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The electroencephalogram (EEG) signal is known as a nonlinear and complex signal. The EEG 

signal has very important information about brain activities and disorders which can detect by 

an accurate Computer-aided diagnosis system. The performance of the Computer-aided 

diagnosis system directly depends on using features in the classifiers. In this paper, we 

proposed nonlinear geometrical features for the classification of EEG signals. The normal, 

interictal and ictal EEG signals of the Bonn university EEG database are plotted in 2D space 

by a novel approach and considering their patterns, six features namely: area of the octagon 

(AOO), circle area (CA), the summation of vectors length (SVL), centroid to coordinate center 

(CTC), circular radius out of triangles (CRT) and triangle area (TA) are extracted on different 

aspects of distance in Cartesian space. Based on the Kruskal–Wallis statistical test, all of the 

features were found statistically significant in the discrimination of normal vs. ictal and 

interictal vs. ictal EEG signals (p-value≈0). Also, the edges of 2D projection EEG signals in 

the ictal group were sharper than normal and interictal groups. Besides, 2D projection of 

normal and interictal EEG signals has more regular geometrical shapes than the ictal group. 

Our proposed features were applied as input on support vector machine (SVM) and k-nearest 

neighbors (KNN) classifiers which resulted in more than 99% classification accuracy in a ten-

fold cross-validation strategy. 
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1. INTRODUCTION

Epilepsy is a common brain disorder due to abnormal 

activity of neurons. It normally affects more than 50 million of 

the population in the world who most of them are living in 

developing countries [1]. Doctors and neurologists can 

evaluate the brain nerve activity by analyzing the 

Electroencephalography (EEG) signal. In EEG records, 

epilepsy attacks have manifested themselves with spikes in the 

EEG signal which can be detected visually by the medical 

team [2]. Visual inspection of EEG records for the long-term 

to detect presence of epilepsy attacks by medical team are very 

boring, time consuming and prone to human error. Therefore, 

a Computer-aided diagnosis system for detection of epilepsy 

attacks in EEG signals is desirable [3]. For this purpose, for 

the past two decades, several machine learning methods based 

on the extraction of features from EEG signals have been 

developed in the literates. There is a direct relationship 

between the clinically significant feature extraction from EEG 

signals and the performance of machine learning which 

resulted to design an accurate Computer-aided diagnosis 

system. Traditionally, extracted features are categorized into 

three groups; including extracted features in time (T) domain, 

frequency (F) domain and time-frequency (T-F) domain. T 

domain features are extracted from EEG signal without any 

processing method on EEG signal. In other words, these 

features are evaluating EEG signal behaviors in T domain. T 

domain features like mean, median, mode, minimum, 

maximum, skewness, standard deviation, kurtosis, energy, 

correlation and histograms have been computed from EEG 

signal, previously [4-13]. The T domain cannot show many 

inherent behaviors of the EEG signal. For this reason, the EEG 

signal transforms from the T domain to the F domain. The 

spectrum shows the frequency components of EEG signals. 

Fast Fourier transforms (FFT) algorithm is the most used tool 

for representing frequency spectrum. Phase slope index, 

frequency moment signatures and mean frequency have been 

computed from EEG signals in the F domain [14, 15]. 

Although FFT is very useful for analyzing the spectrum, there 

is no relationship between the T domain and the F domain [16]. 

In other words, extracted features in the F domain are useful 

when the EEG signal is assumed stationary. But in essence, the 

EEG signal is complex and non-stationary and it can be 

assumed stationary only in the short-term. So, T-F approaches 

like wavelet transform and empirical mode decomposition was 

decomposed the EEG signals and several features including: 

entropy-based features (log energy, Shannon, threshold, norm), 

chaotic-based features (fractal dimension, Lyapunov exponent, 

centered correntropy, information potential) were extracted 

from EEG sub-bands as T-F domain features [17-22]. 

Expect of these traditional methods, researchers have 

suggested a few numbers of geometrical methods for the 

detection of epilepsy attaches by using second-order 

difference plot [23] and reconstructed phase space [24]. The 

EEG signals were decomposed to intrinsic mode functions 

(IMFs) by empirical mode decomposition, then the 

computation of the elliptical pattern of the second-order 

difference plot of IMFs was considered as a feature [23]. In 

similar research [24], the elliptical pattern of the reconstructed 

phase space of IMFs was considered as a feature. In other 
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words, their works [23, 24] can be categorized in T-F methods, 

because EEG signals are decomposed by empirical mode 

decomposition. 

Two methods of phase reconstructed phase space [23] and 

second-order difference plot [24] have been used in the past to 

represent the signal in two dimensions. The reconstructed 

phase space requires the estimation of two parameters, namely 

the time delay and the embedding dimension, which are 

calculated with mutual information (MI) and false nearest 

neighbor (FNN) [16, 25], respectively. The disadvantage of 

the phase space reconstruction method is that it is time-

consuming because the MI and FNN calculations are 

extremely heavy [24]. 

The second-order difference plot method is suitable for 

showing signal variations because of drawing a two-

dimensional signal difference [23]. But sometimes signal 

differentiation cannot give us good information about the 

behavior and dynamics of the signal itself.  

For this reason, in this paper, we propose a novel method 

for plotting the signal in two dimensions, which, unlike phase 

space reconstruction, does not require any parameter, so it can 

quickly plot the signal in two dimensions. In addition, the 

proposed method shows the signal itself in two dimensions and 

the difference, unlike the second-order difference plot method. 

So, the behavior and dynamics of the signals can be better 

observed. 

In this paper, the new features represent the complex 

behaviors of EEG signals in 2D space and their proposed 

patterns can discriminate the EEG signals in normal vs. ictal, 

and interictal vs. ictal groups better than traditional approaches, 

without any T-F methods [26]. 

The rest part of the paper is organized as follows: In section 

2, geometrical method with used database, proposed 2D 

projection, area of the octagon (AOO), circle area (CA), the 

summation of vector length (SVL), centroid to centroid (CTC) 

and triangle area (TA) are covered. Results are provided in 

section 3. Finally, the discussion and conclusion of our paper 

are presented in section 4. 

 

 

2. GEOMETRICAL METHOD 

 

2.1 Used database 

 

Our proposed method has been evaluated by known Bonn 

university EEG database which is freely downloadable from 

the http://epileptologie-bonn.de web site. There are five 

subsets of this database called A, B, C, D and E. Each sub-set 

has 100 EEG signals in a Text Document format (.txt). The 

duration of each EEG signal is 23.6 seconds, which was 

sampled at a rate of 173.61 Hz, so it has 4097 samples. The 

subset of A and B belong to five healthy subjects in eyes 

opened and closed conditions, respectively. The subset of C 

and D belong to five patients who had completed recovered 

from seizure control after surgery of epileptic locations. The 

subset E is composed of EEG signals with epileptic seizure 

activities that are observed in the epileptogenic zone. The 

signals in A and B sub-set are considered normal signals, C 

and D sub-sets are considered as interictal signals and signals 

in the E subset are considered as ictal signals. More details 

about the Bonn university EEG database can be found by 

Andrzejak et al. [27]. 

 

 

2.2 Proposed 2D projection 

 

In this work, 4096 sample points of EEG signals were 

selected for evaluating our proposed method. All the 

calculations of our proposed method are carried out using the 

MATLAB software, also any tool box not used. In this paper, 

a geometrical non-linear method is developed which is directly 

depended to the number of EEG samples. By assuming that 

EEG signal be x(n)=[x1;x2;x3;…;xn], the EEG signals should be 

evolved into 2D projection with the following formula: 

 

1 3 5 4095( ) [ ; ; ;...; ]X m x x x x=
 

(1) 

 

2 4 6 4096( ) [ ; ; ;...; ]Y m x x x x=
 

(2) 

 

1 2 1 3 4 2 1

2D Projection ( )=[ ( ),  ( )]

=[( , ) ; ( , ) ;...; ( , ) ]n n m

m X m Y m

x x x x x x−

 (3) 

 

where, n is the lengths of the input signal x(n) and m is the 2D 

projection points and equal to n/2 (i.e. 2048 points which are 

mapped on Cartesian space).  

Figure 1 shows a sample of 2D projection of normal, 

interictal and ictal EEG signals. Due to 2D projection of EEG 

signal pattern, we can compute the significant geometrical 

features to discrimination of ictal EEG signals from normal 

and interictal EEG signals. 

 

 
 

Figure 1. 2D projection of the normal, interictal and ictal 

EEG signals 

 

2.3 Area of octagon (AOO) 

 

It is clear from Figure 1 that the 2D projection of EEG 

signals has geometrical patterns. It motivates us to compute 

the area of geometrical patterns as discrimination features. So, 

seems that the area of the octagon (AOO) of the 2D projection 

of EEG signals can give useful diagnostic feature. The AOO 

of 2D projection can be computed as follows [28]: 
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(4) 

 

(1/ ) ( ) ( )xyM M X m Y m=   
(5) 

2 2 2sum X Y
M M M= +

 
(6) 

 

2 2 2prd X Y
M M M= 

 
(7) 

 

2 2 2

1/2[ 4( )]
sum prd XY

D M M M= − −
 

(8) 

 

2

1/2[3( )]
sum

Dia M D= +
 

(9) 

 

The AOO is obtained from Figure 2 as given below. 

 

 
 

Figure 2. The octagon for AOO calculation 

 

In the above Figure 2 From ΔABC, as all sides are equal in 

an octagon, 

 
2 2 2| | | |S AC BC= +

 
(10) 

 

Therefore 

 

| | / 2AC S=  
(11) 

 

where, ‘S’ is the sides of the octagon. In general, Diameter of 

the octagon is given by 

 

Diameter 2( 2)S S= +
 

(12) 

 

Since 
/ (1 2)S Diameter= +

 (13) 

 
21 2) 2( Area of octag Son = +   

(14) 

 

On substituting ‘S’ value in AOO 

 
22

1 2
A iOO D a= 

+  
(15) 

 

2.4 Circle Area (CA) 

 

It can observe from Figure 1 that 2D projection of ictal EEG 

signal occupies more area than normal and intellectual groups. 

It mentioned to us that area computation can give useful 

diagnostic feature. Every two successive points on 2D 

projection, make a vector and each vector can make a circle 

with diameter D which equal to the vector length. In this work, 

the summation of circle areas using consecutive vectors is 

computed as a feature. The summation of circle areas using 

consecutive vectors is defined as: 

 
3

2 2

2 3 1

1

(( ) ( ) )
2

n

i i i i

i

CA x x x x
−

+ + +

=

= − + −
 

(16) 

 

where, n denote to the samples of input EEG signal x(n); also, 

(xi, xi+1), (xi+2, xi+3), indicated to coordinate the two successive 

points on the 2D projection of EEG signals. Besides, CA is a 

summation of the circle area using consecutive vectors. The 

summation area of brown circles in Figure 3 is considered as 

a feature.   

 

 
 

Figure 3. Illustration of CA as s feature 

 

2.5 Summation of vectors length (SVL) 

 

For quantification EEG signal amplitude changes in the 

time domain, we can compute the summation of successive 

vector lengths which make by the consecutive points on the 

2D projection of EEG signals. In other words, we calculate the 

summation of consecutive vector length as a feature. It's 

defined as follows: 

 
3

2 2

2 3 1

1

( ) ( )
n

i i i i

i

SVL x x x x
−

+ + +

=

= − + −
 

(17) 

 

where, n denote to the samples of input EEG signal x(n); also, 

(xi, xi+1), and (xi+2, xi+3) indicated to coordinate the two 

successive points on 2D projection of EEG signals which 

make a vector. Besides, SVL is the summation of successive 

vector lengths. The summation distance of a, b, c, d, e, f, g and 

h vector length in Figure 4 are considered as a feature. 

 

 
 

Figure 4. Illustration of SVL as s feature 
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2.6 Centroid to Coordinate Center (CTC) 

 

Every three successive points in the 2D plan make a triangle. 

So, points on the 2D projection of EEG signals can evolve into 

successive triangles. The distance between the center of the 

triangle and coordinate center can give useful diagnostic 

considering to the pattern of EEG signals in 2D space, because 

of ictal EEG signals that have occupied more area than normal 

and interictal EEG signals. The coordinates of the center of a 

triangle with (xi, xi+1), (xi+2, xi+3) and (xi+4, xi+5) edges can be 

computed as follow [34]: 

 

2 4

3

i i i
C

x x x
X + ++ +

=
 

(18) 

 

1 3 5

3

i i i
C

x x x
Y + + ++ +

=
 

(19) 

 

where, (XC, YC) denote to the triangle center coordinate. So the 

summation of centroid to coordinate center (CTC) distance of 

successive triangles can be defined as follows: 

 

2 2

1

[ ] [ ]

u

C C

i

CTC X Y

=

= +  (20) 

 

where, u denote the number of successive triangles on 2D 

projection of EEG signals that is equal to 1023 which make 

with 2047 points.  

The summation length of orange vectors in Figure 5 is 

considered as a feature. 

 

 
 

Figure 5. Illustration of CTC as s feature 

 

2.7 Circular radius out of triangles (CRT) 

 

We said that each three successive points on coordinate 

plane make a triangle. We can draw a circle with radius r out 

the each of triangle. In this paper, we are computed the 

summation of radius of the circles out of successive triangles 

as a feature.  

Assuming that (xi, xi+1), (xi+2, xi+3) and (xi+4, xi+5) be three 

edges of a triangle on 2D space, then three sides of triangle are 

calculated as follow: 

 

2 2

2 3 1( ) ( )i i i ia x x x x+ + += − + −
 

(21) 

 

2 2

4 2 5 3( ) ( )i i i ib x x x x+ + + += − + −
 

(22) 

2 2

4 1 5( ) ( )i i i ic x x x x+ + += − + −
 

(23) 

 

where, a, b and c denote to three sides of first triangle. So, the 

triangle area can be calculated by the Heron principle as follow:  

 

( ) ( ) ( ) ( )

2 2 2 2

area

a b c a b c a b c a b c

=

+ + − + + − + + −
+ + +

 
(24) 

 

Finally, the radius of circle out of firs triangle is calculated 

as: 

 

4

a b c
r

area

 
=


 (25) 

 

In this work, the summation of the circular radius out of the 

successive triangles is computed as a feature as follow: 

 

1

u

i

i

CRT r
=

=
 

(26) 

 

where, u denote the number of successive triangles on the 2D 

projection of EEG signals and it is equal to 1023 which makes 

with 2047 points. The CTC and SVL are similar to CRT with 

this difference, that SVL and CTC quantify the variability of 

amplitude in the time domain, but CRT quantifies the self-

similarity of the EEG signals on 2D projection plan with more 

flexibility than cross-correlation [8]. Although the SVL and 

CTC evaluate the variability of amplitude, SVL is sensitive to 

CTC. On the other hand, CTC can be more useful than SVL in 

ictal detection when EEG signal has baseline noise.  

 

 
 

Figure 6. Illustration of CRT as s feature 

 

The summation radius of brown circles in Figure 6 is 

considered as a feature. 

 

2.8 Triangle area (TA) 

 

It is clear from Figure 1 that the scatter of points of EEG 

signals on the 2D projection plane is more on y=x and y=-x 

lines. For quantifying the scatter of points on y=x line, we 

computed the shortest distance of each point from 45degree 

line (shD) and for quantifying the scatter of points on y=-x line, 

distance of each point from coordinate center (crD) is 

computed. To combination of the shD and crD, we computed 

the area of a triangle which the shD and crD are two sides of 

it. With having the two sides of a right-angled triangle, we can 
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compute the third side by the Pythagorean Theorem. The shD 

and crD of (xi, xi+1) point on EEG signals on 2D space can be 

defined as:  

 

1

2

i ix x
shD

+−
=

 
(27) 

 
2 2

1i icrD x x += +
 

(28) 

 

where, n denote to the samples of input EEG signal x(n). So, 

with having the two sides of triangle, the third side is 

calculated as follow: 

 
2 2 2crD shD L= +  (29) 

 

Finally the triangle area can be calculated as follow: 

 

2

shD L
S


=

 
(30) 

 

In this work the summation area of triangles is used as a 

feature. It defined for 2D projection of EEG signals as follow: 

 

1

n

i

i

TA S
=

=
 

(31) 

 

where, n denote to the samples of input EEG signal x(n); also, 

TA is the summation of triangle areas. The summation area of 

blue triangles in Figure 7 is considered as a feature. 

 

 
 

Figure 7. Illustration of TA as s feature 

 

2.9 Classifiers 

 

For classification of geometrical features, we employed two 

well-known classifiers, namely: support vector machine 

(SVM) and k-nearest neighbors (KNN) [3, 29, 30]. In the 

binary SVM classifier, input features are mapped to hyper 

dimensional space using kernel function; then a hyperplane 

with a maximum margin (optimal margin) is separated the 

features in two classes [29, 30]. KNN is a simple classifier 

with fast implementation [3]. In binary KNN classifier, first 

the training data of both classes are sorted. Then, the test data 

can be classified in the first or second group with considering 

to its K closed training data [3, 17]. That way, the test data 

belongs to classes that have more members among K closed 

neighbors (i.e. K closed test data). The kernel function and 

distance metric have a direct relationship in the correct 

classification of test data in SVM and KNN classifiers, 

respectively. In this work, radial basis function (RBF) and 

city-block are applied as kernel function and distance metric 

in SVM and KNN classifiers, respectively. Figure 8 and Figure 

9 are explained the SVM and KNN algorithms in the binary 

classification by assuming that two features from each group 

are extracted. It can be understood form Figure 8 that the 

optimal margin (best hyperplane) can separate two classes 

better than the other margin. In Figure 9, the first, second, third 

and fourth circles around test data determine the one, seven, 

fourteen and twenty-one closed training data. The test data 

belongs to classes A, B, A and B with assuming that K is 1, 7, 

14 and 21, respectively. 

 

 
 

Figure 8. Illustration of the SVM algorithm as a used 

classifier 

 

 
 

Figure 9. Illustration of the KNN algorithm as a used 

classifier 

 

 

3. RESULT 

 

In this paper, we proposed novel non-linear geometrical 

features in order to discrimination of EEG signals in two 

classification tasks, including: normal vs. ictal (i.e. AB vs. E) 

and interictal vs. ictal (i.e. CD vs. E). P-value evaluates the 

ability of features in order to discriminate between the two 

classes [3]. In the present study, Kruskal–Wallis statistical test 

is applied to p-value computation [3, 15-19, 22, 24, 28, 30]. 

The kruskalwallis function in MATLAB is used for p-value 
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computation. Features with less than 0.001 the p-value can be 

considered as clinically significant features in designing a 

Computer-aided diagnosis system [31-33]. In other word, 

lesser p-value indicates to better ability of features in the 

discrimination of groups [3, 16, 30]. In this work, we 

computed the p-values for normal vs. ictal and interictal vs. 

ictal groups. Also, the box plot is employed in showing the 

minimum, first quartile, median, third quartile, and maximum 

values of the extracted features. The mean and standard 

deviation of features are written in the Table 1 and resulted p-

values are written in the Table 2. Also, box plots of features 

are shown in Figure 10. Clearly can be understood from Table 

1, the mean values of the extracted features in normal, 

interictal and ictal EEG signals are significantly different with 

together. Also, it can be observed from Table 2 that the most 

of the p-values are very near to zero. Since the p-values for all 

properties are very close to zero, this means that the extracted 

property has a high ability to separate the two groups. In 

addition, in Table 2 the mean value of the features in the ictal 

signal is significantly larger than the mean value of the 

features in the normal and intractal signal. Given the low p-

value values in Table 1, it can be said that all the features can 

be well defined in the classification task defined as normal vs. 

ictal, and interictal vs. ictal. This can also be obtained by 

analyzing Table 1, since the mean value in all features 

extracted from ictal signals is significantly larger than normal 

and Interictal signals. This can also be seen by examining the 

feature plots in Figure 10, since the box plot of all features for 

ictal signals is significantly larger than the box features for 

normal and interictal signals. The box plot of the features is 

illustrated in Figure 10, in which the ictal EEG signals 

revealed higher AOO, CA, SVL, CTC, CRT and TA values than 

normal and interictal EEG signals (notice that expect of CRT 

box plot, the other box plots are illustrated the logarithmic 

values of the features). These reasons tell us that these 

nonlinear geometrical features can leaded us in designing an 

accurate Computer-aided diagnosis system. Hence, SVM and 

KNN classifiers are employed for designing a Computer-aided 

diagnosis system. 

 

 
 

Figure 10. Box plot of features 
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Table 1. Mean and standard deviation of features 

 
Feature Normal Interictal Ictal 

AOO 
4.94E+06 

±3.41E+06 

7.74E+06 

±2.09E+07 

1.53E+08 

±1.32E+08 

CA 
2.07E+07 

±1.77E+07 

9.28E+06 

±1.98E+07 

7.25E+08 

±8.88E+08 

SVL 
9.05E+04 

±3.61E+04 

4.91E+04 

±2.71E+04 

4.26E+05 

±2.66E+05 

CTC 
1.22E+05 

±4.58E+04 

1.39E+05 

±8.64E+04 

6.38E+05 

±2.94E+05 

CRT 
4.79E+09 

±8.23E+09 

1.06E+10 

±8.68E+10 

4.93E+12 

±7.60E+12 

TA 
8.41E+05 

±6.08E+05 

6.85E+05 

±1.55E+06 

2.62E+07 

±2.65E+07 

 

Table 2. Resulted p-values 

 
Feature Normal vs. Ictal Interictal vs. Ictal 

AOO 3.78E-45 7.81E-43 

CA 1.29E-42 3.00E-44 

SVL 1.24E-39 2.56E-44 

CTC 4.0E-45 8.43E-43 

CRT 1.34E-43 1.16E-43 

TA 4.11E-44 5.82E-41 

 

These reasons tell us that these six nonlinear geometrical 

features can leaded us in designing an accurate Computer-

aided diagnosis system. Hence, SVM and KNN classifiers are 

employed for classification and designing a Computer-aided 

diagnosis system.  

By assuming the EEG signals in ictal and non-ictal groups 

(i.e. normal and interictal be non-ictal in normal vs. ictal and 

interictal vs. ictal classification task, respectively), then the 

out-put of classifier is in one of the following conditions [3, 

17, 24]: 

TP (true positive): when ictal EEG signal is identified as 

ictal EEG signal. 

TN (true negative): when non-ictal EEG signal is identified 

as non-ictal EEG signal. 

FP (false positive): when non-ictal EEG signal is identified 

as ictal EEG signal. 

FN (false positive): when ictal EEG signals is identified as 

non- ictal EEG signal.  

With these parameters, accuracy (ACC), sensitivity (SEN) 

and specificity (SPE) can be defined as follow [3, 17, 24]: 

 

100
TP TN

ACC
TP TN FP FN

+
= 

+ + +  
(33) 

 

100
TP

SEN
TP FN

= 
+  

(34) 

 

100
TN

SPE
TN FP

= 
+  

(35) 

 

In general, k-fold cross-validation [17, 24] is used to break 

the data into train and test to be used by the classifier. Actually, 

for the k-fold cross-validation, k time, k- 1 subset is used to 

train, and one resume subset is used to test the classifier. 

Finally, the mean value of ACC, SEN and SPE parameters are 

reported. Most of the articles that we wanted to compare our 

method with them used cross-validation technique [10, 11, 13, 

22-24]. For this reason, we also used 10-fold cross-validation 

to analyze the results under almost equal conditions. The 

objective parameters for SVM and KNN classifiers with 

geometrical features are written in the Table 3 and Table 4, 

respectively. 

The sigma value of RBF is varied from 0.1 to 1 by 0.1 step 

and number of k is varied from 1 to 9 by 2 step which the 

optimal ACC value for SVM and KNN classifier is obtained 

then sigma is chosen to 0.1 and number of k is chosen to 5, 

respectively. Besides, the ACC in Table 2 and 3 are resulted 

by one feature (i.e. feature vector has one array). With 

according to the resulted ACC, it can be observed that SVM 

and KNN classifier is better in order to normal vs. ictal and 

interictal vs. ictal classification, respectively. 

 

Table 3. Performance of geometrical features with SVM 

classifier 

 

Feature vector 
Normal vs. Ictal 

ACC (%) SEN (%) SPE (%) 

CTC 99.33 99 99.50 

AOO 98.33 98 98.5 

CA 98 97 93.5 

TA 95.66 95 96 

SVL 94.33 93 95 

CRT 93.66 81 100 

Average. value 96.55 93.83 97.08 

Feature vector 
Interictal vs. Ictal 

ACC (%) SEN (%) SPE (%) 

AOO 95.66 100 94 

CA 97.66 99 97 

TA 96.33 99 95 

SVL 97.33 97 97.5 

CTC 95.33 93 93.50 

CRT 92.66 81 98.50 

Average. value 95.82 94.83 95.91 

 

Table 4. Performance of geometrical features with KNN 

classifier 

 

Feature vector 
Normal vs. Ictal 

ACC (%) SEN (%) SPE (%) 

SVL 93 89 95.50 

CA 93.66 90 96.5 

CTC 99 98 99.50 

TA 96 91 98.50 

AOO 98.67 98.00 99.00 

CRT 94.33 90 97.50 

Average. value 95.77 92.66 97.75 

Feature vector 
Interictal vs. Ictal 

ACC (%) SEN (%) SPE (%) 

SVL 97.66 97 98 

CA 97.33 98 97.5 

TA 96.33 96 96.50 

CTC 95.66 98 94.50 

AOO 95.67 96.00 95.50 

CRT 96 96 96.50 

Average. value 96.44 96.83 96.41 

 

Table 5. Performance of SVM classifier in Normal vs. Ictal 

classification task with two features 

 

Feature vector 
Normal vs. Ictal 

ACC (%) SEN (%) SPE (%) 

CTC, AOO 99 99 99.50 

CTC,CA 99 98 99.50 

CTC, CRT 99.33 99 99.50 

CTC,SVL 99.33 98 100 

CTC,TA 99 98 99.50 

Average. value 99.13 98.40 99.60 
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Hence, the feature vector length in normal vs. ictal 

classification task is increased to two by combination of CTC 

and the other features in SVM classifier. The resulted 

parameters are written in Table 5, in which the combination of 

CTC with other features are resulted to perfect average 

classification ACC of 99.13%. 

In the same way, ACC of KNN classifier in interictal vs. 

ictal classification task can be improved. For this propose, 

arrays of feature vector in KNN classifier are increased to two 

by a combination of SVL with the other features. Performance 

of KNN classifier with this feature vector are written in Table 

6.  

 

Table 6. Performance of KNN classifier in Interictal vs. Ictal 

classification task with two features 

 

Feature vector 
Normal vs. Ictal 

ACC (%) SEN (%) SPE (%) 

SVL,CTC 97.33 99 96.50 

SVL,CA 97.33 98 97.5 

SVL,TA 96.67 97 97 

SVL,CRT 96.33 96 97 

SVL,AOO 96 96 96 

Average. value 96.73 97.20 96.80 

 

The KNN classifier resulted in average 96.73% of ACC 

with two features. Also, to improve the ACC of the classifier, 

we investigated the combination of several geometrical 

features under 10-fold cross-validation conditions, which with 

three AOO, CA, SVL, and CRT features vector, and reached a 

high of 99% ACC. 

 

 

4. DISCUSSION AND CONCLUSION 

 

Epilepsy is a common brain disorder due to abnormal 

activity of neurons. It normally affects more than 50 million of 

the population in the world who most of them are living in 

developing countries [1]. Although doctors and neurologists 

can detect the of epilepsy attaches by visual analyzing of 

Electroencephalography (EEG), but visual inspection of EEG 

records for the long-term are very boring, time consuming and 

prone to human error. Hence, an accurate Computer-aided 

diagnosis system for detecting the presence of epilepsy 

attaches in EEG signals is desirable. In this paper, six novel 

nonlinear geometrical features namely: area of octagon (AOO), 

circle area (CA), summation of vectors length (SVL), centroid 

to coordinate center (CTC), circular radius out of triangles 

(CRT) and triangle area (TA) were proposed to detection of 

epilepsy attach in EEG signal. 

For this propose, these features were employed to 

discrimination of ictal EEG signals from normal and interictal 

EEG signals in two classification tasks including: normal vs. 

ictal, and interictal vs. ictal. 

Ictal, interictal and normal EEG signals were selected from 

well-known Bonn university database which has 200 normal 

(A and B sub-sets), 200 interictal (C and D sub-sets) and 100 

ictal (E sub-set) EEG signals [27]. We showed that our 2D 

projection method can be used as a useful approach to 

illustration of complexity of EEG signals. Considering to 

Figure 1 the 2D projection of ictal EEG signals was occupied 

more space than normal and interictal EEG signals; this result 

has been reported in previous studies by drawing the EEG 

signals on 2D plane using second order difference plot [23] 

and phase space reconstructed [24]. Also, the edges of 2D 

projection EEG signals in ictal group were sharper than normal 

and interictal groups. Ray [2] said that ictal is manifesting 

itself with spikes in the EEG signal. For this reason, 

corresponding to Figure 1, the ictal EEG signals on the 2D 

projection were revealed by sharp edges. It can be observed 

from Figure 1, that 2D projection of normal and interictal EEG 

signals have more regular geometrical shapes. It may be due 

to synchronous response of brain neurons, which gives rise 

ictal parts in EEG signals. Support vector machine (SVM) and 

k-nearest neighbors (KNN) classifiers were employed for 

evaluation of accuracy (ACC), sensitivity (SEN) and 

specificity (SPE) of the proposed geometrical features. 

Corresponding to the Table 1 and 2, features were extremely 

severely statistically significant. Our proposed method 

resulted to more than 99% classification ACC in both 

classification task. We have compared our proposed method 

with existing studies on the same database in Table 7.  

 

Table 7. Comparison of proposed method with the exiting 

work 

 
Reference 

Year 

Used cross 

validation 

Used Sub-

sets 

ACC 

(%) 

[9] (2012) No 

A vs. E 

B vs. E 

C vs. E 

D vs. E 

93.55 

82.88 

88.00 

79.94 

[10] (2014) 10-fold 

A vs. E 

B vs. E 

C vs. E 

D vs. E 

99 

97 

98 

93 

[11] (2011) 10-fold 

A vs. E 

B vs. E 

C vs. E 

D vs. E 

99.69 

96.78 

97.69 

93.91 

[12] (2010) No 
A, B vs. E 

C, D vs. E 

96 

94 

[20] (2014) No C, D vs. E 95.33 

[23] (2014) 10-fold C, D vs. E 97.75 

[24] 2015 10-fold C, D vs. E 98.67 

[13] (2016) 10-fold 
A, B vs. E 

C, D vs. E 

99.18 

95.15 

[19] 2019) No 

A vs.E 

C vs. E 

D vs. E 

C, D vs. E 

98.10 

95.50 

93.80 

95.10 

[22] (2017) 10-fold C, D vs. E 97.5 

Proposed 

method 
10-fold 

A, B vs. E 

C, D vs. E 

99.13 

99 
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