
1
𝐽𝐽
�
𝑝𝑝.𝑀𝑀
𝐿𝐿𝑠𝑠

𝑑𝑑𝑠𝑠𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠 + 𝑓𝑓Ω + 𝐶𝐶𝑟𝑟�

= −𝑘𝑘𝑓𝑓𝑠𝑠Ω𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶�𝑠𝑠(Ω)� 
(43) 

 
So: 
 

𝐼𝐼𝑟𝑟𝑠𝑠 = −
𝐽𝐽𝐿𝐿𝑠𝑠

𝑝𝑝𝑀𝑀𝑑𝑑𝑠𝑠𝑠𝑠
�Ω̇𝑟𝑟𝑒𝑒𝑓𝑓 +

𝑓𝑓
𝐽𝐽
Ω +

𝐶𝐶𝑟𝑟
𝐽𝐽
�

−
𝐽𝐽𝐿𝐿𝑠𝑠

𝑝𝑝𝑀𝑀𝑑𝑑𝑠𝑠𝑠𝑠
𝑘𝑘𝑓𝑓𝑠𝑠Ω𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶�𝑠𝑠(Ω)� 

(44) 

 
We take: 𝐼𝐼𝑟𝑟𝑠𝑠

𝑟𝑟𝑒𝑒𝑓𝑓 = 𝐼𝐼𝑟𝑟𝑠𝑠
𝑒𝑒𝑠𝑠 + 𝐼𝐼𝑟𝑟𝑠𝑠𝑛𝑛 , with: 

 

⎩
⎨

⎧𝐼𝐼𝑟𝑟𝑠𝑠
𝑒𝑒𝑠𝑠 = −

𝐽𝐽𝐿𝐿𝑠𝑠
𝑝𝑝𝑀𝑀𝑑𝑑𝑠𝑠𝑠𝑠

�Ω̇𝑟𝑟𝑒𝑒𝑓𝑓 +
𝑓𝑓
𝐽𝐽
Ω +

𝐶𝐶𝑟𝑟
𝐽𝐽
�

𝐼𝐼𝑟𝑟𝑠𝑠𝑛𝑛 = −
𝐽𝐽𝐿𝐿𝑠𝑠

𝑝𝑝𝑀𝑀𝑑𝑑𝑠𝑠𝑠𝑠
𝑘𝑘𝑓𝑓𝑠𝑠Ω𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶�𝑠𝑠(Ω)�

 (45) 

 
To check the stability condition of the system, the 

constant 𝑘𝑘𝑓𝑓𝑠𝑠Ω > 0. 
 

4.5 Stator flux oriented control 
 
In the proposed control, the manifold equation can be 

obtained by: 
 

𝑆𝑆(𝑑𝑑𝑠𝑠𝑠𝑠) = 𝑑𝑑𝑠𝑠𝑠𝑠
𝑟𝑟𝑒𝑒𝑓𝑓 − 𝑑𝑑𝑠𝑠𝑠𝑠

�̇�𝑆(𝑑𝑑𝑠𝑠𝑠𝑠) = �̇�𝑑𝑠𝑠𝑠𝑠
𝑟𝑟𝑒𝑒𝑓𝑓 − �̇�𝑑𝑠𝑠𝑠𝑠

 (46) 

 
Substituting the expression of �̇�𝑑𝑠𝑠𝑠𝑠  equation (10) in equation 

(46), we obtain: 

42



�̇�𝑆(𝑑𝑑𝑠𝑠𝑠𝑠) = �̇�𝑑𝑠𝑠𝑠𝑠
𝑟𝑟𝑒𝑒𝑓𝑓 − �𝑉𝑉𝑠𝑠𝑠𝑠 +

𝑀𝑀
𝑇𝑇𝑠𝑠
𝐼𝐼𝑟𝑟𝑠𝑠 −

1
𝑇𝑇𝑠𝑠
𝑑𝑑𝑠𝑠𝑠𝑠� (47) 

 
To find the expression of the control law equates equation 

(47) by equation (39), we obtain: 
 

�̇�𝑑𝑠𝑠𝑠𝑠
𝑟𝑟𝑒𝑒𝑓𝑓 − �𝑉𝑉𝑠𝑠𝑠𝑠 +

𝑀𝑀
𝑇𝑇𝑠𝑠
𝐼𝐼𝑟𝑟𝑠𝑠 −

1
𝑇𝑇𝑠𝑠
𝑑𝑑𝑠𝑠𝑠𝑠�

= −𝑘𝑘𝑓𝑓𝑠𝑠𝜑𝜑𝑠𝑠𝑠𝑠𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶�𝑠𝑠(𝑑𝑑𝑠𝑠𝑠𝑠)� 
(48) 

 
So: 
 

𝐼𝐼𝑟𝑟𝑠𝑠 =
𝑇𝑇𝑠𝑠
𝑀𝑀
��̇�𝑑𝑠𝑠𝑠𝑠

𝑟𝑟𝑒𝑒𝑓𝑓 − 𝑉𝑉𝑠𝑠𝑠𝑠 +
1
𝑇𝑇𝑠𝑠
𝑑𝑑𝑠𝑠𝑠𝑠�

+
𝑇𝑇𝑠𝑠
𝑀𝑀
𝑘𝑘𝑓𝑓𝑠𝑠𝜑𝜑𝑠𝑠𝑠𝑠𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶�𝑠𝑠(𝑑𝑑𝑠𝑠𝑠𝑠)� 

(49) 

 
The control current 𝐼𝐼𝑟𝑟𝑠𝑠  is defined by: 𝐼𝐼𝑟𝑟𝑠𝑠

𝑟𝑟𝑒𝑒𝑓𝑓 = 𝐼𝐼𝑟𝑟𝑠𝑠
𝑒𝑒𝑠𝑠 + 𝐼𝐼𝑟𝑟𝑠𝑠𝑛𝑛 , with: 

 

⎩
⎨

⎧𝐼𝐼𝑟𝑟𝑠𝑠
𝑒𝑒𝑠𝑠 =

𝑇𝑇𝑠𝑠
𝑀𝑀
��̇�𝑑𝑠𝑠𝑠𝑠

𝑟𝑟𝑒𝑒𝑓𝑓 − 𝑉𝑉𝑠𝑠𝑠𝑠 +
1
𝑇𝑇𝑠𝑠
𝑑𝑑𝑠𝑠𝑠𝑠�

𝐼𝐼𝑟𝑟𝑠𝑠𝑛𝑛 =
𝑇𝑇𝑠𝑠
𝑀𝑀
𝑘𝑘𝑓𝑓𝑠𝑠𝜑𝜑𝑠𝑠𝑠𝑠𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶�𝑠𝑠(𝑑𝑑𝑠𝑠𝑠𝑠)�

 (50) 

 
To check the stability condition of the system, the 

constant 𝑘𝑘𝑓𝑓𝑠𝑠𝜑𝜑𝑠𝑠𝑠𝑠 > 0. 
 

4.6 Rotor direct current control 
 
The expression of the control surface of the current 𝐼𝐼𝑟𝑟𝑠𝑠  is 

given by:  
 

𝑆𝑆(𝐼𝐼𝑟𝑟𝑠𝑠) = 𝐼𝐼𝑟𝑟𝑠𝑠
𝑟𝑟𝑒𝑒𝑓𝑓 − 𝐼𝐼𝑟𝑟𝑠𝑠 (51) 

 
The derivative of the surface is: 
 

�̇�𝑆(𝐼𝐼𝑟𝑟𝑠𝑠) = 𝐼𝐼�̇�𝑟𝑠𝑠
𝑟𝑟𝑒𝑒𝑓𝑓 − 𝐼𝐼�̇�𝑟𝑠𝑠 (52) 

 
Substituting the expression of the current 𝐼𝐼�̇�𝑟𝑠𝑠  equation (10), 

we obtain: 
 
�̇�𝑆(𝐼𝐼𝑟𝑟𝑠𝑠) = 𝐼𝐼�̇�𝑟𝑠𝑠

𝑟𝑟𝑒𝑒𝑓𝑓 − �−𝛿𝛿𝐼𝐼𝑟𝑟𝑠𝑠 + (𝜔𝜔𝑠𝑠 − 𝜔𝜔)𝐼𝐼𝑟𝑟𝑠𝑠 + 𝛼𝛼𝑑𝑑𝑠𝑠𝑠𝑠

−
𝑀𝑀

𝜎𝜎𝐿𝐿𝑠𝑠𝐿𝐿𝑟𝑟
𝑉𝑉𝑠𝑠𝑠𝑠 +

1
𝜎𝜎𝐿𝐿𝑟𝑟

𝑉𝑉𝑟𝑟𝑠𝑠� 
(53) 

 
Equates equation (53) by equation (39), we obtain: 
 

𝐼𝐼�̇�𝑟𝑠𝑠
𝑟𝑟𝑒𝑒𝑓𝑓 − �−𝛿𝛿𝐼𝐼𝑟𝑟𝑠𝑠 + (𝜔𝜔𝑠𝑠 − 𝜔𝜔)𝐼𝐼𝑟𝑟𝑠𝑠 + 𝛼𝛼𝑑𝑑𝑠𝑠𝑠𝑠 −

𝑀𝑀
𝜎𝜎𝐿𝐿𝑠𝑠𝐿𝐿𝑟𝑟

𝑉𝑉𝑠𝑠𝑠𝑠

+
1
𝜎𝜎𝐿𝐿𝑟𝑟

𝑉𝑉𝑟𝑟𝑠𝑠�

= −𝑘𝑘𝑓𝑓𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶�𝑠𝑠(𝐼𝐼𝑟𝑟𝑠𝑠)� 

(54) 

 
So: 
 

𝑉𝑉𝑟𝑟𝑠𝑠 = �𝐼𝐼�̇�𝑟𝑠𝑠
𝑟𝑟𝑒𝑒𝑓𝑓 + 𝛿𝛿𝐼𝐼𝑟𝑟𝑠𝑠 +

𝑀𝑀
𝜎𝜎𝐿𝐿𝑠𝑠𝐿𝐿𝑟𝑟

𝑉𝑉𝑠𝑠𝑠𝑠 − 𝛼𝛼𝑑𝑑𝑠𝑠𝑠𝑠

− (𝜔𝜔𝑠𝑠 − 𝜔𝜔)𝐼𝐼𝑟𝑟𝑠𝑠� 𝜎𝜎𝐿𝐿𝑟𝑟
+ 𝜎𝜎𝐿𝐿𝑟𝑟𝑘𝑘𝑓𝑓𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶�𝑠𝑠(𝐼𝐼𝑟𝑟𝑠𝑠)� 

(55) 

 

The equation (55) can be rewritten by: 𝑉𝑉𝑟𝑟𝑠𝑠
𝑟𝑟𝑒𝑒𝑓𝑓 = 𝑉𝑉𝑟𝑟𝑠𝑠

𝑒𝑒𝑠𝑠 + 𝑉𝑉𝑟𝑟𝑠𝑠𝑛𝑛 , 
with: 

 

�
V𝑟𝑟𝑠𝑠
𝑒𝑒𝑠𝑠 = �𝐼𝐼�̇�𝑟𝑠𝑠

𝑟𝑟𝑒𝑒𝑓𝑓 + 𝛿𝛿𝐼𝐼𝑟𝑟𝑠𝑠 +
𝑀𝑀

𝜎𝜎𝐿𝐿𝑠𝑠𝐿𝐿𝑟𝑟
𝑉𝑉𝑠𝑠𝑠𝑠 − 𝛼𝛼𝑑𝑑𝑠𝑠𝑠𝑠 − (𝜔𝜔𝑠𝑠 − 𝜔𝜔)𝐼𝐼𝑟𝑟𝑠𝑠�𝜎𝜎𝐿𝐿𝑟𝑟

𝑉𝑉𝑟𝑟𝑠𝑠𝑛𝑛 = 𝜎𝜎𝐿𝐿𝑟𝑟𝑘𝑘𝑓𝑓𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶�𝑠𝑠(𝐼𝐼𝑟𝑟𝑠𝑠)�
 (56) 

 
To check the stability condition of the system, the 

constant 𝑘𝑘𝑓𝑓𝑠𝑠𝐼𝐼𝑟𝑟𝑠𝑠 > 0. 
 

4.7 Rotor quadrature current control 
 
The expression of the control surface and the derivative of 

the current 𝐼𝐼𝑟𝑟𝑠𝑠  defined by: 
 

�
𝑆𝑆�𝐼𝐼𝑟𝑟𝑠𝑠� = 𝐼𝐼𝑟𝑟𝑠𝑠

𝑟𝑟𝑒𝑒𝑓𝑓 − 𝐼𝐼𝑟𝑟𝑠𝑠
�̇�𝑆�𝐼𝐼𝑟𝑟𝑠𝑠� = 𝐼𝐼�̇�𝑟𝑠𝑠

𝑟𝑟𝑒𝑒𝑓𝑓 − 𝐼𝐼�̇�𝑟𝑠𝑠
 (57) 

 
We replace the expression of the current 𝐼𝐼�̇�𝑟𝑠𝑠 (equation 10), 

we obtain: 
 
�̇�𝑆�𝐼𝐼𝑟𝑟𝑠𝑠� = 𝐼𝐼�̇�𝑟𝑠𝑠

𝑟𝑟𝑒𝑒𝑓𝑓 − �−(𝜔𝜔𝑠𝑠 − 𝜔𝜔)𝐼𝐼𝑟𝑟𝑠𝑠 − 𝛿𝛿𝐼𝐼𝑟𝑟𝑠𝑠 + 𝛽𝛽𝜔𝜔𝑑𝑑𝑠𝑠𝑠𝑠

−
𝑀𝑀

𝜎𝜎𝐿𝐿𝑠𝑠𝐿𝐿𝑟𝑟
𝑉𝑉𝑠𝑠𝑠𝑠 +

1
𝜎𝜎𝐿𝐿𝑟𝑟

𝑉𝑉𝑟𝑟𝑠𝑠� 
(58) 

 
Equates equation (58) by equation (39), we obtain: 
 

𝐼𝐼�̇�𝑟𝑠𝑠
𝑟𝑟𝑒𝑒𝑓𝑓 − �−(𝜔𝜔𝑠𝑠 − 𝜔𝜔)𝐼𝐼𝑟𝑟𝑠𝑠 − 𝛿𝛿𝐼𝐼𝑟𝑟𝑠𝑠 + 𝛽𝛽𝜔𝜔𝑑𝑑𝑠𝑠𝑠𝑠 −

𝑀𝑀
𝜎𝜎𝐿𝐿𝑠𝑠𝐿𝐿𝑟𝑟

𝑉𝑉𝑠𝑠𝑠𝑠

+
1
𝜎𝜎𝐿𝐿𝑟𝑟

𝑉𝑉𝑟𝑟𝑠𝑠�

= −𝑘𝑘𝑓𝑓𝑠𝑠𝐼𝐼𝑟𝑟𝑟𝑟𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶 �𝑠𝑠�𝐼𝐼𝑟𝑟𝑠𝑠�� 

(59) 

 
So: 
 
𝑉𝑉𝑟𝑟𝑠𝑠 = �𝐼𝐼�̇�𝑟𝑠𝑠

𝑟𝑟𝑒𝑒𝑓𝑓 + (𝜔𝜔𝑠𝑠 − 𝜔𝜔)𝐼𝐼𝑟𝑟𝑠𝑠 + 𝛿𝛿𝐼𝐼𝑟𝑟𝑠𝑠 − 𝛽𝛽𝜔𝜔𝑑𝑑𝑠𝑠𝑠𝑠

+
𝑀𝑀

𝜎𝜎𝐿𝐿𝑠𝑠𝐿𝐿𝑟𝑟
𝑉𝑉𝑠𝑠𝑠𝑠� 𝜎𝜎𝐿𝐿𝑟𝑟

+ 𝜎𝜎𝐿𝐿𝑟𝑟𝑘𝑘𝑓𝑓𝑠𝑠𝐼𝐼𝑟𝑟𝑟𝑟𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶 �𝑠𝑠�𝐼𝐼𝑟𝑟𝑠𝑠�� 

(60) 

 
The equation (60) can be rewritten by: 𝑉𝑉𝑟𝑟𝑠𝑠

𝑟𝑟𝑒𝑒𝑓𝑓 = 𝑉𝑉𝑟𝑟𝑠𝑠
𝑒𝑒𝑠𝑠 + 𝑉𝑉𝑟𝑟𝑠𝑠𝑛𝑛  

With: 
 

�
V𝑟𝑟𝑠𝑠
𝑒𝑒𝑠𝑠 = �𝐼𝐼�̇�𝑟𝑠𝑠

𝑟𝑟𝑒𝑒𝑓𝑓 + (𝜔𝜔𝑠𝑠 − 𝜔𝜔)𝐼𝐼𝑟𝑟𝑠𝑠 + 𝛿𝛿𝐼𝐼𝑟𝑟𝑠𝑠 − 𝛽𝛽𝜔𝜔𝑑𝑑𝑠𝑠𝑠𝑠 +
𝑀𝑀

𝜎𝜎𝐿𝐿𝑠𝑠𝐿𝐿𝑟𝑟
𝑉𝑉𝑠𝑠𝑠𝑠� 𝜎𝜎𝐿𝐿𝑟𝑟

𝑉𝑉𝑟𝑟𝑠𝑠𝑛𝑛 = 𝜎𝜎𝐿𝐿𝑟𝑟𝑘𝑘𝑓𝑓𝑠𝑠𝐼𝐼𝑟𝑟𝑟𝑟𝑇𝑇2𝐹𝐹𝐿𝐿𝐶𝐶 �𝑠𝑠�𝐼𝐼𝑟𝑟𝑠𝑠��
 (61) 

 

 
 

Figure 6. Block diagram of the Type-2 Fuzzy Sliding Mode 
control of the DFIM 
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To check the stability condition of the system, the 
constant 𝑘𝑘𝑓𝑓𝑠𝑠𝐼𝐼𝑟𝑟𝑟𝑟 > 0. 

The structure of type-2 fuzzy sliding mode control of a 
doubly-fed induction machine is shown in the figure 6. It is 
similar to the structure of a Sliding Mode control; the control 
kept the part of the equivalent control and will change the part 
of the switching by a type-2 fuzzy controller. 

 
 

5. SIMULATION RESULTS  
 
The objective of this step is to control the DFIM by the 

hybrid type-2 fuzzy sliding mode control of which the stator 
of the machine is powered directly by the three-phase network 
[220 / 380V, 50Hz] and the rotor is supplied with voltage 
through a PWM inverter. The parameters of the DFIM used in 
this work are given in the appendix. 

The simulation results are grouped together in Figure 7. The 
speed of the machine has a first order response of end value 
157 (rad/s). Between instants 𝑑𝑑 = 0.6𝑠𝑠 and 𝑑𝑑 = 1.6𝑠𝑠 is applied 
a charge of value  𝐶𝐶𝑟𝑟 = 10 𝑁𝑁.𝑚𝑚 . We find that the load 
variation does not influence the speed and flux quantities. The 
principle of vector control is verified by the decoupling 
between flux and torque. 

 

 

 

 

 
 

Figure 7. Simulation results of the DFIM controlled by type-
2 fuzzy sliding mode control  

In the second test, is applied a load of value  𝐶𝐶𝑟𝑟 =
5 𝑁𝑁.𝑚𝑚 between instants 𝑑𝑑 = 0.6𝑠𝑠 and 𝑑𝑑 = 1.6𝑠𝑠 a variation on 
the rotor resistance at (+100%). We do not see that the 
variation of the rotor resistance does not affect the speed and 

flux quantities. The principle of vector control is always 
verified.  

  

 

 

 

 
 

Figure 8. Type-2 fuzzy sliding mode control of the DFIM 
with rotor resistance variation 

 
 

6. PERFORMANCE COMPARISON  
 
In the present study, an integral squared error (ISE), integral 

absolute error (IAE) and integral time-weighted absolute error 
(ITAE) are utilized to judge the performance of the controllers. 
ISE, IAE and ITAE criterion is widely adopted to evaluate the 
dynamic performance of the control system. The index ISE, 
IAE and ITAE is expressed as follows: 

 

ISE = �𝑒𝑒2(𝑑𝑑)𝑑𝑑𝑑𝑑
𝑇𝑇

0

 (62) 

 

IAE = �|𝑒𝑒(𝑑𝑑)|𝑑𝑑𝑑𝑑
𝑇𝑇

0

 (63) 
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ITAE = � 𝑑𝑑|𝑒𝑒(𝑑𝑑)|𝑑𝑑𝑑𝑑
𝑇𝑇

0

 (64) 

 
For quantitative comparison between two methods, ISE, 

IAE and ITAE are used as the criterion. Table.3 shows the ISE, 

IAE and ITAE values of the simulation results using the vector 
control proposed in [31], sliding mode control proposed in [32] 
and the proposed Controller. From the comparison, it can be 
seen that the performance is improved when using the 
proposed controller as compared to the anther methods. 
Actually these performances index are obtained at the end of 
the simulation time (T=2 sec) with a sampling period h=10-4. 

 
Table 2. ISE, IAE and ITAE performance indexes 

 
Controllers 

Index 
Direct field-oriented 

control proposed in [31] 
Sliding mode control proposed in 

[32] 
Proposed 
controller 

ISE Speed 16600 13400 10300 
flux 0.134 0.122 0.089 

IAE Speed 84.514 74.521 50.069 
flux 0.305 0.202 0.056 

ITAE Speed 15.306 11.203 4.207 
flux 0.1532 0.105 0.0156 

It can be concluded that the system performances are better, 
when using the proposed control as compared to the control 
methods proposed in [31, 32]. 

 
 

7. CONCLUSION 
 
This paper presents hybrid type 2 fuzzy sliding mode 

control of the doubly fed induction machine and performance 
evaluations. After presenting a Mathematical modeling of 
DFIM, we applied the orientation of stator flux to have the 
decoupling between the flux and the current for simplified the 
model of DFIM.  

Hybrid type 2 fuzzy sliding mode control use the equivalent 
control by sliding mode and the switching by type 2 fuzzy 
controller. Simulations were investigated with this type 
controller and they showed very interesting performances in 
terms of reference tracking, sensitivity to perturbation and 
robustness under parameter variation. 

In the futures works we propose another controls techniques 
for example the adaptive interval type 2 fuzzy controller of the 
DFIM, fusion of neural networks with fuzzy techniques and 
high-order sliding mode control. 
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APPENDIX 

 
Parameters of the DFIM [5]: 
 

Parameters Value 
Nominal power 𝑃𝑃𝑛𝑛 = 4 𝐾𝐾𝑊𝑊 
Stator voltage 𝐵𝐵𝑠𝑠𝑛𝑛 = 380 𝑉𝑉 
Rotor voltage 𝐵𝐵𝑟𝑟𝑛𝑛 = 220 𝑉𝑉 
Nominal current 𝐼𝐼𝑛𝑛 = 15 8.6 𝐴𝐴⁄  
Nominal mechanical speed Ω𝑛𝑛 = 1440 𝑟𝑟𝑝𝑝𝑚𝑚 
Nominal stator and rotor 
frequencies 𝜔𝜔𝑠𝑠𝑛𝑛 = 50𝐻𝐻𝑧𝑧 

Pole pair number 𝑃𝑃 = 2 
Stator resistance 𝑅𝑅𝑠𝑠 = 1.2 Ω 
Rotor resistance 𝑅𝑅𝑟𝑟 = 1.8 Ω 
Stator self inductance 𝐿𝐿𝑠𝑠 = 0.1554 𝐻𝐻 
Rotor self inductance 𝐿𝐿𝑟𝑟 = 0.1568 𝐻𝐻 
Mutual inductance 𝑀𝑀 = 0.15 𝐻𝐻 
Moment of inertia 𝐽𝐽 = 0.2 𝐾𝐾𝑔𝑔.𝑚𝑚2 
Friction coefficient 𝑓𝑓 = 0.001 𝐼𝐼𝑆𝑆 

 
Nomenclature: 
 
𝒔𝒔, 𝒓𝒓 Stator and rotor subscripts 
𝑑𝑑, 𝑞𝑞 Direct and quadrate Park subscripts 
𝑉𝑉, 𝐼𝐼,𝑑𝑑 Voltage/ Current/ Flux variables 
𝑅𝑅𝑠𝑠,𝑅𝑅𝑟𝑟 Stator, rotor resistance 
𝐿𝐿𝑠𝑠, 𝐿𝐿𝑟𝑟 Stator, rotor inductance 
𝑇𝑇𝑠𝑠,𝑇𝑇𝑟𝑟 Statoric and rotoric time-constant 
𝜃𝜃𝑠𝑠,𝜃𝜃𝑟𝑟 Statoric and rotoric flux position 
𝜎𝜎  Leakage factor 
𝜔𝜔𝑠𝑠 Electrical stator frequency 
𝜔𝜔 Mechanical rotor frequency 
Ω Mechanical speed 
𝐶𝐶𝑒𝑒𝑒𝑒 Electromagnetic torque 
𝐶𝐶𝑟𝑟 External load torque 
PWM Pulse width modulation 
T2FLC Type 2 fuzzy logic controllers 
DFIM doubly fed induction machine 
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