

Two-Modified Emperor Penguins Colony Optimization Algorithms

Hayam G. Wahdan1*, Hisham E. Abdelslam1, Tarek H.M. Abou-El-Enien1, Sally S. Kassem1,2

1
Faculty of computers and Artificial Intelligence, Cairo University, Giza 12613, Egypt

2 Smart Engineering Systems Research Centre, Nile University, Giza 12588, Egypt

Corresponding Author Email: Hayam@fci-cu.edu.eg

https://doi.org/10.18280/ria.340205

ABSTRACT

Received: 11 December 2019

Accepted: 12 February 2020

 Meta heuristic algorithms are very important methods, they used mainly in solving

combinatorial optimization problems. They are stochastic in manner and simulate the

behavior of any population of particles. Meta heuristics algorithms try to find optimal or

near to optimal solution when solving complex optimization problem. In this paper two

modified emperor penguins colony optimization algorithms MEPC1 and MEPC2 were

developed. Original Emperor Penguins Colony (EPC) algorithm simulates the behavior of

emperor of penguins, two modifications are done to the original EPC, Archimedes and

hyperbolic spiral like movement are used instead of logarithmic spiral like movement. The

two modified algorithms are compared with the original algorithm through ten test

functions; the results show that the modified algorithms are achieved better than the original

one.

Keywords:

meta heuristic, optimization, emperor

penguin colony, nature inspired

1. INTRODUCTION

Optimization is the process of finding better or optimal

solution for any problem, optimization find the maximum

value in case of maximization problem and minimum value in

case of minimization problem. inputs of any optimization

problem are sets of variables represent decision variables,

constraints represent the restrictions should be considered in

solving the problem and finally the target or the objective

function being optimize whether maximized or minimized [1].

Meta heuristic is defined in computer science and

mathematical optimization as high level strategies designed

mainly to solve optimization problem, find effective and

efficient solution instead of finding approximate solution,

methods are approximate and often uncertain (random), it try

to find optimal or near to optimal solution to the optimization

problem through set of procedures. Metaheuristics solve faster

complex and combinatorial optimization problem [2].

Metaheuristics can be classified into four categories

according to the behavior the algorithm simulate, physical

based, swarm based, evolutionary based and human based. In

physical-based methods, search agents move across the search

space according to the laws of physics such as electromagnetic

force, displacement, inertia force, gravity, and so on.

Simulating Annealing (SA) [3], Gravity Search Algorithm

(GSA) [4], Big Bang Algorithm (BBA) [5], and Charged

System Search (CSS) [6], are most commonly examples of

physical based optimization algorithm. In evolutionary-based

methods, biological evolution such as reproduction,

recombination, selection, and mutation are inspired.

Evolutionary based like Genetic Algorithm (GA) [7],

Differential Evolutionary (DE) [8], and Imperialist

Competitive Algorithm (ICA) [9]. Swarm-based methods are

based on simulate the behavior of group of animal such as

birds, insects, fishes and others like Particle Swarm

Optimization (PSO) [10], Ant Colony (AC) [11], Bat Swarm

(BS) [12], Cuckoo Search (CS) [13], and Emperor Penguins

Colony (EPC) [2]. and human based it is unique nature

inspired because it simulates nature phenomena commonly

associated with human like Harmony Search (HC) [14], and

Firework Algorithm (FA) [15].

The Emperor Penguins Colony (EPC) is one of the most

recent swarm-based optimization algorithms. It provides

Quick convergence; it can start the optimization process using

small population size; and EPC has achieved remarkable

performance in solving complex problems using one type of

spiral-like movements, namely, the logarithmic spiral-like

movement. Spiral-like movements may also be performed

using other techniques, for example: Archimedes, parabolic

and hyperbolic. Due to the noticeable performance of EPC in

solving complex problems, this work is motivated to examine

the efficiency of EPC in solving complex problems under

different types of spiral-like movements, namely, the

Archimedes and hyperbolic movements. Hence, this work

develops two modified algorithms, the first modified Emperor

Penguins Colony (MEPC1) utilizes Archimedes spiral like

movement, and the second modified Emperor Penguins

Colony (MEPC2) utilizes hyperbolic spiral-like movement.

These two modified algorithms outperform, in most instances,

the original EPC utilizing logarithmic spiral-like movement.

The rest of the paper is organized as follows, Section 2

provides the literature review about the swarm based methods,

Section 3 describes the original Emperor Penguins Colony

(EPC) algorithm, Section 4, 5 describes the two modified

algorithms and section 6 includes experimental results and

discussion and Section 7 represents conclusions and further

work.

2. LITERATURE REVIEW

During the last decades several optimization algorithms

Revue d'Intelligence Artificielle
Vol. 34, No. 2, April, 2020, pp. 151-160

Journal homepage: http://iieta.org/journals/ria

151

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.340205&domain=pdf

have been developed, many of which are classified as swarm

optimization algorithms. EPC is classified as a swarm-based

optimization algorithm. Therefore, this section summarizes a

number of the swarm-based optimization algorithms that are

widely and usefully utilized to solve many optimization

problems.

Ant Colony Optimization (ACO); developed Marco Dorigo

in 1992; was Inspired by the foraging behavior of ants, ACO

achieved high performance and robustness in solving

combinatorial optimization problems [11]. Particle Swarm

Optimization (PSO) algorithm was originally introduced by

Kennedy and Eberhart in 1995. The algorithm was inspired by

mimicking the social interaction and communication within a

flock of birds or school of fishes, it can be applied in many

applications like engineering and scientific researches and

don't overlapping and mutation calculation [10]. Artificial Bee

Colony (ABC) was proposed by Karaboga in 2005; it is

inspired by the foraging behavior of bees, it can be

successfully applied for large scale optimization problem [16].

Cuckoo Search (CS) algorithm was proposed by Yang and

Deb in 2009. The algorithm imitates the behavior of cuckoo

birds to explore the solution space for an optimum or near

optimum solution; it is efficient in solving discrete

optimization problem [13]. Bat Algorithm (BA) is proposed

by Xin-She Yang in 2010, it is simple and flexible

optimization algorithm [12].

Firefly Algorithm (FA) developed by Kwiecien and

Filipowicz in 2010, is a useful and powerful algorithm for

solving discrete and nonlinear optimization problems [17].

Lion Optimization (LO) population based optimization model

developed by Rajakumar in 2012, it is simulate the behavior

of lions in hunting the animals, it is succeeded to obtain

optimal or near to optimal solution [18]. Chicken Swarm

Optimization (CSO) algorithm developed by Liu et al. in 2014,

simulates the behavior of chickens, it can achieve good

optimizing results in term of accuracy and robustness [19].

Social Spider Algorithm (SSA) developed by James et al. in

2015, is powerful in solving continuous optimization problem

and easy to implement [20]. Spider Monkey (SM) developed

by Bansal et al. 2014, inspired by the intelligent behavior of

spider monkeys when searching for food sources, it is proved

its capability of solving real world complex problems that

cannot solved by the classical techniques [21]. African buffalo

optimization (ABO) developed by Odili et al. in 2014, was

inspired by the practice of African buffalos in the vast African

forests, through set of simple steps ABO can solve complex

optimization problems [22]. Grasshopper optimization

Algorithm (GOA) was developed by Saremi et al. in 2017, the

algorithm simulates the behavior of grasshoppers' swarms in

nature for solving complex optimization problem [23].

Laying chicken algorithm (LCA) is developed by Hosseini

in 2017, is used to solve different types of the problems

whether linear or nonlinear optimization problems [24]. Owl

search algorithm (OSA) is a population based optimization

algorithm, developed by Hosseini in 2018. It is based on the

hunting mechanism of owls [25]. Emperor Penguin Colony

(EPC) developed by Harifi et al. in 2019, simulates the

behavior of penguins in their colonies when moving from low

to high temperatures in spiral like movements, it is powrful in

solving complex optimaztion problem [2].

3. ORIGINAL EMPEROR PENGUINS COLONY (EPC)

ALGORITHM

A new Meta heuristics algorithm named The Emperor

Penguin Colony (EPC) was proposed by Harifi et al. in 2019.

The algorithm inspired by the behavior of emperor penguins

in colonies when they move from a cold domain to a warmer

one following a logarithmic spiral like movement, [2]. This

algorithm is controlled by the body heat radiation of the

penguins and their spiral-like movement in their colony. The

algorithm tries to find optimal or near to optimal solution.

In the EPC, the temperature around the huddle is calculated,

the algorithm is vector based equations, when the body

temperature is calculated and body heat radiation of each

penguin and then due to distance and attractiveness each

penguin performs the spiral-like movement.

EPC starts with a set of penguins representing the

population size. These penguins are distributed in nature with

calculated position and cost, penguins are continually moving

in the direction of low objective value penguins, these

penguins with high intensity. The objective function value is

calculated using heat intensity and the distance. Attraction is

done, a new solution is evaluated and the heat intensity is

updated. All solutions are sorted and the best is selected.

Damping ratio for heat radiation, movement, and heat

absorption is applied. Figure 1 describes pseudo code of the

EPC algorithm.

This algorithm is performed according to the following

rules [2]:

1- All penguins in the initial population have heat radiation

and attract to each other due to absorption coefficient.

2- The body surface area of all penguins is considered equal

to each other.

3- Penguin absorbs the full heat radiation and the effect of

the earth’s surface and the atmosphere are not regarded.

4- The heat radiation of penguins is considered linear.

5- The attraction of penguin is done according to the amount

of heat in the distance between two penguins.

6- The penguin spiral movement during the absorption

process is not monotonous and has a deviation with uniform

distribution.

Figure 1. pseudo code of the EPC algorithm, [2]

152

The heat radiation of each penguin is calculated using Eq.

(1),

𝑄𝑝𝑒𝑛𝑔𝑢𝑖𝑛 = 𝐴Ɛ σ 𝑇𝑠
4 (1)

where, Qpenguin is heat transfer per unit of time, A is total

surface area of the penguin which equal to 0.56 m2. Ɛ is

emissivity of bird plumage which is considered 0.98, σ is the

Stefan–Boltzmann constant (5.6703×10−8 W/m2K4) and Ts is

the absolute temperature in Kelvin (K) which is considered

35℃ equal to 308.15 K [2].

The attractiveness Q is calculated using Eq. (2)

𝑄 = 𝐴Ɛ σ 𝑇𝑠
4 𝑒−μx (2)

where, μ is attenuation coefficient and x is the distance

between two linear sources.

The calculation of the coordinated spiral movement and the

new position is done using logarithmic spiral movement in the

original EPC [2]. The following sections present the 2

modifications proposed by this work, namely Archimedes and

hyperbolic spiral like movement for calculating the

coordinated spiral movement and new positions of penguins,

equations 3 till equation 10 provide full explanation about the

calculation of coordinated spiral movement and the new

position.

The EPC algorithm has set of advantages , it is using spiral

like movement to optimize temperature without need to

determine the boundary of the huddle; Quick convergence; it

can start the optimization process using small population size;

Not limited to monotonous spiral path; and it provides

acceptable performance to solve high-dimensional problems.

4. FIRST MODIFIED EMPEROR PENGUINS COLONY

(MEPC1) ALGORITHM

The penguins start spiral-like huddle in which the clockwise

movement is done around a constant center as shown in Figure

2. In this case, the structure of the system has uncertain

boundaries with a spiral pattern around the center. The

warmest temperature is at the center of the huddle and gets

colder as we move towards the perimeter.

As shown in Figure 2, there are two penguins i and j, these

penguins move from low temperature position, represented by

position i, to a higher temperature position, represented by

position j. The movement from position i to position j is a

spiral like movement. There are many types of spiral like

movements, for example: logarithmic, Archimedes, parabolic

and hyperbolic. The original EPC assumes logarithmic spiral

like movement.

In the First modification proposed by this work, the

Emperor Penguins Colony (MEPC1) algorithm considers

Archimedes spiral like movement. Archimedes spiral like

movement considers a relation between r and θ as shown in Eq.

(3),

𝑟 = 𝑎 θ (3)

where, θ is the angle of the x-axis, a is a constant and r

represents the distance from the origin.

As shown in Figure 2, the penguin i is attracted into j and

starts the spiral-like movement. To obtain the equation of this

spiral-like movement, first the distance between two penguins

i and j must be calculated according to Eq. (4). Eq. (4)

represents the distance between i and j but we have

attractiveness Q. The Q is a coefficient of spiral-like

movement. For simple example if the distance between i and j

is equal to 2 and Q is equal to 0.8, we have 0.8*2=1.6 which

1.6 is distance traveled to point k.

Figure 2. Spiral like movement of emperor penguins

The distance between penguins i and j (Dij) is represent by

the arc length from i to j, which is calculated according to Eq.

(4),

𝐷𝑖𝑗 = ∫ √(
𝑑𝑟

𝑑θ
)
2

+ 𝑟2 𝑑θ

θ𝑗

θ𝑖

=
𝑎

2
 ((θ𝑗√1 + θ𝑗

2

+ sinh−1 (θ𝑗) − (θ𝑖√1 + θ𝑖
2

+ sinh−1(θ𝑖))

(4)

and

𝐷𝑖𝑘 =
𝑎

2
 ((θ𝑘√1 + θ𝑘

2 + sinh−1 (θ𝑘)

− (θ𝑖√1 + θ𝑖
2 + sinh−1(θ𝑖))

(5)

To find the value of θk in terms of θi and θj, we using the

relation between Dik and Dij this relation represented in Eq. (6).

This relation declare that distance traveled from i to k equal

the attractiveness Q times the distance form i to j,

𝐷𝑖𝑘 = 𝑄 ∗ 𝐷𝑖𝑗 (6)

(θ𝑘√1 + θ𝑘
2 + sinh−1 (θ𝑘)

= 𝑄 (θ𝑗√1 + θ𝑗
2 + sinh−1 (θ𝑗))

− (1 − 𝑄)(θ𝑖√1 + θ𝑖
2

+ sinh−1(θ𝑖))

(7)

To find the value of θk numerical solution is done to Eq. (7)

using (nsolve) function in matlab, nsolve function aims to find

numerical approximations to the solutions of the system of

equations or inequalities, after finding the value of θk, the x

and y components of the position k are obtained in terms of the

components x and y of points i, j, and attractiveness Q.

coordinates of the new position k can be calculated using the

following Eqns. (8)-(9),

153

𝑥𝑘 = 𝑟 cos θ𝑘 , 𝑠𝑖𝑛𝑐𝑒 𝑟 = 𝑎 θ 𝑠𝑜 𝑥𝑘 = 𝑎 θ𝑘 cos θ𝑘 (8)

𝑦
𝑘
= 𝑟 sin θ𝑘 , 𝑠𝑖𝑛𝑐𝑒 𝑟 = 𝑎 θ 𝑠𝑜 𝑦𝑘 = 𝑎 θ𝑘 sin θ𝑘 (9)

Accordingly, penguin i will move spirally then it’s summed

with a random vector and is transported to a new position as

shown in Eqns. (10) and (11).

𝑥𝑘 = 𝑎 θ𝑘 cos θ𝑘 + фƐi (10)

𝑦
𝑘
= 𝑎 θ𝑘 sin θ𝑘 + фƐi (11)

where, ф is the mutation factor in the change of path and Ɛi is

a random vector. This random vector 𝜖 can be any distribution

like Uniform, Normal or Lévy distribution. In these algorithms

a Uniform distribution is assumed. The function of this

equation is exactly the same as the function of a mutation,

which is performed after the crossover in the GA algorithm.

5. SECOND MODIFIED EMPEROR PENGUINS

COLONY (MEPC2) ALGORITHM

In the second modification to the Emperor Penguins Colony

(MEPC2), the hyperbolic spiral like movement algorithm is

assumed. Hyperbolic spiral like movement considers a relation

between r and θ as shown in Eq. (12),

𝑟 =
𝑎

θ
 (12)

where, θ is the angle of the x-axis, a is a constant and r shows

the distance from the origin.

The distance between penguins i and j is calculated

according to Eq. (13),

𝐷𝑖𝑗 = ∫ √(
𝑑𝑟

𝑑θ
)
2

+ 𝑟2 𝑑θ
θ𝑗

θ𝑖

= 𝑎

(

−

√1 + θ𝑗
2

θ𝑗
+ ln(θ𝑗 + √1 + θ𝑗

2)

−

(

 −

√1 + θ𝑖
2

θ𝑖
+ ln(θ𝑖 + √1 + θ𝑖

2)

)

)

(13)

and

𝐷𝑖𝑘 = 𝑎

(

(

 −

√1 + θ𝑘
2

θ𝑘
+ ln(θ𝑘 + √1 + θ𝑘

2)

)

−

(

 −

√1 + θ𝑖
2

θ𝑖
+ ln(θ𝑖 + √1 + θ𝑖

2)

)

)

(14)

Thus,

(

 −

√1 + θ𝑘
2

θ𝑘
+ ln (θ𝑘 + √1 + θ𝑘

2)

)

= 𝑄

(

 ln (θ𝑗 + √1 + θ𝑗
2) −

√1 + θ𝑗
2

θ𝑗
)

− (1 − 𝑄)

(

 ln (θ𝑖 + √1 + θ𝑖
2)

−

√1 + θ𝑖
2

θ𝑖
)

(15)

To find the value of θk in term of θi and θj numerical solution

is done to Eq. (15) using (nsolve) function in matlab, nsolve

function aims to find numerical approximations to the

solutions of the system of equations or inequalities, after

finding the value of θk, the x and y components of the position

k are obtained in terms of the components x and y of points i,

j, and attractiveness Q. coordinates of the new position k can

be calculated using the following Eqns. (16)-(17),

𝑥𝑘 = 𝑟𝑐𝑜𝑠𝜃𝑘 , 𝑠𝑖𝑛𝑐𝑒 𝑟 =
𝑎

θ
 𝑠𝑜 𝑥𝑘 =

𝑎

θ
𝑐𝑜𝑠𝜃𝑘

 (16)

𝑦
𝑘
= 𝑟𝑠𝑖𝑛𝜃𝑘, 𝑠𝑖𝑛𝑐𝑒 𝑟 =

𝑎

θ
 𝑠𝑜 𝑦

𝑘
=
𝑎

θ
𝑠𝑖𝑛𝜃𝑘 (17)

In this way, the penguin i will move spirally then it’s

summed with a random vector and is transported to a new

position as shown in Eqns. (18) and (19).

𝑥𝑘 =
𝑎

θ
𝑐𝑜𝑠𝜃𝑘 + фƐi (18)

𝑦
𝑘
=
𝑎

θ
𝑠𝑖𝑛𝜃𝑘 + фƐi (19)

where, ф is the mutation factor in the change of path and Ɛi is

a random vector.

6. EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Benchmark function

Ten test functions are used to evaluate the performance,

accuracy and the convergence of the algorithm. These test

function detailed explained in this web site

http://www.sfu.ca/~ssurjano/.

6.2 Comparison between algorithms

In this section a set of comparisons are conducted. First a

comparison between the original EPC, first modified EPC

(MEPC1), and second modified EPC (MEPC2) are provided.

Another comparison is conducted between MEPC1 and

MEPC2 against Genetic Algorithm (GA) [7], Imperialist

Competitive Algorithm (ICA) [9], Particle Swarm

Optimization (PSO) [10], Artificial Bee Colony (ABC) [26],

154

Differential Equation (DE) [8], Harmony Search (HS) [14],

Invasive Weed Optimization (IWO) [27], Grey Wolf

Optimizer (GWO) [28], and Cuckoo search (CS) [29]. The last

comparison aims to investigate the performance of the two

proposed modified algorithms against other algorithms

available in the literature.

Parameters of MEPC1 and MEPC2 are set as follows: the

maximum number of iterations is 100, the penguins population

size is 20, the number of decision variables equal 5. Each

algorithm was run 30 times, with 100 iterations per run. So the

mean and stander derivation of 30 runs was considered,

Table 1 provides a comparison between the original EPC

and MEPC1. Values recorded in Table 1 regarding MEPC1 are

mean objective function values of 30 runs. Table 1 shows that

MEPC1 is able to achieve 70% improvement over the original

EPC, where seven problems out of 10 record better mean

objective function values.

Table 2 provides a comparison between the original EPC

and MEPC2. Values recorded in Table 2 regarding MEPC2 are

mean objective function values of 30 runs. Table 2 shows that

MEPC2 is able to achieve 80% improvement over the original

EPC, where eight problems out of 10 record better mean

objective function values.

Table 1. Mean of 30 runs between EPC and MEPC1

Functions MEPC1 EPC

Ackly 8.88E-16 3.18E-08

Sphere 1.17E-44 3.32E-16

Rosenbrock 3.83E+00 3.8752

Rastrigin 0 5.80E-14

Griewank 0 1.31E-02

Bukin 0.1 9.56E-02

Bohachevsky 0 1.11E-17

Zakharov 2.54E-44 5.49E-16

Booth 50.129699 7.34E-18

Michalewicz -5.52E-13 -1.80E+00

Table 2. Mean of 30 runs between EPC and MEPC2

Functions MEPC2 EPC

Ackly 8.88E-16 3.18E-08

Sphere 3.28E-36 3.32E-16

Rosenbrock 0.003863 3.8752

Rastrigin 0 5.80E-14

Griewank 0 1.31E-02

Bukin 0.1 9.56E-02

Bohachevsky 0 1.11E-17

Zakharov 5.77E-35 5.49E-16

Booth 1.954526 7.34E-18

Michalewicz -2.32001 -1.80E+00

Table 3. St-dev of 30 runs between EPC and MEPC1

Functions EPC MEPC1 MEPC2

Ackly 6.78E-09 1.01043E-31 2.00587E-31

Sphere 1.36E-16 4.74949E-44 4.85506E-36

Rosenbrock 0.0435 0.311715323 0.008073997

Rastrigin 2.58E-14 0 0

Griewank 0.0118 0 0

Bukin 0.025 3.79049E-10 3.79049E-10

Bohachevsky 4.47E-17 0 0

Zakharov 1.82E-16 9.67701E-44 1.41975E-34

Booth 6.47E-18 1.353043223 0.157821921

Michalewicz 0.2612 4.12634E-13 0.274268392

Table 3 provides the standard deviation of 30 runs of the

three Algorithms, EPC, MEPC1, and MEPC2. Standard

deviation is used to assess how far the values are spread above

and below the mean. Algorithms with low values of standard

deviation tend to be more reliable than those with higher

standard deviation values. We notice that the two modified

algorithms provide more reliable results.

Table 4 provides comparison between MEPC1, MEPC2 and

GA. The results obtained declare that MEPC1 achieves better

in 70% of the tested function, GA performs better in three test

function Rosenbrock, booth and Michalewicz. MEPC2

achieves better in 80% of the tested function, GA perform

better in two test function booth and Michalewicz. GA

achieves better in these test function may be the nature of these

problems, being nonlinear, non-convex and multimodal.

As shown in Table 5, MEPC1 does better in 60% of test

functions, while ICA does better in four test functions

(Rosenbrock, Bukin, booth and Michalewicz); MEPC2 does

better in 70% of test functions, while ICA does better in three

test functions (Bukin, booth and Michalewicz). The excellence

of ICA is the result of the nonlinear, non-convex, and

multimodal nature of the problems.

Table 6 provides comparison between MEPC1, MEPC2 and

PSO. The results obtained declare that MEPC1 achieves better

in 70% of the tested function, PSO performs better in three test

functions Rosenbrock, Booth and Michalewicz. MEPC2

achieves better in 80% of the tested function, PSO performs

better in two test functions Booth and Michalewicz. PSO

achieves better in these test function may be the nature of these

problems, being nonlinear, non-convex and multimodal.

Table 7 provides comparison between MEPC1, MEPC2 and

ABC. The results obtained declare that MEPC1 achieves better

in 80% of the tested function, ABC performs better in two test

functions Booth and Michalewicz. MEPC2 achieves better in

80% of the tested function, ABC performs better in two test

functions Booth and Michalewicz. ABC achieves better in

these test function may be the nature of these problems, being

nonlinear, non-convex and multimodal.

Table 4. Comparison between MEPC1, MEPC2 and GA

Functions MEPC1 MEPC2 GA

Ackly 8.88E-16 8.88E-16 0.0907

Sphere 1.17E-44 3.28E-36 0.0028

Rosenbrock 3.825285 0.003863 2.6338

Rastrigin 0 0 0.9373

Griewank 0 0 0.0437

Bukin 0.1 0.1 1.1704

Bohachevsky 0 0 0.0085

Zakharov 2.54E-44 5.77E-35 2.2252

Booth 50.1297 1.954526 0.0582

Michalewicz -5.5E-13 -2.32001 -4.5633

Table 5. Comparison between MEPC1, MEPC2 and ICA

Functions MEPC1 MEPC2 ICA

Ackly 8.88E-16 8.88E-16 2.63E-04

Sphere 1.17E-44 3.28E-36 4.95E-06

Rosenbrock 3.825285 0.003863 3.3888

Rastrigin 0 0 1.2083

Griewank 0 0 0.0264

Bukin 0.1 0.1 0.0759

Bohachevsky 0 0 3.64E-13

Zakharov 2.54E-44 5.77E-35 0.3906

Booth 50.1297 1.954526 0.0028

Michalewicz -5.5E-13 -2.32001 -4.5706

155

Table 6. Comparison between MEPC1, MEPC2 and PSO

Table 7. Comparison between MEPC1, MEPC2 and ABC

Functions MEPC1 MEPC2 ABC

Ackly 8.88E-16 8.88E-16 0.1421

Sphere 1.17E-44 3.28E-36 0.0102

Rosenbrock 3.825285 0.003863 15.4923

Rastrigin 0 0 10.7627

Griewank 0 0 0.1333

Bukin 0.1 0.1 0.7341

Bohachevsky 0 0 3.01E-07

Zakharov 2.54E-44 5.77E-35 3.9614

Booth 50.1297 1.954526 8.10E-06

Michalewicz -5.5E-13 -2.32001 -2.8306

Table 8. Comparison between MEPC1, MEPC2 and DE

Functions MEPC1 MEPC2 DE

Ackly 8.88E-16 8.88E-16 1.77E-04

Sphere 1.17E-44 3.28E-36 1.34E-08

Rosenbrock 3.825285 0.003863 1.9891

Rastrigin 0 0 0.2993

Griewank 0 0 0.0139

Bukin 0.1 0.1 0.8872

Bohachevsky 0 0 8.45E-13

Zakharov 2.54E-44 5.77E-35 0.183

Booth 50.1297 1.954526 2.80E-05

Michalewicz -5.5E-13 -2.32001 -4.7952

Table 9. Comparison between MEPC1, MEPC2 and HS

Functions MEPC1 MEPC2 HS

Ackly 8.88E-16 8.88E-16 2.0935

Sphere 1.17E-44 3.28E-36 0.4327

Rosenbrock 3.825285 0.003863 69.4738

Rastrigin 0 0 7.3835

Griewank 0 0 0.0444

Bukin 0.1 0.1 1.9679

Bohachevsky 0 0 0.0056

Zakharov 2.54E-44 5.77E-35 4.4355

Booth 50.1297 1.954526 0.016

Michalewicz -5.5E-13 -2.32001 -4.4896

Table 8 provides comparison between MEPC1, MEPC2 and

DE. The results obtained declare that MEPC1 achieves better

in 70% of the tested function, DE performs better in three test

functions Rosenbrock, Booth and Michalewicz. MEPC2

achieves better in 80% of the tested function, DE performs

better in two test functions Booth and Michalewicz. DE

achieves better in these test function may be the nature of these

problems, being nonlinear, non-convex and multimodal.

Table 9 provides comparison between MEPC1, MEPC2 and

HS. The results obtained declare that MEPC1 achieves better

in 80 % of the tested function, HS performs better in two test

functions Booth and Michalewicz. MEPC2 achieves better in

80% of the tested function, HS performs better in two test

functions Booth and Michalewicz. HS achieves better in these

test function may be the nature of these problems, being

nonlinear, non-convex and multimodal.

Table 10 provides comparison between MEPC1, MEPC2

and IWO. The results obtained declare that MEPC1 achieves

better in 80% of the tested function, IWO performs better in

two test functions Rosenbrock, Booth and Michalewicz.

MEPC2 achieves better in 80% of the tested function, IWO

performs better in two test functions Booth and Michalewicz.

IWO achieves better in these test function may be the nature

of these problems, being nonlinear, non-convex and

multimodal.

Table 11 provides comparison between MEPC1, MEPC2

and GWO. The results obtained declare that MEPC1 achieves

better in 70% of the tested function, GWO performs better in

three test functions Rosenbrock, Booth and Michalewicz.

MEPC2 achieves better in 90% of the tested function, GWO

performs better in one test functions Michalewicz. GWO

achieves better in this test function may be the nature of these

problems, being nonlinear and multimodal.

Table 12 provides comparison between MEPC1, MEPC2

and CS. The results obtained declare that MEPC1 achieves

better in 70% of the tested function, CS performs better in

three test functions Bukin, Booth and Michalewicz. MEPC2

achieves better in 70% of the tested function, CS performs

better in three test functions Bukin, Booth and Michalewicz.

CS achieves better in these test function may be the nature of

these problems, being nonlinear, non-convex and multimodal.

Another analysis was conducted, it provides the variation of

each test function though the eleven Meta heuristics, the x-

axis provides the eleven Meta heuristics algorithms, while y-

axis provides the objective function value. Figure 3 provides

the variation in performance of Ackley test function over

eleven Meta heuristics algorithms, however the Ackley

function has several local minima, the best answer is obtained

by MEPC1 and MEPC2 algorithms, this best answer which

represent the minimum objective function value.

Table 10. Comparison between MEPC1, MEPC2 and IWO

Functions MEPC1 MEPC2 IWO

Ackly 8.88E-16 8.88E-16 0.0019

Sphere 1.17E-44 3.28E-36 9.21E-07

Rosenbrock 3.825285 0.003863 9.4521

Rastrigin 0 0 14.9577

Griewank 0 0 0.0435

Bukin 0.1 0.1 0.2859

Bohachevsky 0 0 2.00E-07

Zakharov 2.54E-44 5.77E-35 2.49E-06

Booth 50.1297 1.954526 2.76E-08

Michalewicz -5.5E-13 -2.32001 -3.94E+00

Table 11. Comparison between MEPC1, MEPC2 and GWO

Functions MEPC1 MEPC2 GWO

Ackly 8.88E-16 8.88E-16 1.92E-05

Sphere 1.17E-44 3.28E-36 2.76E-12

Rosenbrock 3.825285 0.003863 1.7491

Rastrigin 0 0 2.6374

Griewank 0 0 0.0542

Bukin 0.1 0.1 0.1509

Bohachevsky 0 0 7.18E-08

Zakharov 2.54E-44 5.77E-35 1.69E-08

Booth 50.1297 1.954526 1.9738

Michalewicz -5.5E-13 -2.32001 -2.4935

Functions MEPC1 MEPC2 PSO

Ackly 8.88E-16 8.88E-16 6.09E-04

Sphere 1.17E-44 3.28E-36 9.04E-08

Rosenbrock 3.825285 0.003863 1.7793

Rastrigin 0 0 2.9004

Griewank 0 0 0.0222

Bukin 0.1 0.1 0.2298

Bohachevsky 0 0 4.70E-10

Zakharov 2.54E-44 5.77E-35 4.70E-06

Booth 50.1297 1.954526 8.49E-11

Michalewicz -5.5E-13 -2.32001 -4.12E+00

156

Table 12. Comparison between MEPC1, MEPC2 and CS

Functions MEPC1 MEPC2 CS

Ackly 8.88E-16 8.88E-16 5.84E-01

Sphere 1.17E-44 3.28E-36 4.51E-10

Rosenbrock 3.825285 0.003863 2.53E+01

Rastrigin 0 0 5.44E+01

Griewank 0 0 4.41E-04

Bukin 0.1 0.1 0.0036

Bohachevsky 0 0 9.2174

Zakharov 2.54E-44 5.77E-35 2.30E+02

Booth 50.1297 1.954526 3.21E-09

Michalewicz -5.5E-13 -2.32001 -8.9059

Figure 4 provides the variation in performance of Sphere

test function, sphere is a simple function without local minima,

MEPC1 algorithm provides the minimum objective function

value comparing to the remaining Meta heuristics. Figure 5

provides the variation in performance of the Rosenbrock test

function, MEPC2 provides the minimum objective function

value comparing to the remaining Meta heuristics.

Figure 3. Variation in performance for Ackly Function

Figure 6 provides variation in performance of the Rastrigin

test function, although Rastrigin has several local minima, the

best answer is obtained by the MEPC1 and MEPC2 algorithms.

Figure 7 provides variation in performance of Griewank test

function, Griewank has several local minima, and the best

answer is obtained by MEPC1 and MEPC2 algorithms.

Figure 8 provides the variation in performance of Bukin test

function, Bukin function has many local minima, CS provides

the minimum objective function value comparing to the

remaining Meta heuristics. Figure 9 provides the variation in

performance of the Bohachevsky test function, MEPC1 and

MEPC2 algorithms provide the best results comparing to the

remaining Meta heuristics.

Figure 10 provides the variation in performance of

Zakharov test function, Although the Zakharov is a function

without a local minima, MEPC1 provides the minimum

objective function value comparing to the remaining Meta

heuristic. Figure 11 provides the variation in performance of

Booth test function. EPC provides the minimum objective

function value comparing to the remaining Meta heuristics.

Figure 4. Variation in performance for Sphere Function

Figure 5. Variation in performance for Rosenbrock Function

Figure 6. Variation in performance for Rastrigin Function

157

Figure 7. Variation in performance for Griewank Function

Figure 8. Variation in performance for Bukin Function

Figure 9. Variation in performance for Bohachevsky

Function

Figure 10. Variation in performance for Zakharov Function

Figure 11. Variation in performance for Booth Function

Figure 12. Variation in performance for Michalewicz

Function

158

And finally Figure 12 provides the variation in performance

of Michalewicz test function, The Michalewicz function is a

multi-modal and complex function CS provides the minimum

objective function value comparing to the remaining Meta

heuristics.

We can conclude from all the above, after set of experiments,

the two proposed algorithms MEPC1 and MEPC2 achieve best

solutions in most cases. But under complex nature of the

problem, complex conditions of the problem and without the

existence the local minima, the proposed algorithms not

achieve better. The proposed algorithms mainly not proceed

better in two test functions, Booth and Michalewicz due to the

complex nature of these problems.

More runs are conducted to check the behaviour with

regards to changes in the parameter ф, the changes of the

values of mutation factor don't much affected the results

obtained. We changed the value of mutation from 0.01 till 0.09

and the results not much changed, we used 0.05 times range

(max-min) as preferred in literature.

7. CONCLUSION AND FUTURE WORK

The original EPC algorithm is swarm based and nature

inspired that controlled by the thermal radiation and spiral like

movement of penguins, it uses logarithmic spiral like

movement of penguins. In this research we developed two

modified algorithms named MEPC1 and MEPC2. These two

modified algorithms are based mainly on the change of the

spiral like movement. MEPC1 algorithm uses Archimedes

spiral like movement, and MEPC2 algorithm uses hyperbolic

spiral like movement. Ten widely common benchmarks

problems are used to measure the performance of the

developed algorithms. MEPC1 and MEPC2 algorithms

achieved better solution in most solved problems. MEPC1

achieved better in 70% of the tested function. MEPC2

achieved better in 80% of the tested functions, MEPC1 and

MEPC2 also are compared to eight Meta heuristics, results

declared that MEPC1 and MEPC2 achieve better in most cases.

In the future, try to use EPC and the two modified algorithms

in solving discrete optimization problem, solving clustering

problem and complex network problems, and set of analysis

can be done to test the change of the random vector 𝜖 from

uniform to another distribution.

REFERENCES

[1] Li, X., Yin, M. (2015). Modified cuckoo search

algorithm with self-adaptive parameter method.

Information Sciences, 298: 80-97.

https://doi.org/10.1016/j.ins.2014.11.042

[2] Harifi, S., Khalilian, M., Mohammadzadeh, J.,

Ebrahimnejad, S. (2019). Emperor Penguins Colony: A

new metaheuristic algorithm. Evolutionary Intelligence,

12(2): 211-226. https://doi.org/10.1007/s12065-019-

00212-x

[3] Kirkpatrick, S., Gerlatt, C.D., Vecchi, M.P. (1983).

Optimization by simulated annealing. Science,

220(4598): 671-680.

https://doi.org/10.1126/science.220.4598.671

[4] Rashedi, E., Nezamabadi-pour, H., Saryazdi, S. (2009).

GSA: A gravitational search algorithm. Information

Sciences, 179(13): 2232-2248.

http://dx.doi.org/10.1016/j.ins.2009.03.004

[5] Hosseini, E. (2017). Big Bang Algorithm: A new meta-

heuristic approach for solving optimization problems.

Asian Journal of Applied Sciences, 10(3): 134-144.

http://dx.doi.org/10.3923/ajaps.2017.134.144

[6] Ahmadi, H. (2014). Charged System Search Algorithm.

In Innovative Computational Intelligence: A Rough

Guide to 134 Clever Algorithms.

http://doi.org/10.1007/978-3-319-03404-1_20

[7] Sivanandam, S., Deepa, S. (2007). Introduction to

Genetic Algorithms. Berlin: Springer Science &

Business Media. https://doi.org/10.1007/978-3-540-

73190-0

[8] Rainer, S., Price, K. (1997). Differential evolution–a

simple and efficient heuristic for global optimization

over continuous spaces. Journal of Global Optimization,

11(4): 341-359.

https://doi.org/10.1023/A:1008202821328

[9] Atashpaz-Gargari, E., Lucas, C. (2007). Imperialist

competitive algorithm: An algorithm for optimization

inspired by imperialistic. 2007 IEEE Congress on

Evolutionary Computation, Singapore, pp. 4661-4667.

https://doi.org/10.1109/CEC.2007.4425083

[10] Kennedy, J. (2011). Particle swarm optimization. In

Encyclopedia of machine learning and data mining.

Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine

Learning. Springer, Boston, MA, pp. 760-766.

https://doi.org/10.1007/978-0-387-30164-8_630

[11] Dorigo, M., Birattari, M., Stutzle, T. (2006). Ant colony

optimization. IEEE Computational Intelligence

Magazine, 1(4): 28-39.

https://doi.org/10.1109/MCI.2006.329691

[12] Yang, X. (2010). A new metaheuristic bat-inspired

algorithm. Nature Inspired Cooperative Strategies for

Optimization (NISCO 2010), 284: 65-74.

https://doi.org/10.1007/978-3-642-12538-6_6

[13] Yang, X.S., Deb, S. (2010). Engineering optimisation by

Cuckoo search. Int. J. Mathematical Modelling and

Numerical Optimisation, 1(4): 330-343.

https://arxiv.org/abs/1005.2908

[14] Geem, Z., Kim, J., Loganathan, G. (2001). A new

heuristic optimization algorithm: Harmony search.

Simulation, 76(2): 60-68.

https://doi.org/10.1177/003754970107600201

[15] Jain, M., Singh, V., Rani, A. (2019). A novel nature-

inspired algorithm for optimization: Squirrel search

algorithm. Swarm and Evolutionary Computation, 44:

148-175. https://doi.org/10.1016/j.swevo.2018.02.013

[16] Karaboga, D., Basturk, B. (2007). A powerful and

efficient algorithm for numerical function optimization:

artificial bee colony (ABC) algorithm. Journal of Global

Optimization, 39(3): 459-471.

https://doi.org/10.1007/s10898-007-9149-x

[17] Kwiecien, J., Filipowicz, B. (2012). Firefly algorithm in

optimization of queueing systems. Bulletin of the Polish

Academy of Sciences: Technical Sciences, 60(2): 363-

368. https://doi.org/10.2478/v10175-012-0049-y

[18] Rajakumar, B. (2012). The lion's algorithm: A new

nature-inspired search algorithm. Procedia Technology,

6: 126-135. https://doi.org/10.1016/j.protcy.2012.10.016

[19] Liu, Y., Meng, X., Gao, X., Zhang, H. (2014). A new bio-

inspired algorithm: Chicken swarm optimization.

Advances in Swarm Intelligence, 8794: 86-94.

https://doi.org/10.1007/978-3-319-11857-4_10

159

[20] Yu, J., Li, V. (2015). A social spider algorithm for global

optimization. Applied Soft Computing, 30: 614-627.

https://doi.org/10.1016/j.asoc.2015.02.014

[21] Bansal, J., Sharma, H., Jadon, S., Clerc, M. (2014).

Spider monkey optimization algorithm for numerical

optimization. Memetic Computing, 6(1): 31-47.

https://doi.org/10.1007/s12293-013-0128-0

[22] Odili, J., Kahar, M., Anwar, S. (2015). African buffalo

optimization: A swarm-intelligence technique. Procedia

Computer Science, 76: 443-448.

https://doi.org/10.1016/j.procs.2015.12.291

[23] Saremi, S., Mirjalili, S., Lewis, A. (2017). Grasshopper

Optimisation Algorithm: Theory and application.

Advances in Engineering Software, 105: 30-47.

https://doi.org/10.1016/j.advengsoft.2017.01.004

[24] Hosseini, E. (2017). Laying chicken algorithm: A new

meta-heuristic approach to solve continuous

programming problems. Journal of Applied and

Computational Mathematics, 6(1): 1-8.

https://doi.org/10.4172/2168-9679.1000344

[25] IJain, M., Maurya, S., Rani, A., Singh, V. (2018). Owl

search algorithm: A novel nature-inspired heuristic

paradigm for global optimization. Journal of Intelligent

& Fuzzy Systems, 34(3): 1573-1582.

https://doi.org/10.3233/JIFS-169452

[26] Karaboga, D., Basturk, B. (2007). A powerful and

efficient algorithm for numerical function optimization:

artificial bee colony (ABC) algorithm. Global Optim,

39(3): 459-471. https://doi.org/10.1007/s10898-007-

9149-x

[27] Mehrabian, A., Lucas, C. (2006). A novel numerical

optimization algorithm inspired from weed colonization.

Ecological Informatics, 1(4): 355-366.

https://doi.org/10.1016/j.ecoinf.2006.07.003

[28] Mirjalili, S., Mirjalili, S.M., Lewis, A. (2014). Grey wolf

optimizer. Advances in Engineering Software, 69: 46-61.

https://doi.org/10.1016/j.advengsoft.2013.12.007

[29] Kamoona, A., Stojcevsk, A., Patra, J.C. (2018). An

enhanced cuckoo search algorithm for solving

optimization problems. 2018 IEEE Congress on

Evolutionary Computation (CEC), pp. 1-6.

https://doi.org/10.1109/CEC.2018.8477784

160

