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 Meta heuristic algorithms are very important methods, they used mainly in solving 

combinatorial optimization problems. They are stochastic in manner and simulate the 

behavior of any population of particles. Meta heuristics algorithms try to find optimal or 

near to optimal solution when solving complex optimization problem. In this paper two 

modified emperor penguins colony optimization algorithms MEPC1 and MEPC2 were 

developed. Original Emperor Penguins Colony (EPC) algorithm simulates the behavior of 

emperor of penguins, two modifications are done to the original EPC, Archimedes and 

hyperbolic spiral like movement are used instead of logarithmic spiral like movement. The 

two modified algorithms are compared with the original algorithm through ten test 

functions; the results show that the modified algorithms are achieved better than the original 

one. 
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1. INTRODUCTION 

 

Optimization is the process of finding better or optimal 

solution for any problem, optimization find the maximum 

value in case of maximization problem and minimum value in 

case of minimization problem. inputs of any optimization 

problem are sets of variables represent decision variables, 

constraints represent the restrictions should be considered in 

solving the problem and finally the target or the objective 

function being optimize whether maximized or minimized [1].  

Meta heuristic is defined in computer science and 

mathematical optimization as high level strategies designed 

mainly to solve optimization problem, find effective and 

efficient solution instead of finding approximate solution, 

methods are approximate and often uncertain (random), it try 

to find optimal or near to optimal solution to the optimization 

problem through set of procedures. Metaheuristics solve faster 

complex and combinatorial optimization problem [2]. 

Metaheuristics can be classified into four categories 

according to the behavior the algorithm simulate, physical 

based, swarm based, evolutionary based and human based. In 

physical-based methods, search agents move across the search 

space according to the laws of physics such as electromagnetic 

force, displacement, inertia force, gravity, and so on. 

Simulating Annealing (SA) [3], Gravity Search Algorithm 

(GSA) [4], Big Bang Algorithm (BBA) [5], and Charged 

System Search (CSS) [6], are most commonly examples of 

physical based optimization algorithm. In evolutionary-based 

methods, biological evolution such as reproduction, 

recombination, selection, and mutation are inspired. 

Evolutionary based like Genetic Algorithm (GA) [7], 

Differential Evolutionary (DE) [8], and Imperialist 

Competitive Algorithm (ICA) [9]. Swarm-based methods are 

based on simulate the behavior of group of animal such as 

birds, insects, fishes and others like Particle Swarm 

Optimization (PSO) [10], Ant Colony (AC) [11], Bat Swarm 

(BS) [12], Cuckoo Search (CS) [13], and Emperor Penguins 

Colony (EPC) [2]. and human based it is unique nature 

inspired because it simulates nature phenomena commonly 

associated with human like Harmony Search (HC) [14], and 

Firework Algorithm (FA) [15]. 

The Emperor Penguins Colony (EPC) is one of the most 

recent swarm-based optimization algorithms. It provides 

Quick convergence; it can start the optimization process using 

small population size; and EPC has achieved remarkable 

performance in solving complex problems using one type of 

spiral-like movements, namely, the logarithmic spiral-like 

movement. Spiral-like movements may also be performed 

using other techniques, for example: Archimedes, parabolic 

and hyperbolic. Due to the noticeable performance of EPC in 

solving complex problems, this work is motivated to examine 

the efficiency of EPC in solving complex problems under 

different types of spiral-like movements, namely, the 

Archimedes and hyperbolic movements. Hence, this work 

develops two modified algorithms, the first modified Emperor 

Penguins Colony (MEPC1) utilizes Archimedes spiral like 

movement, and the second modified Emperor Penguins 

Colony (MEPC2) utilizes hyperbolic spiral-like movement. 

These two modified algorithms outperform, in most instances, 

the original EPC utilizing logarithmic spiral-like movement.  

The rest of the paper is organized as follows, Section 2 

provides the literature review about the swarm based methods, 

Section 3 describes the original Emperor Penguins Colony 

(EPC) algorithm, Section 4, 5 describes the two modified 

algorithms and section 6 includes experimental results and 

discussion and Section 7 represents conclusions and further 

work.  

 

 

2. LITERATURE REVIEW 

 
During the last decades several optimization algorithms 
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have been developed, many of which are classified as swarm 

optimization algorithms. EPC is classified as a swarm-based 

optimization algorithm. Therefore, this section summarizes a 

number of the swarm-based optimization algorithms that are 

widely and usefully utilized to solve many optimization 

problems. 

Ant Colony Optimization (ACO); developed Marco Dorigo 

in 1992; was Inspired by the foraging behavior of ants, ACO 

achieved high performance and robustness in solving 

combinatorial optimization problems [11]. Particle Swarm 

Optimization (PSO) algorithm was originally introduced by 

Kennedy and Eberhart in 1995. The algorithm was inspired by 

mimicking the social interaction and communication within a 

flock of birds or school of fishes, it can be applied in many 

applications like engineering and scientific researches and 

don't overlapping and mutation calculation [10]. Artificial Bee 

Colony (ABC) was proposed by Karaboga in 2005; it is 

inspired by the foraging behavior of bees, it can be 

successfully applied for large scale optimization problem [16]. 

Cuckoo Search (CS) algorithm was proposed by Yang and 

Deb in 2009. The algorithm imitates the behavior of cuckoo 

birds to explore the solution space for an optimum or near 

optimum solution; it is efficient in solving discrete 

optimization problem [13]. Bat Algorithm (BA) is proposed 

by Xin-She Yang in 2010, it is simple and flexible 

optimization algorithm [12].  

Firefly Algorithm (FA) developed by Kwiecien and 

Filipowicz in 2010, is a useful and powerful algorithm for 

solving discrete and nonlinear optimization problems [17]. 

Lion Optimization (LO) population based optimization model 

developed by Rajakumar in 2012, it is simulate the behavior 

of lions in hunting the animals, it is succeeded to obtain 

optimal or near to optimal solution [18]. Chicken Swarm 

Optimization (CSO) algorithm developed by Liu et al. in 2014, 

simulates the behavior of chickens, it can achieve good 

optimizing results in term of accuracy and robustness [19]. 

Social Spider Algorithm (SSA) developed by James et al. in 

2015, is powerful in solving continuous optimization problem 

and easy to implement [20]. Spider Monkey (SM) developed 

by Bansal et al. 2014, inspired by the intelligent behavior of 

spider monkeys when searching for food sources, it is proved 

its capability of solving real world complex problems that 

cannot solved by the classical techniques [21]. African buffalo 

optimization (ABO) developed by Odili et al. in 2014, was 

inspired by the practice of African buffalos in the vast African 

forests, through set of simple steps ABO can solve complex 

optimization problems [22]. Grasshopper optimization 

Algorithm (GOA) was developed by Saremi et al. in 2017, the 

algorithm simulates the behavior of grasshoppers' swarms in 

nature for solving complex optimization problem [23].  

Laying chicken algorithm (LCA) is developed by Hosseini 

in 2017, is used to solve different types of the problems 

whether linear or nonlinear optimization problems [24]. Owl 

search algorithm (OSA) is a population based optimization 

algorithm, developed by Hosseini in 2018. It is based on the 

hunting mechanism of owls [25]. Emperor Penguin Colony 

(EPC) developed by Harifi et al. in 2019, simulates the 

behavior of penguins in their colonies when moving from low 

to high temperatures in spiral like movements, it is powrful in 

solving complex optimaztion problem [2]. 

 

 

 

3. ORIGINAL EMPEROR PENGUINS COLONY (EPC) 

ALGORITHM 

 
A new Meta heuristics algorithm named The Emperor 

Penguin Colony (EPC) was proposed by Harifi et al. in 2019. 

The algorithm inspired by the behavior of emperor penguins 

in colonies when they move from a cold domain to a warmer 

one following a logarithmic spiral like movement, [2]. This 

algorithm is controlled by the body heat radiation of the 

penguins and their spiral-like movement in their colony. The 

algorithm tries to find optimal or near to optimal solution. 

In the EPC, the temperature around the huddle is calculated, 

the algorithm is vector based equations, when the body 

temperature is calculated and body heat radiation of each 

penguin and then due to distance and attractiveness each 

penguin performs the spiral-like movement. 

EPC starts with a set of penguins representing the 

population size. These penguins are distributed in nature with 

calculated position and cost, penguins are continually moving 

in the direction of low objective value penguins, these 

penguins with high intensity. The objective function value is 

calculated using heat intensity and the distance. Attraction is 

done, a new solution is evaluated and the heat intensity is 

updated. All solutions are sorted and the best is selected. 

Damping ratio for heat radiation, movement, and heat 

absorption is applied. Figure 1 describes pseudo code of the 

EPC algorithm.  

This algorithm is performed according to the following 

rules [2]: 

1- All penguins in the initial population have heat radiation 

and attract to each other due to absorption coefficient. 

2- The body surface area of all penguins is considered equal 

to each other. 

3- Penguin absorbs the full heat radiation and the effect of 

the earth’s surface and the atmosphere are not regarded. 

4- The heat radiation of penguins is considered linear.  

5- The attraction of penguin is done according to the amount 

of heat in the distance between two penguins. 

6- The penguin spiral movement during the absorption 

process is not monotonous and has a deviation with uniform 

distribution. 

 

 
 

Figure 1. pseudo code of the EPC algorithm, [2] 
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The heat radiation of each penguin is calculated using Eq. 

(1), 

 

𝑄𝑝𝑒𝑛𝑔𝑢𝑖𝑛 = 𝐴Ɛ σ 𝑇𝑠
4 (1) 

 

where, Qpenguin is heat transfer per unit of time, A is total 

surface area of the penguin which equal to 0.56 m2. Ɛ is 

emissivity of bird plumage which is considered 0.98, σ is the 

Stefan–Boltzmann constant (5.6703×10−8 W/m2K4) and Ts is 

the absolute temperature in Kelvin (K) which is considered 

35℃ equal to 308.15 K [2]. 

The attractiveness Q is calculated using Eq. (2)   

 

𝑄 = 𝐴Ɛ σ 𝑇𝑠
4 𝑒−μx (2) 

 

where, μ is attenuation coefficient and x is the distance 

between two linear sources.  

The calculation of the coordinated spiral movement and the 

new position is done using logarithmic spiral movement in the 

original EPC [2]. The following sections present the 2 

modifications proposed by this work, namely Archimedes and 

hyperbolic spiral like movement for calculating the 

coordinated spiral movement and new positions of penguins, 

equations 3 till equation 10 provide full explanation about the 

calculation of coordinated spiral movement and the new 

position.  

The EPC algorithm has set of advantages , it is using  spiral 

like movement to optimize temperature without need to 

determine the boundary of the huddle; Quick convergence; it 

can start the optimization process using small population size; 

Not limited to monotonous spiral path; and it provides 

acceptable performance to solve high-dimensional problems. 

 

 

4. FIRST MODIFIED EMPEROR PENGUINS COLONY 

(MEPC1) ALGORITHM 

 

The penguins start spiral-like huddle in which the clockwise 

movement is done around a constant center as shown in Figure 

2. In this case, the structure of the system has uncertain 

boundaries with a spiral pattern around the center. The 

warmest temperature is at the center of the huddle and gets 

colder as we move towards the perimeter. 

As shown in Figure 2, there are two penguins i and j, these 

penguins move from low temperature position, represented by 

position i, to a higher temperature position, represented by 

position j. The movement from position i to position j is a 

spiral like movement. There are many types of spiral like 

movements, for example: logarithmic, Archimedes, parabolic 

and hyperbolic. The original EPC assumes logarithmic spiral 

like movement. 

In the First modification proposed by this work, the 

Emperor Penguins Colony (MEPC1) algorithm considers 

Archimedes spiral like movement. Archimedes spiral like 

movement considers a relation between r and θ as shown in Eq. 

(3), 

 

𝑟 = 𝑎 θ (3) 

 

where, θ is the angle of the x-axis, a is a constant and r 

represents the distance from the origin.  

As shown in Figure 2, the penguin i is attracted into j and 

starts the spiral-like movement. To obtain the equation of this 

spiral-like movement, first the distance between two penguins 

i and j must be calculated according to Eq. (4). Eq. (4) 

represents the distance between i and j but we have 

attractiveness Q. The Q is a coefficient of spiral-like 

movement. For simple example if the distance between i and j 

is equal to 2 and Q is equal to 0.8, we have 0.8*2=1.6 which 

1.6 is distance traveled to point k.  

 

 
 

Figure 2. Spiral like movement of emperor penguins 

 

The distance between penguins i and j (Dij) is represent by 

the arc length from i to j, which is calculated according to Eq. 

(4), 

 

𝐷𝑖𝑗  = ∫ √(
𝑑𝑟

𝑑θ
)
2

+ 𝑟2 𝑑θ

θ𝑗

θ𝑖

=
𝑎

2 
 ((θ𝑗√1 + θ𝑗

2

+  sinh−1 (θ𝑗)  −  (θ𝑖√1 + θ𝑖
2

+ sinh−1(θ𝑖)) 

(4) 

 

and  

 

𝐷𝑖𝑘 =
𝑎

2 
 ((θ𝑘√1 + θ𝑘

2  +  sinh−1 (θ𝑘)  

−  (θ𝑖√1 + θ𝑖
2  + sinh−1(θ𝑖)) 

(5) 

 

To find the value of θk in terms of θi and θj, we using the 

relation between Dik and Dij this relation represented in Eq. (6). 

This relation declare that distance traveled from i to k equal 

the attractiveness Q times the distance form i to j,   

 

𝐷𝑖𝑘 =  𝑄 ∗  𝐷𝑖𝑗 (6) 

 

(θ𝑘√1 + θ𝑘
2 +  sinh−1 (θ𝑘)

= 𝑄 (θ𝑗√1 + θ𝑗
2 +  sinh−1 (θ𝑗))

− (1 − 𝑄)(θ𝑖√1 + θ𝑖
2

+  sinh−1(θ𝑖)) 

(7) 

 

To find the value of θk numerical solution is done to Eq. (7) 

using (nsolve) function in matlab, nsolve function aims to find 

numerical approximations to the solutions of the system of 

equations or inequalities, after finding the value of θk, the x 

and y components of the position k are obtained in terms of the 

components x and y of points i, j, and attractiveness Q. 

coordinates of the new position k can be calculated using the 

following Eqns. (8)-(9), 
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𝑥𝑘 = 𝑟 cos θ𝑘  , 𝑠𝑖𝑛𝑐𝑒 𝑟 = 𝑎 θ 𝑠𝑜 𝑥𝑘 = 𝑎 θ𝑘 cos θ𝑘 (8) 

 

𝑦
𝑘
= 𝑟 sin θ𝑘  , 𝑠𝑖𝑛𝑐𝑒 𝑟 = 𝑎 θ 𝑠𝑜 𝑦𝑘 = 𝑎 θ𝑘 sin θ𝑘 (9) 

 

Accordingly, penguin i will move spirally then it’s summed 

with a random vector and is transported to a new position as 

shown in Eqns. (10) and (11). 

 

𝑥𝑘 = 𝑎 θ𝑘 cos θ𝑘 +  фƐi (10) 

 

𝑦
𝑘
= 𝑎 θ𝑘 sin θ𝑘 +  фƐi (11) 

 

where, ф is the mutation factor in the change of path and Ɛi is 

a random vector. This random vector 𝜖 can be any distribution 

like Uniform, Normal or Lévy distribution. In these algorithms 

a Uniform distribution is assumed. The function of this 

equation is exactly the same as the function of a mutation, 

which is performed after the crossover in the GA algorithm.  

 

 

5. SECOND MODIFIED EMPEROR PENGUINS 

COLONY (MEPC2) ALGORITHM 

 

In the second modification to the Emperor Penguins Colony 

(MEPC2), the hyperbolic spiral like movement algorithm is 

assumed. Hyperbolic spiral like movement considers a relation 

between r and θ as shown in Eq. (12), 

  

𝑟 =
𝑎

θ
 (12) 

 

where, θ is the angle of the x-axis, a is a constant and r shows 

the distance from the origin. 

The distance between penguins i and j is calculated 

according to Eq. (13), 

 

𝐷𝑖𝑗  = ∫ √(
𝑑𝑟

𝑑θ
)
2

+ 𝑟2 𝑑θ
θ𝑗

θ𝑖

= 𝑎

(

 
 
− 

√1 + θ𝑗
2 

θ𝑗
+ ln(θ𝑗 + √1 + θ𝑗

2)

−

(

 − 

√1 + θ𝑖
2 

θ𝑖
+ ln(θ𝑖 + √1 + θ𝑖

2 )

)

 

)

 
 

 

 

(13) 

 

and  

 

𝐷𝑖𝑘 = 𝑎 

(

 
 

(

 − 

√1 + θ𝑘
2 

θ𝑘
+ ln(θ𝑘 + √1 + θ𝑘

2 ) 

)

 

−

(

 − 

√1 + θ𝑖
2

θ𝑖
+ ln(θ𝑖 + √1 + θ𝑖

2) 

)

 

)

 
 

 

 

(14) 

 

Thus, 

(

 − 

√1 + θ𝑘
2  

θ𝑘
+ ln (θ𝑘 + √1 + θ𝑘

2 ) 

)

 

= 𝑄 

(

 ln (θ𝑗 + √1 + θ𝑗
2 ) − 

√1 + θ𝑗
2  

θ𝑗
)

 

− (1 − 𝑄)

(

 ln (θ𝑖 + √1 + θ𝑖
2 )

−

√1 + θ𝑖
2

θ𝑖
)

  

 

(15) 

 

To find the value of θk in term of θi and θj numerical solution 

is done to Eq. (15) using (nsolve) function in matlab, nsolve 

function aims to find numerical approximations to the 

solutions of the system of equations or inequalities, after 

finding the value of θk, the x and y components of the position 

k are obtained in terms of the components x and y of points i, 

j, and attractiveness Q. coordinates of the new position k can 

be calculated using the following Eqns. (16)-(17), 

 

𝑥𝑘 = 𝑟𝑐𝑜𝑠𝜃𝑘 , 𝑠𝑖𝑛𝑐𝑒 𝑟 =
𝑎

θ
 𝑠𝑜 𝑥𝑘 =

𝑎

θ
𝑐𝑜𝑠𝜃𝑘

 

 (16) 

 

𝑦
𝑘
= 𝑟𝑠𝑖𝑛𝜃𝑘, 𝑠𝑖𝑛𝑐𝑒 𝑟 =

𝑎

θ
 𝑠𝑜 𝑦

𝑘
=
𝑎

θ 
𝑠𝑖𝑛𝜃𝑘 (17) 

 

In this way, the penguin i will move spirally then it’s 

summed with a random vector and is transported to a new 

position as shown in Eqns. (18) and (19). 

  

𝑥𝑘 =
𝑎

θ
𝑐𝑜𝑠𝜃𝑘  +  фƐi (18) 

 

𝑦
𝑘
=
𝑎

θ 
𝑠𝑖𝑛𝜃𝑘  +  фƐi (19) 

 

where, ф is the mutation factor in the change of path and Ɛi is 

a random vector.  

 

 

6. EXPERIMENTAL RESULTS AND DISCUSSION 

 

6.1 Benchmark function 

 

Ten test functions are used to evaluate the performance, 

accuracy and the convergence of the algorithm. These test 

function detailed explained in this web site 

http://www.sfu.ca/~ssurjano/. 

 

6.2 Comparison between algorithms 

 

In this section a set of comparisons are conducted. First a 

comparison between the original EPC, first modified EPC 

(MEPC1), and second modified EPC (MEPC2) are provided. 

Another comparison is conducted between MEPC1 and 

MEPC2 against Genetic Algorithm (GA) [7], Imperialist 

Competitive Algorithm (ICA) [9], Particle Swarm 

Optimization (PSO) [10], Artificial Bee Colony (ABC) [26], 
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Differential Equation (DE) [8], Harmony Search (HS) [14], 

Invasive Weed Optimization (IWO) [27], Grey Wolf 

Optimizer (GWO) [28], and Cuckoo search (CS) [29]. The last 

comparison aims to investigate the performance of the two 

proposed modified algorithms against other algorithms 

available in the literature. 

Parameters of MEPC1 and MEPC2 are set as follows: the 

maximum number of iterations is 100, the penguins population 

size is 20, the number of decision variables equal 5. Each 

algorithm was run 30 times, with 100 iterations per run. So the 

mean and stander derivation of 30 runs was considered, 

Table 1 provides a comparison between the original EPC 

and MEPC1. Values recorded in Table 1 regarding MEPC1 are 

mean objective function values of 30 runs. Table 1 shows that 

MEPC1 is able to achieve 70% improvement over the original 

EPC, where seven problems out of 10 record better mean 

objective function values. 

Table 2 provides a comparison between the original EPC 

and MEPC2. Values recorded in Table 2 regarding MEPC2 are 

mean objective function values of 30 runs. Table 2 shows that 

MEPC2 is able to achieve 80% improvement over the original 

EPC, where eight problems out of 10 record better mean 

objective function values. 

 

Table 1. Mean of 30 runs between EPC and MEPC1 

 

Functions MEPC1 EPC 

Ackly  8.88E-16 3.18E-08 

Sphere 1.17E-44 3.32E-16 

Rosenbrock 3.83E+00 3.8752 

Rastrigin 0 5.80E-14 

Griewank 0 1.31E-02 

Bukin 0.1 9.56E-02 

Bohachevsky 0 1.11E-17 

Zakharov 2.54E-44 5.49E-16 

Booth 50.129699 7.34E-18 

Michalewicz -5.52E-13 -1.80E+00 

 

Table 2. Mean of 30 runs between EPC and MEPC2 

 

Functions MEPC2 EPC 

Ackly 8.88E-16 3.18E-08 

Sphere 3.28E-36 3.32E-16 

Rosenbrock 0.003863 3.8752 

Rastrigin 0 5.80E-14 

Griewank 0 1.31E-02 

Bukin 0.1 9.56E-02 

Bohachevsky 0 1.11E-17 

Zakharov 5.77E-35 5.49E-16 

Booth 1.954526 7.34E-18 

Michalewicz -2.32001 -1.80E+00 

 

Table 3. St-dev of 30 runs between EPC and MEPC1 

 

Functions EPC MEPC1  MEPC2  

Ackly 6.78E-09 1.01043E-31  2.00587E-31  

Sphere 1.36E-16 4.74949E-44  4.85506E-36  

Rosenbrock 0.0435 0.311715323  0.008073997  

Rastrigin 2.58E-14 0  0  

Griewank 0.0118 0  0  

Bukin 0.025 3.79049E-10  3.79049E-10  

Bohachevsky 4.47E-17 0  0  

Zakharov 1.82E-16 9.67701E-44  1.41975E-34  

Booth 6.47E-18 1.353043223  0.157821921  

Michalewicz 0.2612 4.12634E-13  0.274268392  

 

Table 3 provides the standard deviation of 30 runs of the 

three Algorithms, EPC, MEPC1, and MEPC2. Standard 

deviation is used to assess how far the values are spread above 

and below the mean. Algorithms with low values of standard 

deviation tend to be more reliable than those with higher 

standard deviation values. We notice that the two modified 

algorithms provide more reliable results.  

Table 4 provides comparison between MEPC1, MEPC2 and 

GA. The results obtained declare that MEPC1 achieves better 

in 70% of the tested function, GA performs better in three test 

function Rosenbrock, booth and Michalewicz. MEPC2 

achieves better in 80% of the tested function, GA perform 

better in two test function booth and Michalewicz. GA 

achieves better in these test function may be the nature of these 

problems, being nonlinear, non-convex and multimodal. 

As shown in Table 5, MEPC1 does better in 60% of test 

functions, while ICA does better in four test functions 

(Rosenbrock, Bukin, booth and Michalewicz); MEPC2 does 

better in 70% of test functions, while ICA does better in three 

test functions (Bukin, booth and Michalewicz). The excellence 

of ICA is the result of the nonlinear, non-convex, and 

multimodal nature of the problems. 

Table 6 provides comparison between MEPC1, MEPC2 and 

PSO. The results obtained declare that MEPC1 achieves better 

in 70% of the tested function, PSO performs better in three test 

functions Rosenbrock, Booth and Michalewicz. MEPC2 

achieves better in 80% of the tested function, PSO performs 

better in two test functions Booth and Michalewicz. PSO 

achieves better in these test function may be the nature of these 

problems, being nonlinear, non-convex and multimodal. 

Table 7 provides comparison between MEPC1, MEPC2 and 

ABC. The results obtained declare that MEPC1 achieves better 

in 80% of the tested function, ABC performs better in two test 

functions Booth and Michalewicz. MEPC2 achieves better in 

80% of the tested function, ABC performs better in two test 

functions Booth and Michalewicz. ABC achieves better in 

these test function may be the nature of these problems, being 

nonlinear, non-convex and multimodal. 

 

Table 4. Comparison between MEPC1, MEPC2 and GA 

 

Functions MEPC1 MEPC2 GA 

Ackly 8.88E-16 8.88E-16 0.0907 

Sphere 1.17E-44 3.28E-36 0.0028 

Rosenbrock 3.825285 0.003863 2.6338 

Rastrigin 0 0 0.9373 

Griewank 0 0 0.0437 

Bukin 0.1 0.1 1.1704 

Bohachevsky 0 0 0.0085 

Zakharov 2.54E-44 5.77E-35 2.2252 

Booth 50.1297 1.954526 0.0582 

Michalewicz -5.5E-13 -2.32001 -4.5633 

 

Table 5. Comparison between MEPC1, MEPC2 and ICA 

 

Functions MEPC1 MEPC2 ICA 

Ackly 8.88E-16 8.88E-16 2.63E-04 

Sphere 1.17E-44 3.28E-36 4.95E-06 

Rosenbrock 3.825285 0.003863 3.3888 

Rastrigin 0 0 1.2083 

Griewank 0 0 0.0264 

Bukin 0.1 0.1 0.0759 

Bohachevsky 0 0 3.64E-13 

Zakharov 2.54E-44 5.77E-35 0.3906 

Booth 50.1297 1.954526 0.0028 

Michalewicz -5.5E-13 -2.32001 -4.5706 
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Table 6. Comparison between MEPC1, MEPC2 and PSO 

 

 

Table 7. Comparison between MEPC1, MEPC2 and ABC 

 

Functions MEPC1 MEPC2 ABC 

Ackly 8.88E-16 8.88E-16 0.1421 

Sphere 1.17E-44 3.28E-36 0.0102 

Rosenbrock 3.825285 0.003863 15.4923 

Rastrigin 0 0 10.7627 

Griewank 0 0 0.1333 

Bukin 0.1 0.1 0.7341 

Bohachevsky 0 0 3.01E-07 

Zakharov 2.54E-44 5.77E-35 3.9614 

Booth 50.1297 1.954526 8.10E-06 

Michalewicz -5.5E-13 -2.32001 -2.8306 

 

Table 8. Comparison between MEPC1, MEPC2 and DE 

 

Functions MEPC1 MEPC2 DE 

Ackly 8.88E-16 8.88E-16 1.77E-04 

Sphere 1.17E-44 3.28E-36 1.34E-08 

Rosenbrock 3.825285 0.003863 1.9891 

Rastrigin 0 0 0.2993 

Griewank 0 0 0.0139 

Bukin 0.1 0.1 0.8872 

Bohachevsky 0 0 8.45E-13 

Zakharov 2.54E-44 5.77E-35 0.183 

Booth 50.1297 1.954526 2.80E-05 

Michalewicz -5.5E-13 -2.32001 -4.7952 

 

Table 9. Comparison between MEPC1, MEPC2 and HS 

 

Functions MEPC1 MEPC2 HS 

Ackly 8.88E-16 8.88E-16 2.0935 

Sphere 1.17E-44 3.28E-36 0.4327 

Rosenbrock 3.825285 0.003863 69.4738 

Rastrigin 0 0 7.3835 

Griewank 0 0 0.0444 

Bukin 0.1 0.1 1.9679 

Bohachevsky 0 0 0.0056 

Zakharov 2.54E-44 5.77E-35 4.4355 

Booth 50.1297 1.954526 0.016 

Michalewicz -5.5E-13 -2.32001 -4.4896 

 

Table 8 provides comparison between MEPC1, MEPC2 and 

DE. The results obtained declare that MEPC1 achieves better 

in 70% of the tested function, DE performs better in three test 

functions Rosenbrock, Booth and Michalewicz. MEPC2 

achieves better in 80% of the tested function, DE performs 

better in two test functions Booth and Michalewicz. DE 

achieves better in these test function may be the nature of these 

problems, being nonlinear, non-convex and multimodal. 

Table 9 provides comparison between MEPC1, MEPC2 and 

HS. The results obtained declare that MEPC1 achieves better 

in 80 % of the tested function, HS performs better in two test 

functions Booth and Michalewicz. MEPC2 achieves better in 

80% of the tested function, HS performs better in two test 

functions Booth and Michalewicz. HS achieves better in these 

test function may be the nature of these problems, being 

nonlinear, non-convex and multimodal. 

Table 10 provides comparison between MEPC1, MEPC2 

and IWO. The results obtained declare that MEPC1 achieves 

better in 80% of the tested function, IWO performs better in 

two test functions Rosenbrock, Booth and Michalewicz. 

MEPC2 achieves better in 80% of the tested function, IWO 

performs better in two test functions Booth and Michalewicz. 

IWO achieves better in these test function may be the nature 

of these problems, being nonlinear, non-convex and 

multimodal. 

Table 11 provides comparison between MEPC1, MEPC2 

and GWO. The results obtained declare that MEPC1 achieves 

better in 70% of the tested function, GWO performs better in 

three test functions Rosenbrock, Booth and Michalewicz. 

MEPC2 achieves better in 90% of the tested function, GWO 

performs better in one test functions Michalewicz. GWO 

achieves better in this test function may be the nature of these 

problems, being nonlinear and multimodal. 

Table 12 provides comparison between MEPC1, MEPC2 

and CS. The results obtained declare that MEPC1 achieves 

better in 70% of the tested function, CS performs better in 

three test functions Bukin, Booth and Michalewicz. MEPC2 

achieves better in 70% of the tested function, CS performs 

better in three test functions Bukin, Booth and Michalewicz. 

CS achieves better in these test function may be the nature of 

these problems, being nonlinear, non-convex and multimodal. 

Another analysis was conducted, it provides the variation of 

each test function though the eleven Meta heuristics, the x- 

axis provides the eleven Meta heuristics algorithms, while y-

axis provides the objective function value. Figure 3 provides 

the variation in performance of Ackley test function over 

eleven Meta heuristics algorithms, however the Ackley 

function has several local minima, the best answer is obtained 

by MEPC1 and MEPC2 algorithms, this best answer which 

represent the minimum objective function value.  

 

Table 10. Comparison between MEPC1, MEPC2 and IWO 

 

Functions MEPC1 MEPC2 IWO 

Ackly 8.88E-16 8.88E-16 0.0019 

Sphere 1.17E-44 3.28E-36 9.21E-07 

Rosenbrock 3.825285 0.003863 9.4521 

Rastrigin 0 0 14.9577 

Griewank 0 0 0.0435 

Bukin 0.1 0.1 0.2859 

Bohachevsky 0 0 2.00E-07 

Zakharov 2.54E-44 5.77E-35 2.49E-06 

Booth 50.1297 1.954526 2.76E-08 

Michalewicz -5.5E-13 -2.32001 -3.94E+00 

 

Table 11. Comparison between MEPC1, MEPC2 and GWO 

 

Functions MEPC1 MEPC2 GWO 

Ackly 8.88E-16 8.88E-16 1.92E-05 

Sphere 1.17E-44 3.28E-36 2.76E-12 

Rosenbrock 3.825285 0.003863 1.7491 

Rastrigin 0 0 2.6374 

Griewank 0 0 0.0542 

Bukin 0.1 0.1 0.1509 

Bohachevsky 0 0 7.18E-08 

Zakharov 2.54E-44 5.77E-35 1.69E-08 

Booth 50.1297 1.954526 1.9738 

Michalewicz -5.5E-13 -2.32001 -2.4935 

Functions MEPC1 MEPC2 PSO 

Ackly 8.88E-16 8.88E-16 6.09E-04 

Sphere 1.17E-44 3.28E-36 9.04E-08 

Rosenbrock 3.825285 0.003863 1.7793 

Rastrigin 0 0 2.9004 

Griewank 0 0 0.0222 

Bukin 0.1 0.1 0.2298 

Bohachevsky 0 0 4.70E-10 

Zakharov 2.54E-44 5.77E-35 4.70E-06 

Booth 50.1297 1.954526 8.49E-11 

Michalewicz -5.5E-13 -2.32001 -4.12E+00 
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Table 12. Comparison between MEPC1, MEPC2 and CS 

 

Functions MEPC1 MEPC2 CS 

Ackly 8.88E-16 8.88E-16 5.84E-01 

Sphere 1.17E-44 3.28E-36 4.51E-10 

Rosenbrock 3.825285 0.003863 2.53E+01 

Rastrigin 0 0 5.44E+01 

Griewank 0 0 4.41E-04 

Bukin 0.1 0.1 0.0036 

Bohachevsky 0 0 9.2174 

Zakharov 2.54E-44 5.77E-35 2.30E+02 

Booth 50.1297 1.954526 3.21E-09 

Michalewicz -5.5E-13 -2.32001 -8.9059 

 

Figure 4 provides the variation in performance of Sphere 

test function, sphere is a simple function without local minima, 

MEPC1 algorithm provides the minimum objective function 

value comparing to the remaining Meta heuristics. Figure 5 

provides the variation in performance of the Rosenbrock test 

function, MEPC2 provides the minimum objective function 

value comparing to the remaining Meta heuristics. 

 

 
 

Figure 3. Variation in performance for Ackly Function 

 

Figure 6 provides variation in performance of the Rastrigin 

test function, although Rastrigin has several local minima, the 

best answer is obtained by the MEPC1 and MEPC2 algorithms. 

Figure 7 provides variation in performance of Griewank test 

function, Griewank has several local minima, and the best 

answer is obtained by MEPC1 and MEPC2 algorithms. 

Figure 8 provides the variation in performance of Bukin test 

function, Bukin function has many local minima, CS provides 

the minimum objective function value comparing to the 

remaining Meta heuristics. Figure 9 provides the variation in 

performance of the Bohachevsky test function, MEPC1 and 

MEPC2 algorithms provide the best results comparing to the 

remaining Meta heuristics. 

Figure 10 provides the variation in performance of 

Zakharov test function, Although the Zakharov is a function 

without a local minima, MEPC1 provides the minimum 

objective function value comparing to the remaining Meta 

heuristic. Figure 11 provides the variation in performance of 

Booth test function. EPC provides the minimum objective 

function value comparing to the remaining Meta heuristics. 

 

 
 

Figure 4. Variation in performance for Sphere Function 

 

 
 

Figure 5. Variation in performance for Rosenbrock Function 

 

 
 

Figure 6. Variation in performance for Rastrigin Function 
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Figure 7. Variation in performance for Griewank Function 

 

 
 

Figure 8. Variation in performance for Bukin Function 

 

 
 

Figure 9. Variation in performance for Bohachevsky 

Function 

 

 
 

Figure 10. Variation in performance for Zakharov Function 

 

 
 

Figure 11. Variation in performance for Booth Function 

 

 
 

Figure 12. Variation in performance for Michalewicz 

Function 
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And finally Figure 12 provides the variation in performance 

of Michalewicz test function, The Michalewicz function is a 

multi-modal and complex function CS provides the minimum 

objective function value comparing to the remaining Meta 

heuristics. 

We can conclude from all the above, after set of experiments, 

the two proposed algorithms MEPC1 and MEPC2 achieve best 

solutions in most cases. But under complex nature of the 

problem, complex conditions of the problem and without the 

existence the local minima, the proposed algorithms not 

achieve better. The proposed algorithms mainly not proceed 

better in two test functions, Booth and Michalewicz due to the 

complex nature of these problems. 

More runs are conducted to check the behaviour with 

regards to changes in the parameter ф, the changes of the 

values of mutation factor don't much affected the results 

obtained. We changed the value of mutation from 0.01 till 0.09 

and the results not much changed, we used 0.05 times range 

(max-min) as preferred in literature. 

 

 

7. CONCLUSION AND FUTURE WORK 

 

The original EPC algorithm is swarm based and nature 

inspired that controlled by the thermal radiation and spiral like 

movement of penguins, it uses logarithmic spiral like 

movement of penguins. In this research we developed two 

modified algorithms named MEPC1 and MEPC2. These two 

modified algorithms are based mainly on the change of the 

spiral like movement. MEPC1 algorithm uses Archimedes 

spiral like movement, and MEPC2 algorithm uses hyperbolic 

spiral like movement. Ten widely common benchmarks 

problems are used to measure the performance of the 

developed algorithms. MEPC1 and MEPC2 algorithms 

achieved better solution in most solved problems. MEPC1 

achieved better in 70% of the tested function. MEPC2 

achieved better in 80% of the tested functions, MEPC1 and 

MEPC2 also are compared to eight Meta heuristics, results 

declared that MEPC1 and MEPC2 achieve better in most cases. 

In the future, try to use EPC and the two modified algorithms 

in solving discrete optimization problem, solving clustering 

problem and complex network problems, and set of analysis 

can be done to test the change of the random vector 𝜖 from 

uniform to another distribution. 
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