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 The use of classification methods in real-world problems has costs that are usually 

neglected in the early algorithms which cause inefficiencies in practice. One of these costs, 

which is significant in many cases, is the cost of obtaining feature values for each instance, 

named Test-Cost. The Ensemble of classifiers as a common and practical classification 

method, is also considered and used in this perspective. Each classifier needs a number of 

features to classify the sample; if instead of using all classifiers, the best arrange of 

classifiers with the aim of minimizing the needed features is found, an effective solution 

for lowering the test-cost is obtained. In this paper, a method is proposed which uses 

reinforcement learning to construct such a Classifier Ensemble. The proposed method 

learns to find the best sequence of classifiers for each sample to minimize the test-cost. Two 

problems, an easy one and a hard one, are considered for testing the proposed method, in 

both of which yields very good results.  
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1. INTRODUCTION 

 

Classification can be used to solve many real-world 

problems. But in real world and practical use, conditions 

different from the scientific environment are imposed to the 

problem. One of the problems in many practical applications, 

is the limited time and processing available for runtime. The 

importance of runtime cost is such that failure to preserve it 

can lead to devaluate the method or even discard it. So finding 

methods that minimize runtime cost is one of the requirements 

to which should be paid as much attention as possible. 

The cost of classifying an example can be divided into two 

parts: the cost of extraction of sample features, and the cost of 

running the classification. In the majority of types of 

classifiers, the second part is negligible and the first part forms 

a large part of the cost of running time. In the datasets used in 

theoretical experiments the features are extracted before, but 

in most of the data used in operational and industrial 

applications, samples are raw, meaning that extraction of the 

feature values for each sample requires cost. Therefore, the 

greater part of the cost of classifying an instance is the 

extraction of the value of the features, which is also called the 

Test-Cost [1]. 

A discussion of "utility-based data mining" has been put 

forward by Weiss et al. [2] that focuses on the need to 

maximize the utility of the "entire data mining process". For 

classification problems, the data mining process can be 

considered as having three main steps: (1) data acquisition, (2) 

model induction, and (3) the application of the induced model 

to classify new data [3]. Considering the cost associated with 

each of the three main stages of the classification process, the 

utility-based data mining problem has been converted to 

minimize overall cost. The cost-based model is presented in 

Eq. (1): 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝑑𝑎𝑡𝑎−𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 + 𝐶𝑜𝑠𝑡𝑚𝑜𝑑𝑒𝑙−𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛
+ 𝐶𝑜𝑠𝑡𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛−𝑒𝑟𝑟𝑜𝑟𝑠 

(1) 

 

In Eq. (1) all costs are positive. Also, in the third part of the 

equation, the cost of correct classification of samples is zero. 

Minimizing the Eq. (1) leads to "Optimal Utility/Cost 

Classification". 

In most test-cost sensitive problems, the costs associated 

with the training phase are put aside and only the costs 

associated with the running the classification are considered. 

Therefore, the cost of model induction is eliminated from the 

Eq. (1). The cost of data acquisition is limited to the cost of 

extracting the values of sample features, the cost of using the 

model is added, and the Eq. (2) is obtained: 

 
𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝑡𝑒𝑠𝑡(𝑓𝑒𝑎𝑡𝑢𝑟𝑒−𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

+ 𝐶𝑜𝑠𝑡𝑚𝑜𝑑𝑒𝑙−𝑒𝑣𝑎𝑙𝑢𝑑𝑎𝑡𝑖𝑜𝑛
+ 𝐶𝑜𝑠𝑡𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛−𝑒𝑟𝑟𝑜𝑟𝑠 

(2) 

 

The cost of using the model is certain and inevitable, and in 

most cases is negligible in comparison with the test-cost. 

Reducing the misclassification cost is not computational and 

represents the main objective in the classification, and has no 

impact on reducing the required time and processing. The only 

part that seems can be reduced in order to achieve the goal of 

reducing the runtime cost is the test-cost. But in fact, these 

factors are not independent and there is an inherent trade-off 

between accuracy and cost in real-world problems [4]. 

Therefore, methods should try to cause minimum increase in 

misclassification error while reducing the runtime cost. 

There is no single learning algorithm that always lead to the 

most accurate learner in all domains. The idea of the ensemble 

of classifiers states that there may be another learner who 

works more accurate on instances on which one learner has 
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problem, so more accuracy can be obtained by the proper 

combination of several base learners [5]. Increasing the 

number of classifiers may be in contradiction to the main goal 

of minimizing the runtime cost, but if the cost of running a 

classifier be remarkably lower than the cost of extracting 

features, then discarding some features in exchange for the use 

of multiple classifiers would be affordable. 

Two properties of ensemble methods can be used to make 

suitable test-cost sensitive classifiers: the use of a number of 

classifiers instead of all of them, and the use of part of the 

features by each classifier. Together, these two properties 

provide a very favorable environment for converting an 

ensemble into a test-cost sensitive classifier. 

The remainder of this paper is organized as follows. Section 

2 reviews related works in the domain, Section 3 presents the 

proposed method and explains its structure, in Section 4 the 

proposed method is evaluated on two problems and the results 

are discussed, and finally Section 5 concludes and sums up the 

contribution. 

 

 

2. RELATED WORK 
 

If the order of selecting features/classifiers for all samples 

is static, then we call the method static. Obviously, in most 

cases, such methods cannot achieve the optimal sort of 

features/classifiers for all instances, as it is possible that 

different order of features/classifiers gets the lowest cost 

answer for different samples. A known method for the 

sequential evaluation of the features is the "Cascaded Boosted 

Classifier" method by Viola & Jones [6], which is able to 

complete the classification of an instance before using all the 

features, but it does not consider the cost of features. Bourdev 

& Brandt [7] have presented another version with a soft 

threshold. Chen et al. in "Cost-Sensitive Cascade" [8] to 

simultaneously minimize both the misclassification error and 

the cost of features, optimize the ordering of steps and 

thresholds. Xu et al. [9], and Grubb & Bagnell [10] separately 

presented a method branching from "Gradient Boosting" to 

learn cost-sensitive classifiers. These methods have a strong 

dependency to the "Stage-wise Regression Algorithm". 

Andrade & Okajima [11] concentrate on covariates in Bayes 

procedure and assumes that acquiring covariates incur cost, so 

try to balance it with the risk of misclassification. They present 

a stage-wise method which checks whether acquiring more 

covariates reduces the total cost of classification in expectation, 

if yes continues otherwise stop. Their weakness is that all the 

process is before classification and the effect of the classifier 

itself is neglected. 

In static methods, examples of which are mentioned above, 

a steady sequence of classifiers/features is used for all samples. 

The only difference for different samples is the possibility of 

finishing the classification in different stages of this sequence. 

Generally, it is assumed that the features/classifiers used at the 

beginning of this sequence are less costly, and 

classifiers/features at its end are more costly. Obviously, in 

many cases, the steady order for using classifiers is not 

appropriate. To clarify the subject, consider hypothetical 

sample that is well-classified using one of the costly 

features/classifiers at the end of the sequence, but preceding 

features/classifiers are not suitable to classify it appropriately. 

If the classification stops before reaching that feature/classifier, 

it does not produce a proper result; and if the sequence of 

features/classifiers continues to reach that, then the cost of 

previous features/classifiers is imposed on the process. 

Therefore, static methods, neither in order to minimize 

misclassification errors, nor to minimize the cost of extracting 

features, do not have the capability to approach the optimal 

solution in many cases. 

Feature-based methods base their work on the arrangement 

of the use of features. First, they try to get the best order for 

using the features, then they perform the classification at each 

step using existing features. Gao and Koller [12] provided a 

method for the "Active Classification" having the features that 

have been extracted so far, "Myopically" selects the next 

feature based on "Expected Information Gain". Their method 

is based on "Local Weighting Regression" and has a high 

runtime computational cost. Ji and Carin [13] also formulate 

the costly feature selection problem as a "Hidden Markov 

Model" ("HMM"). But again the actions are selected 

myopically and at the expense of high runtime computational 

cost. Dulac-Arnold et al. [14] have proposed another solution 

based on the "Markov Decision Process" (MDP) whose action 

space includes all the features and labels. Subsequently, they 

generalized their method to "Region-based Processing" [15]. 

Janisch et al. [16] revisit the Dulac-Arnold's approach by 

replacing the linear approximation with neural networks and 

demonstrate its comparability to the state-of-the-art algorithms. 

Again in the study [17] they have made corrections in problem 

formulation and claimed that their method can work with both 

average and hard budget and is flexible and robust. He et al. 

[18] have also formulated the problem as an MDP which 

actions are features along with a classification action, but have 

solved it by "Imitation Learning of a Greedy Policy". Shim et 

al. [19] also formulate the selection of features as an MDP and 

also uses neural network as function approximation. They 

shared first layers on MLP for both classifier and Q-function 

and considered it as feature-level set encoder. Peng et al. [20] 

has a similar approach to the above, but adds two techniques 

to its RL to improve the performance of RL agent in the search 

space. Trapzenkov et al. [21] arranges features in order of cost, 

at each stage, it goes through another feature or classifies and 

the process ends. The problem is formulated and solved as an 

"Empirical Risk Problem" (ERM). Contardo et al. [22] 

propose a sequential model based on recurrent neural network 

which at each step chooses one feature, and the learned 

representation is used both for choosing the next features and 

also computing the final prediction. Kachuee et al. [23] based 

on Neural Networks, present a method to incrementally select 

features based on available context of previous features values. 

They use sensitivity analysis to measure the informativeness 

of next feature, and denoising autoencoders to handle features 

that are not yet acquired. Zhan et al. [24] has focused on search 

engine ranking problem and assumes that there are plenty 

factors which could be given to the classifier, but each factor 

has its cost. They consider fixed sequence for factors, at each 

step the current factor could be used or skipped, then use a 

reinforcement learning model to learn the optimal sequence 

for each sample. 

Prioritizing the less costly features for use in the 

classification may seem to reduce the total cost of extracting 

features, but since the classifiers determine the final result, one 

cannot be sure that selecting features and then classifying can 

achieve higher performance. To clarify the subject, consider 

the hypothetical problem for which there is a classifier that 

classifies the samples well with one of the costliest features; 

however, feature-based methods are unlikely to select that 

costly feature, because they first select features and then 
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perform the classification. 

Classifier-based methods, while considering the cost of 

extracting features, also involve classifiers and measure their 

performance during the search to approach the optimal 

solution. In fact, the construction units which are combined 

and organized together to produce the final answer are the 

classifiers. Benbouzid et al. [25] creates an MDP, which 

generalizes "Sequential Boosted Classifier" by adding a 

"Skip" action. This method explicitly limits the scope of 

learnable policies. Karayev et al. [26] provide a reinforcement 

learning method for selecting the "Object Detectors". Their 

work relies on costly runtime deduction in a graphical model 

for combining observations. Although the goal of this work is 

the "Anytime" performance, which is the best possible 

response in a budgeted time and processing, but their costly 

deduction process is very high for using in the runtime of 

typical classification problem. The label tree [27] routes the 

instance in a tree of classifiers. Their structure is determined 

by the "Confusion Matrix" or learned alongside the weights. 

Xu et al. [28] learns a cost-sensitive binary tree composed of 

weak learners by a cyclic optimization method similar to the 

research [8]. A less relevant approach is in the study [29], 

which applies simple interpolation in structured models for a 

remarkably increase in human diagnosis. Another interesting 

method is the "Theoretical Analysis of Near-Optimal Policies" 

to detect objects [30]. Maliah and Shani [31] consider all 

subsets of features, and for each subset learns a separate 

decision tree. At each step, this method uses that decision tree 

which is trained on that subset of features which consists of all 

acquired features. Starting with no features acquired for the 

input sample, an MDP is used to select the next feature to 

acquire, indeed the next decision tree, based on the result of 

the current decision tree. 

It is classifiers that should eventually be used for 

classification, so it's best to test the classifiers itself to find the 

suitable classifiers and the proper structure for their 

combination. If features are selected first, then the second step 

is to search for appropriate classifiers that can perform the 

classification process well using these features which is not a 

trivial task. So it is more practical to use the former method. 

 

 

3. PROPOSED METHOD 
 

The process of classifying a sample in the proposed method 

can be summarized as follows: By entering each sample, a 

classifier is selected and it classifies the sample. Based on the 

result, another classifier is selected and it also classifies the 

sample. Now according to the results of the two previous 

classifiers, the third classifier is selected and it also classifies 

the sample. At each step, according to the result of the previous 

classifiers, a new classifier is selected or the process ends and 

a final label is determined for the sample. 

As is clear from the above scenario, these steps can be 

expressed as a Markov decision process. The output of the 

classifier is kept in a vector that specifies the state. At the 

beginning of the sample entry, the output of all classifiers is 

unknown ( [− −  −] ). Suppose that the third classifier is 

selected and outputs its label, the vector of classifiers output 

becomes as ([− − 𝑜3]). Then the first classifier is selected 

and the vector of classifiers output becomes ([𝑜1 − 𝑜3]). Now 

suppose the final label for the sample is determined and the 

classification of sample by the ensemble finishes. This process 

from the start state and performing actions to reach the final 

state (which is referred to as a period) is depicted in Figure 1 

as arrows that specify a path from start to end state. 

Figure 1 depicts the implemented MDP symbolically. The 

results of the classifiers form the state vector. By assigning the 

final label to the input sample, the system enters the end state. 

Two types of actions are defined: Select a classifier and select 

the final label for the input sample. A select label action brings 

the system to the final state. The reward of each classifier 

select action is determined by the cost of using that classifier, 

which includes the test-cost. The reward for the label select 

actions is also determined by the cost of the misclassification. 

It should be noted that, as shown in the upper left corner of the 

Figure 1, in order to abbreviate the shape each circle represents 

several states, because instead of the output label of each 

classifier, it is only specified that each classifier has generated 

its label or not. 

 

 
 

Figure 1. Classifying a sample from start state to final state 

(an episode) in the proposed method 

 

The problem is formulated as a Markov decision process 

(MDP). A MDP, which is represented by𝑀 , is a 4-tuple 

(𝑆, 𝐴, 𝑇, 𝑅) in which 𝑆 is the state space, 𝐴 is the action space, 

𝑇(𝑎, 𝑠, 𝑠′) is the transition function that shows the probability 

of going to 𝑠′ by performing 𝑎 in 𝑠, and 𝑅(𝑠, 𝑎) is the reward 

function that shows expected one-step reward by performing 

action 𝑎  in state 𝑠 . The goal of Reinforcement Learning 

algorithms is to find the optimal policy 𝜋∗(𝑠) that maps the 

states to acitons so that the "Discounted Cumulative Reward" 

is maximized. 

In our problem, we have the following definitions: 

• State: Vector of outputs of classifiers (the result of 

those classifiers that are not used yet is assumed to 

be unknown) 

• Action: Actions are divided into two categories: 

Classifier select actions and label select actions. 

Classifier select: Selecting one of the classifiers 

that are not currently used. Label select: Selecting 

one of the final labels for the input sample. 

• Reward: In classifier select actions: The cost of 

extracting the features which is required by the 

classifier and are not used before and the cost of 

the classification execution. In Label select actions: 
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Misclassification cost. 

• Transition function: In classifier select actions: 

Placing the output of the selected classifier in the 

state vector specifies the new state. In label select 

actions: Transition to the final state. 

As stated in the formal definition, the input sample is not 

directly inserted into the state. if some or all of the features of 

the input sample be included in the state, the MDP will start 

from the state corresponding the values of those features. This 

state definition can be very useful for a faster selection of 

appropriate classifiers for the sample. But instead, it causes a 

massive increase in the size of the state space. The space of 

features itself is so large that in most cases that it cannot be 

learned by a simple learner. Now, if the result of the outputs 

of the classifiers is also placed next to it, the state space 

expands exponentially, which means that it will be 

overwhelming more than before. 

Although the proposed method does not insert the input 

sample features directly into the state, but it can be seen that 

the sample indirectly affects the selection of the classifiers. To 

prove this, we may consider a simple scenario as follows: 

Assume that using the i-th feature of the input sample in the 

first steps is very effective in correct classification of it. Also, 

assume that there is a classifier that only uses this feature. So 

using this classifier at the beginning of the classification 

process can have the same effect as entering the i-th feature in 

the state definition. The claim of the proposed method is that 

it will use any classifier in its appropriate place, so the intended 

classifier will be placed in the first steps, and the same effect 

as using that feature will be created approximately. Therefore, 

if appropriate and sufficient set of classifiers are used, it can 

be expected that the advantages of using the features in the 

state will be relatively achieved. 

 

 

4. EVALUATION AND DISCUSSION 
 

The proposed method has been evaluated in two synthetic 

problems, one simple and one complex, to verify the efficiency 

of the proposed method. In both problems we will change the 

cost of features and see how the method reacts and adapts itself 

to minimize the cost. 

 

4.1 Two dimensional lines 

 

A two-dimensional space is considered, in which each 

sample has two features of "x" and "y". The problem is binary 

classification problem, so each sample has a positive or 

negative label. Each classifier is a line that divides the space 

into two parts. To test the proposed method, three classifiers 

(lines) are considered. Two of classifiers use only one feature, 

and the third one requires both features for classification. The 

three lines divide the space into seven areas, in four of which 

train samples exist. Areas are selected so that two areas can be 

separated from the rest of the space by a single line, but the 

other two areas at least need two lines to be separated from 

other areas (Figure 2). 

The number of samples in the areas "A" and "B" are the 

same with each other and twice the number of samples in the 

areas "C" and "D", the number of samples of the areas "C" and 

"D" are also equal to each other. The Figure 3 shows the 

minimum classifiers needed to separate each area. 

However, since during the classification, the algorithm has 

no information about the regions and should follow a sequence 

of classifiers to find the class of the input sample, the optimal 

answer to the problem using the proposed method is one of the 

three answers of Figure 4. 

 

 
 

Figure 2. The two dimensional problem and samples 

distribution in areas 

 

 
 

Figure 3. Minimum classifiers needed to separate each area 

in the two dimensional lines problem 

 

 
 

Figure 4. Optimal answers to the problem using the proposed 

method 

 

For clarification consider the "Answer 1". By entering a 

sample, the method uses "classifier 2". If it classifies the 

sample into its top side, it is obvious that the sample belongs 

to area "A" and the method gives a positive output label. 

Otherwise the "classifier 1" is used. If "classifier 1" classify 

the sample into its left side, the sample belongs to area "B" and 

the method gives a negative output label. Otherwise the 

"classifier 3" is used and its output specifies that the sample is 

located in which area "C" or "D", so the method gives the 

corresponding output label. 

To prove the effectiveness of the proposed method, two 

separate scenarios are considered for implementation. In the 

first scenario, the test-cost is considered zero and in fact the 

problem is assumed without the test-cost. In the latter scenario, 

different cost values for each feature are considered to 

determine whether the proposed method tends to use less 

costly features. 
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Table 1. Results of implementation of proposed method for 

without test-cost scenario 

 
Answer Num. Probability 

1 0.48425 

2 0.48225 

3 0.335 

 

Table 2. Results of implementation of proposed method for 

with test-cost scenario 

 

𝑪𝒐𝒔𝒕(𝒙) = 𝟑 × 𝑪𝒐𝒔𝒕(𝒚) 𝑪𝒐𝒔𝒕(𝒚) = 𝟑 × 𝑪𝒐𝒔𝒕(𝒙) 
Answer Num. Probability Answer Num. Probability 

1 0.003 1 0.995 

2 0.997 2 0.005 

3 0 3 0 

 

In the scenario without test-cost, no feature cost is 

considered, that is, it is assumed that the use of the features has 

no cost. Only the use of each classifier has a fixed cost. Since 

responses 1 and 2 in Figure 4 use the least number of classifiers 

for the samples, it is expected that they be the most probable 

answers. The results of this scenario, as shown in the Table 1, 

confirm this; In the scenario with the test-cost, the use of each 

of the two features requires cost. This scenario is divided into 

two sub-scenarios: 1. The cost of the property "x" is three 

times the cost of the property "y". 2. The cost of the property 

"y" is three times the cost of the property "x". In the first sub-

scenario, where the "x" is more costly, the results are expected 

to tend to the answer 1 of Figure 4, and in the second sub-

scenario, where "y" is more costly, the results are expected to 

tend to the answer 2 of Figure 4. The results of the 

implementation shown in the Table 2 confirm this. 

 

4.2 3D Gaussian distributions 

 

Consider a three class problem in a three-dimensional space. 

Samples of each class are drawn from a Gaussian distribution 

𝑁(𝜇, Σ)  with diagonal covariance matrix, i.e., ∀𝑖, 𝑗 ∈
{1,2,3}, 𝑖 ≠ 𝑗 ⟹ 𝜎𝑖,𝑗 = 0 . For a better view, the 

hyperellipsoid of loci of points with a constant density has 

been drawn for each Gaussian distribution in Figure 5. 

 
 

Figure 5. The two dimensional problem and samples 

distribution in areas 

 

As stated in the research [32] the minimum-error-rate 

classification can be achieved by use of the discriminant 

functions. The discriminant function of normal distributions 

𝑁(𝜇𝑖, Σ𝑖) is presented in Eq. (3). 

 

𝑔𝑖(𝑥) = −
1

2
(𝑥 − 𝜇𝑖)

𝑡Σ𝑖
−1(𝑥 − 𝜇𝑖)

−
𝑑

2
ln 2𝜋 −

1

2
ln|Σ𝑖| + ln 𝑃(𝜔𝑖) 

(3) 

 

where, ln denotes natural logarithm, 𝑑  denotes number of 

dimensions and 𝑃(𝜔𝑖)  denotes prior probability of class 𝑖 . 
Since the covariance matrices are different for each 

distribution, the only term can be dropped from Eq. (3) is the 

(
𝑑

2
) ln 2𝜋 . So the discriminant functions have the quadratic 

form of Eq. (4). The decision surfaces of the discriminant 

functions of each pair of our Gaussian distributions, which has 

some form of hyperquadrics, are shown in Figure 6. 

 
𝑔𝑖(𝑥) = 𝑥

𝑡𝑊𝑖𝑥 + 𝑤𝑖
𝑡𝑥 + 𝜔𝑖0 (4) 

 

 
(a) Decision surfaces of the discriminant functions of Guassian distribution pairs 

 
Error Error Error 

42 29 43 

(b) Misclassification error on its pair distributions 

 

Figure 6. Three discriminant function classifiers 
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(a) Decision surfaces of linear classifiers 

 
Error Error Error 

113 111 125 

(b) Misclassification error on its pair distributions 

 

Figure 7. Three linear classifiers which use only one feature for classification 

 

Although above mentioned discriminant functions may 

yield the minimum error in classification, but also each one 

uses all the features of the input sample. So using them in our 

ensemble without adding any other classifier, will force the 

system to use all features of the sample. To give our ensemble 

the opportunity to use some less feature consuming classifiers, 

three simple linear classifiers are added to system. Each of 

these classifiers is a hyperplane perpendicular to one of the 

axes, so only uses one attribute of sample to classify it. Figure 

7 shows these classifiers. 

To evaluate the ability of the proposed method to decrease 

the test-cost, two ensembles are compared to each other. In the 

first ensemble all six classifiers, i.e. three Gaussian 

discriminant functions and three hyperplanes are offered 

(hereafter called as "6-class ensemble"). So we expect the 

algorithm to suitably use these classifiers to control the test-

cost. But in the second ensemble we only offered three 

Gaussian discriminant functions to the ensemble (hereafter 

called as "3-class ensemble"). So the second ensemble is used 

to see the results without the ability to use less attributes of the 

input samples. Both ensembles are tested with a range of test-

cost, from low to high test-cost to observe the reaction of the 

proposed method and evaluate its performance in controlling 

the features cost. 

 
𝑄𝑛𝑒𝑤(𝑠𝑡 , 𝑎𝑡) ⟵ (1 − 𝛼). 𝑄(𝑠𝑡, 𝑎𝑡)⏟    

𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒

+ 𝛼. ( 𝑟𝑡⏟
𝑟𝑒𝑤𝑎𝑟𝑑

+ 𝛾⏟
𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟

. max
𝑎
𝑄(𝑠𝑡+1, 𝑎)⏟          

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

)⏞                                
𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

 
(5) 

 

For training of both ensembles, Q-learning with the same 

parameters is used. The value iteration update formula of Q-

learning is shown in Eq. (5). Training is divided into 5000 

epoch stages. The Q-learning parameters are set as follows: At 

the beginning of each stage, the learning rate (𝛼) is set to 0.05 

and decays at each epoch to become 0 at the end of stage. At 

the beginning of the next stage, again the learning rate will be 

set to 0.05 and so on. An 𝜀-greedy policy is used in training 

and the 𝜀 has the same cycle as learning rate, i.e., initialize to 

0.2 at the beginning of each stage, and decay to reach 0 at the 

end of stage. The discount factor (𝛾 ) is set to 0.9 and is 

constant all the time. At the end of each stage (5000 epoch) the 

learner is tested and the feature costs are increased, i.e., after 

each stage the learning is stopped, the learner is tested on a test 

set, then the feature costs are increased and then the learning 

is started again and continued with the new costs. Figure 8 

shows the diagrams of test-cost and misclassification error in 

terms of test-cost increase, for both ensembles on the test set. 

It is apparent from Figure 8(a) that for the 3-class ensemble, 

the test-cost increases linearly with increase in features cost. 

Obviously its use of all features is due to its bad classifiers, all 

of which use all the features so it has no choice to use less 

features. But the 6-class ensemble has the opportunity to select 

those of its classifiers which use less features. Therefore, at the 

beginning where the features cost is low, the method prefers 

to use discriminant classifiers because they yield better 

classification results, but with increase in features cost, the 

method tends to sacrifice accuracy in exchange of features cost. 

This shift to use the hyperplane classifiers is first appeared 

when the features cost is 4. The increase in misclassification 

error in the corresponding point in Figure 8(b) confirms this 

shift. The features cost of 7 is another point in which the 

method decides to increase misclassification error in favor of 

decrease in features cost. 

In fact, there is a trade-off between misclassification error 

and feature cost which means that to reduce the features cost 

the method has no choice except to increase the 

misclassification error. This is an issue imposed by the 

definition of the current problem and is not a general property 

of the proposed method. Two set of classifiers are available in 

this problem, one set has high accuracy but use all features, 

and another set has less accuracy but use less features. 

Therefore, the ensemble has no other choice but to select and 

should accept decrease in accuracy to decrease the feature cost. 

But suppose that there was plenty of classifiers from which the 

ensemble was free to use, in such situation the ensemble may 

find set of classifiers which uses less features, but does not 

increases the misclassification error. In fact, the proposed 

method is seen as a classifier selector which aims to find the 

best arrange of classifiers to minimize the features cost and 

maximize the accuracy simultaneously.
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(a) Total cost of extracted features by each ensemble on test 

set 

 
(b) Total misclassification error of each ensemble on test set 

 

Figure 8. Results of running the proposed method on 3d 

gaussian distributions problem 

 

 

5. CONCLUSIONS 
 

In this paper, a method for test-cost sensitive classification 

is proposed. The basis of the proposed method is to organize 

classifiers using reinforcement learning so that the best 

arrange of classifiers with the aim of minimizing test-cost is 

found for each sample. Although the idea behind this method 

is not so complex, but it is very useful and helpful to deal with 

the hard problem of run-time cost. The results of the proposed 

method on the two problems show that the proposed method 

behaves as expected and finds the least cost arrange of 

classifiers as feature cost increases. 

The contribution of the proposed method in the Test-Cost 

sensitive classification domain is summarized as follows: 1. 

Instead of looking at the features themselves, it uses the 

classifiers and allows the selection of them to determine the 

features to use. This is more practical than selecting the 

features first, because after that the right classifier should be 

found that can do the classification well with the selected 

features. 2. Problem formulation as MDP, so that the features 

themselves are not included in state, which results a massive 

decrease in state space. Instead the method relies on the result 

of the used classifiers to find the next suitable classifiers to use. 

The ability of the proposed method to find the best set 

between classifiers, reaches it maximum performance when a 

large number of classifiers is provided for it. Therefore, the 

method can choose suitable classifiers and even increase the 

number of classifiers needed to classify samples with the aim 

of using less features. But this increase in number of classifiers 

has another effect, the known problem of high-dimensional 

state space in RL methods. Popular solutions such as using 

Neural Networks may be used to solve this problem, but a 

hopeful future work is to find problem-specific solutions to 

address it. 
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