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The forecast of traffic flow state (TFS) is the key to the effective control of roads, especially 

during large competition events. To enhance the accuracy of TFS forecast, this paper puts 

forward a way to predict the TFS on the peripheral roads of large competition events, which 

is based on support vector regression (SVR) and parameter optimization. Firstly, the tensor 

recovery algorithm was adopted to fill up the missing data. Then, the simulated annealing 

(SA) algorithm was applied to optimize the SVR parameters like the penalty factor, and the 

insensitive loss. Next, a TFS forecast model for the road section near large venues was 

established based on the SVR and the optimized parameters. The example analysis shows 

that the parameter optimization improved the accuracy of the SVR forecast model, making 

the predicted results closer to the actual data. The proposed model greatly facilitates the 

management and control of road traffic during large competition events. 
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1. INTRODUCTION

The forecast of traffic flow state (TFS) is the key to the 

efficient operation of the traffic system and the effective 

control of roads. However, the TSF forecast faces high 

uncertainty under the combined effect of various internal and 

external factors, which reflect the time-variation, complexity 

and nonlinearity of the traffic system. It is particularly difficult 

to predict the short-term TFS when traffic control measures 

are adopted for large competition events. To overcome the 

difficulty, the variation law of traffic flow should be 

determined during large competition events, based on the 

spatiotemporal correlation of traffic flow data. Once the 

variation law is obtained, it is possible to find the way to 

project the TFS on roads in typical scenarios, and help the 

competent department to control the traffic effectively during 

large competition events.  

By our understanding of traffic state, the TFS is generally 

considered as continuous. In essence, the forecast of the TFS 

is to predict the variables, indices and parameters of the TFS. 

The existing TFS forecast methods generally fall into the 

following four categories.  

Some TFS forecast methods are based on parametric models. 

These methods estimate the parameters of the future TFS with 

accurate forecast models. The typical models include linear 

ones like time series method [1-4], Kalman filtering [5-8] and 

exponential smoothing, as well as nonlinear ones like wavelet 

analysis [10-12] and chaos theory [13-15]. 

Some TFS forecast models are based on nonparametric 

models. These methods require no accurate model expressions. 

Instead, the variation law of traffic flow data is mined out from 

a huge amount of historical or survey data, and used to predict 

the TFS. Such methods include the k-nearest neighbors (kNN) 

algorithm [16], decision tree [17-19], etc. 

Some TFS forecast methods are based on machine learning 

models, namely, the neural network (NN) [20-25] and the 

support vector machine [26-27]. These methods mainly train 

the model with abundant historical data to obtain the mapping 

between inputs and outputs.  

Some TFS forecast methods combine two or more types of 

the above methods. Through the combination, the merits of the 

different methods are retained and the defects are solved, 

leading to a better prediction accuracy. For example, Park [28] 

developed a hybrid forecast model for the TFS parameters of 

expressways based on the radial basis function (RBF) neural 

network (NN) and the fuzzy c-means (FCM) clustering. Zheng 

et al. [29] predicted the TFS using the Bayesian network and 

the NN. Boto-Giralda et al. [30] conducted TFS forecast with 

wavelet analysis and a self-organizing NN. For TFS prediction, 

Zhang [31] designed a model coupling the SVM and the 

seasonal autoregressive integrated moving average (ARIMA) 

model. 

Drawing on the fourth type of TFS forecast methods, this 

paper fully considers the strengths and weaknesses of multiple 

prediction models for TFS parameters, and then proposes a 

TFS forecast method based on support vector regression 

(SVR). To improve the forecast accuracy, the model 

parameters were optimized by the SA algorithm, which is 

suitable to solve largescale combinatorial optimization 

problems.  

2. DATA COLLECTION AND PROCESSING

This paper mainly tackles the TFS on the peripheral roads 

of large competition events. The TFS data were collected from 

a section of Xiangyun Avenue, a high-level trunk road, near 

Nanchang International Sports Center (NISC), a landmark 

sports building in Nanchang (Figure 1). The sampling area was 

selected for two reasons: the traffic state around the NISC 

directly affects the operation of the entire road network in 

Nanchang; the TFS on Xiangyun Avenue must be monitored 

in time, making it safe and rapid for traffic to converge and 

disperse before and after large competition events. 
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Figure 1. Location of the NISC 

 

Considering data availability, the mean speed data were 

collected from the section of Xiangyun Avenue in June, 2017 

and taken as the samples for TFS forecast. However, some of 

the TFS data went missing due to the maloperation of the 

collection devices and transmission failures. To solve the 

problem, the spatiotemporal features of the TFS data were 

analyzed, revealing the multi-mode correlation and 

spatiotemporal distribution pattern of the data. On this basis, a 

TFS data tensor model was constructed. Then, the missing data 

were filled up using the tensor recovery algorithm, which 

performs full-rank decomposition of low-rank multi-linear 

matrix. 

After the TFS data in July were preprocessed, the TFS data 

were selected from one day (e.g. July 1st) with competition 

events and another day (e.g. July 13th) without competition 

events for data recovery. The missing data in the TFS data on 

the two days were filled up. Figure 2 compares the time series 

of mean speeds before and after the recovery.  

 

 
(a) July 13th (without competition events) 

 
(b) July 1st (with competition events) 

 

Figure 2. The time series of mean speeds before and after the 

recovery 

 

As shown in Figure 2(a), when no competition events took 

place, the mean speed in the recovered data belong to the same 

interval as the mean speed of the normal hours, and the 

recovered data retain the fluctuation in the TFS. As shown in 

Figure 2(b), when competition events were held, the recovered 

data also retain the fluctuation in the TFS, and reflect how the 

road was gradually congested and then become smooth again 

through the competition events. To sum up, the tensor 

recovery algorithm has effectively filled up the missing data, 

and the recovered data reflect the TFS features, whether the 

competition events took place. 

 

 

3. TFS FORECAST MODEL BASED ON SVR AND 

PARAMETER OPTIMIZATION 

 

To effectively forecast the real-time TFS, this paper firstly 

analyzes the TFS data during large competition events, and 

fills up the missing data by the tensor recovery algorithm. Next, 

the SA algorithm was employed to optimize the parameters for 

the SVR forecast model, including the penalty coefficient C, 

the insensitive loss 𝜀 and the kernel function 𝜎. After that, a 

TFS forecast model was established based on the SVR and the 

optimal parameters. Finally, the model was applied to predict 

the TFS in an actual case. The results reveal the effects of 

parameter optimization on the forecast model, laying a solid 

basis for traffic control during large competition events. The 

technical roadmap of this research is given in Figure 3. 

 

 
 

Figure 3. Roadmap of TFS forecast based on the SVR and 

parameter optimization 

 

3.1 SVR model 

 

The SVR model was mainly constructed based on classifiers. 

Let T={(xi, yj),⋯ (xl, yl)}∈(X×Y)l be the training set, where 

xi∈X=Rn, yi∈Y={-1,1} and i=1,2,⋯l. Let (𝑥𝑖+𝑙
𝑇 , 𝑦𝑖+𝑙 − 𝜀)

𝑇 =

(𝑥𝑖
𝑇 , 𝑦𝑖 − 𝜀)

𝑇, i=1,2,⋯l. Then, a new training set was obtained 

as {((𝑥1
𝑇 , 𝑦1

𝑇 + 𝜀)𝑇 , 1),⋯ ((𝑥𝑙
𝑇 , 𝑦𝑙

𝑇 + 𝜀)𝑇 , 1), ((𝑥1+1
𝑇 , 𝑦1+1

𝑇 +
𝜀)𝑇 , −1),⋯ ((𝑥21

𝑇 , 𝑦21
𝑇 + 𝜀)𝑇 , −1). In this way, the regression 

of the original training set is converted into the binary 

classification of the new training set. Based on the new 

training set, the optimal classification hyperplane was 

obtained by the SVM classification. Then, the regression 

decision function was derived from this hyperplane. The 

specific steps are as follows: 
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Step 1. Set up the training set, where xi∈X=Rn, yi∈Y={-1,1} 

and i=1,2,⋯l. 
Step 2. Select suitable insensitive loss ε and penalty 

coefficient C, and determine a proper kernel function 𝐾(𝑥, 𝑥′). 
Step 3. Construct and solve the following optimization 

problem:  

 

{
 
 
 

 
 
 
𝑚𝑖𝑛

𝑎(∗)∈𝑅2𝑙

1

2
∑(𝑎𝑖

∗ − 𝑎𝑖)(𝑎𝑗
∗ − 𝑎𝑗)𝐾(𝑥𝑖 , 𝑥𝑗) + 𝜀∑(𝑎𝑖

∗ + 𝑎𝑖) −∑𝑦𝑖(𝑎𝑖 , 𝑎𝑖
∗)

𝑙

𝑗=1

𝑙

𝑖=1

𝑙

𝑖,𝑗

𝑠. 𝑡.∑(𝑎𝑖 − 𝑎𝑖
∗) = 0

𝑙

𝑖=1

0 ≤ 𝑎𝑖 , 𝑎𝑖
∗ ≤

𝐶

𝑙
, 𝑖 = 1,2,⋯ 𝑙

 (1) 

 

Find the optimal solution 𝑎 = (𝑎1, 𝑎1
∗
, ⋯ 𝑎𝑙 , 𝑎𝑙

∗
)𝑇. 

Step 4. Derive the decision function 𝑓(𝑥) = ∑ (𝑎𝑖
∗
−𝑙

𝑖=1

𝑎𝑖) 𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏, where 𝑏 = 𝑦𝑖 − ∑ (𝑎𝑖
∗
−𝑙

𝑖=1 𝑎𝑖)(𝑥𝑖 ⋅ 𝑥𝑗) + 𝜀 

and 𝑎𝑗 ∈ (0,
𝐶

𝑙
). 

Note that the model inputs need to reflect the features of the 

sample data during the SVR analysis. In existing studies, the 

forecast models all have only one input parameter, namely, 

speed, flow or occupancy. Considering the availability of the 

TFS data, this paper selects the mean speed in the target 

section as the input of the forecast model. This input parameter 

both ensures the effective prediction of the TFS and reflects 

the real-time speed on the section. 

 

3.2 SA-based parameter optimization 

 

After building the TFS forecast model, the SA algorithm 

was employed to analyze how different parameter 

combinations affect the forecast result. During the iterative 

update of feasible solutions under random factors, there is a 

certain probability for the SA algorithm to accept a solution 

inferior to the current solution. Therefore, this algorithm can 

avoid the local optimum trap and converge to the global 

optimal solution, thus maximizing the forecast accuracy. The 

SA algorithm is implemented in the following steps: 

Step 1: Set the initial temperate T(sufficiently large), the 

lower bound of temperature Tmin(sufficiently small), the initial 

solution state x(the start point of iterations), and the number of 

iterations for each T value (L). 

Step 2: Perform Steps 3~6 for l=1,2,3⋯,L. 

Step 3: Generate a new solution x_new:(x_new=x+Δx). 

Step 4: Compute the increment Δf=f(x_new)-f(x), where f(x) 

is the objective function of the optimization problem. 

Step 5: If Δf<0 (or Δf>0 for the objective of maximization), 

accept 𝑥_𝑛𝑒𝑤 as the new current solution; otherwise, accept 

𝑥_𝑛𝑒𝑤 as the new current solution at the probability of 𝑒𝑥𝑝( −
𝛥𝑓

𝑘𝑇
). 

Step 6: If the termination condition is satisfied, output the 

current solution as the optimal solution and terminate the 

iteration process. 

Step 7: If T gradually decreases and T>Tmin, go to Step 2. 

The workflow of the SA algorithm is illustrated in Figure 4 

below. 

 

 
 

Figure 4. The workflow of parameter optimization 
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4. EXAMPLE ANALYSIS 

 

To verify its effectiveness, the proposed forecast model was 

applied to predict the TFS with and without competition events, 

based on the mean speed data collected from the target section 

from July 1st to 31st, 2017. 

 

4.1 Analysis on the forecast results without competition 

events 

 

To predict the TFS without competition events, the forecast 

model was only provided with the TFS data on the section 

when no competition events took place. To fully disclose the 

prediction effect, the SVR forecast model was adopted to 

predict the time series of mean speeds in the section, 

respectively using the parameters obtained by the traversing 

method and the SA algorithm. The ratio of training data to 

testing data was set to 9:1. Figure 5 presents the predicted time 

series of mean speeds in the section. 

 

 
 

Figure 5. The predicted mean speeds in the section without 

competition events 

 

To put it more intuitively, the mean absolute percentage 

error (MAPE) and the root mean square error (RMSE) were 

selected to evaluate the forecast result. Table 1 shows the two 

errors of the predicted mean speeds in the section without large 

competition events. 

 

Table 1. The errors of the TFS forecast without competition 

events 

 

 

SVR 
SVR and parameter 

optimization 

MAPE 

(%) 
RMSE MAPE (%) RMSE 

Mean 

speed 
4.89 5.15 4.87 5.11 

 

As shown in Figure 5 and Table 1, when no competition 

events took place, the SVR algorithm predicted the TFS in the 

section accurately, and the SA algorithm further improved the 

forecast accuracy by optimizing the SVR parameters. The 

results indicate that the parameter optimization by the SA can 

effectively improve the TFS forecast effect of the SVR. 

 

4.2 Analysis on the forecast results with competition events 

 

To predict the TFS with competition events, the forecast 

model was only provided with the TFS data on the section 

when competition events took place. Similarly, the SVR 

forecast model was employed to predict the time series of 

mean speeds in the section, respectively using the parameters 

obtained by the traversing method and the SA algorithm. The 

ratio of training data to testing data was set to 9:1. Figure 6 

presents the predicted time series of mean speeds in the section. 

 

 
 

Figure 6. The predicted mean speeds in the section with 

competition events 

 

The MAPE and the RMSE were also selected to evaluate 

the forecast effect of the original SVR and our model on the 

TFS with competition events. Table 2 lists the two errors of 

the forecast results of the two models. 

As can be seen in Figure 6 and Table 2, the TFS fluctuation 

with large competition events was much more obvious than 

that without large competition events, and the TFS variation 

was far from smooth. In this case, the forecast errors of the 

TFS were clearly on the rise. The MAPE soared from about 

5% without competition events to around 50% with 

competition events. The rising error is attributable to the 

following factors: (1) The number of training samples is rather 

limited, for only a few sample data were collected on the days 

with competition events; (2) The short-term fluctuation of the 

TFS has a great impact on the forecast accuracy, which is also 

affected by the duration of the competition events. Despite the 

error increment, the SVR could predict the complete TFS trend 

in the section, and project the trend much more accurately after 

the parameters were optimized by the SA algorithm. 

 

Table 2. The errors of the TFS forecast with competition 

events 

 

 

SVR 
SVR and parameter 

optimization 

MAPE 

(%) 
RMSE MAPE (%) RMSE 

Mean 

speed 
31.46 10.47 28.44 10.15 

 

 

5. CONCLUSIONS 

 

During large competition events, the forecast of the real-

time TFS in the peripheral roads can enable the competent 

department to take targeted traffic control measures, prevent 

the severe congestion caused by these events, and protect the 

normal and efficient operation of the road network. Therefore, 

this paper proposes to predict the TFS in the peripheral roads 

of large competition events using the SVR and parameter 

optimization. Firstly, the tensor recovery algorithm was 

adopted to fill up the missing data. Then, the SVR parameters 
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were optimized by the SA algorithm. Next, a TFS forecast 

model was established based on the SVR and the optimized 

parameters, and verified through an example analysis. The 

empirical results show that our forecast model, which is based 

on SVR and parameter optimization, can effectively predict 

the real-time TFS in the peripheral roads of large competition 

events. Through error analysis, it is learned that the parameter 

optimization can greatly improve the forecast accuracy of the 

SVR model.  

It should be noted that the TFS can be characterized by 

many indices. Considering the data availability, our model was 

verified using only one input variable, namely, the mean speed 

of the section. Further research may build a forecast model 

with multiple TFS indices. Besides, the TFS features high 

stochasticity and volatility. In addition to large competition 

events, the TFS is also greatly affected by the driver’s 

behavioral preference, the road conditions and the weather. To 

forecast the TFS more comprehensively, more influencing 

factors should be included into the TFS prediction, creating a 

multi-factor TFS forecast model. 
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