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In recent years, tensor completion problem, as a higher order generalization of matrix 

completion, has received much attention from scholars engaged in computer vision, data 

mining, and neuroscience. The problem is often solved by convex relaxation, which 

minimizes the tensor nuclear norm instead of the n-rank of the tensor. However, tensor 

nuclear minimizes all the singular value at the same level, which is unfair to large singular 

values. To solve the problem, this paper defines a log function of tensor, and uses it as an 

approximation of tensor rank function. Then, a simple yet efficient log-based algorithm for 

tensor completion (Log-TC) was proposed to recover an underlying low n-rank tensor. The 

Log-TC was verified through experiments on randomly generated tensors and color image 

inpainting, in comparison with two tensor completion algorithms: fixed point iterative 

method for low-rank tensor completion (FP-LRTC) and fast low rank tensor completion 

algorithm (FaLRTC). The results show that our algorithm greatly outperformed the two 

contrastive methods. 
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1. INTRODUCTION

In the era of data explosion, tensors gain more and more 

attention thanks to their excellence in information preservation 

and structural properties. Tensors can be viewed as natural 

higher-order generalization of vectors and matrices. Therefore, 

many questions of tensors can be generalized from vectors and 

matrices.  

Tensor completion, a natural generalization of matrix 

completion, has long been a research hotspot. As an 

imputation method for missing data, tensor completion aims 

to estimate missing data from very limited information of 

observed data. To date, this problem has been widely applied 

in recommendation system [1-7], signal processing [5-8], 

computer vision [9-13], and multi-relation link prediction [14-

16].  

Tensor decomposition is an important step of tensor 

completion. The main forms of tensor decomposition include 

CANDECOMP/PARAFAC (CP) decomposition [17, 18], 

Tucker decomposition [19-21], and Tensor-Train 

decomposition [22-24]. Our results are mainly based on 

Tucker decomposition. 

In recent years, lots of algorithms have been developed to 

complete high-order tensors. Most of them adopts the low-

rank structure assumption. It is known to all that tensor rank 

minimization is a non-deterministic polynomial-time (NP) 

hard problem. Therefore, many norms are defined as the 

convex surrogates of tensor rank. For example, Liu et al. [10] 

defined the trace norm for tensors, and proposed a completion 

strategy for low-rank tensors, laying the theoretical basis for 

low n-rank tensor completion. 

Since all the singular values are simultaneously minimized, 

the convex surrogates may be insufficient to approximate the 

rank function. Therefore, many scholars have attempted to 

prove the advantage of approximating the rank for matrices, 

using nonconvex surrogate functions [25-28]. 

Recently, new results have been achieved in tensor 

completion through the extension of matrix situation. For 

instance, Huang et al. [29] put forward a tensor n-mode matrix 

unfolding truncated nuclear norm minimization, and solved it 

by the alternating direction method of multipliers. Han et al. 

[30] also presented an algorithm based on tensor truncated

nuclear norm, and added a sparse regularization term into the

objective function. Xue et al. [31] also carried out similar

research.

In general, large singular values represent the significant 

information of interest, which should not be penalized 

excessively. By contrast, small singular values represent the 

noisy information, which should be penalized as zeros. All the 

singular values are minimized to the same level by tensor 

nuclear norm. This is obviously unfair to large singular values, 

which contain much more important information than small 

singular values. To solve the problem, log function was 

introduced to strike a balance between rank minimization and 

nuclear norm.  

Taking the n-rank of a tensor as a sparsity measure, this 

paper solves the low-n-rank tensor completion problem in the 

following manner. A log function of tensor was defined, and 

used as an approximation of tensor rank function. In this way, 

the objective function in our optimization model become a 

nonconvex function, which is difficult to solve. Thus, the DC 

programming was adopted to solve the model. Next, a simple 

yet efficient log-based algorithm for tensor completion (Log-

TC) was designed to recover an underlying low n-rank tensor. 

The performance of Log-TC algorithm was verified by 

computational results on recovery of synthetic data and color 

image. 

The remainder of this paper is organized as follows: Section 

2 briefly introduces tensor completion; Section 3 proposes an 

iterative scheme to minimize log function, and presents the 
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Log-TC algorithm; Section 4 compares our algorithm on 

randomly generated tensors and color image inpainting, with 

two low-rank tensor completion algorithms; Section 5 puts 

forward the conclusions. 

 

 

2. PRELIMINARIES 

 

2.1 Notations and definitions 

 

Throughout this paper, each scalar is denoted by a normal 

letter, e.g. a, b, c, ...; each vector is denoted by a boldfaced 

lower-case letter, e.g. a, b, c, ...; each matrix is denoted by an 

upper-case letter, e.g. A, B, C, ...; each tensor is written as an 

italic letter, e.g. an N-order tensor is denoted as 𝒳 ∈ 𝑅𝐼1×⋯×𝐼𝑁, 

where Ik is the dimensional size corresponding to mode-k, 

k=1, ..., N; each element of tensor 𝒳 is denoted as 𝑥𝑖1⋯𝑖𝑁 ∈ 𝒳. 

The Frobenius norm of 𝒳 is defined as the square root of 

the inner product of twofold tensors: 

 

‖𝒳‖𝐹 = √〈𝒳,𝒳〉 = √∑ ⋯∑ 𝑥𝑖1⋯𝑖𝑁
2𝐼𝑁

𝑖𝑁=1
𝐼1
𝑖1=1

  (1) 

 

The CP decomposition factorizes the target tensor into a 

sum of component one-rank tensors. For example, a third-

order tensor 𝒳 ∈ ℝ𝐼×𝐽×𝐾 can be written as: 

 

𝒳 ≈ ∑ 𝑎𝑟 ∘ 𝑏𝑟 ∘ 𝑐𝑟
𝑅
𝑟=1   (2) 

 

where, R is a positive integer; 𝑎𝑟 ∈ ℝ
𝐼, 𝑏𝑟 ∈ ℝ

𝐽 and 𝑐𝑟 ∈ ℝ
𝐾  

for r=1, ..., R. Elementwise, formula (2) can be written as 

 

𝑥𝑖𝑗𝑘 ≈ ∑ 𝑎𝑖𝑟𝑏𝑗𝑟𝑐𝑘𝑟
𝑅
𝑟=1   

for i=1, ..., I, j=1, ..., J, k=1, ..., K 
(3) 

 

The Tucker decomposition, a higher-order principal 

component analysis (PCA), decomposes the target tensor into 

a core tensor multiplied (or transformed) by a matrix along 

each mode. In the three-way case where 𝒳 ∈ ℝ𝐼×𝐽×𝐾 , the 

Tucker decomposition can be expressed as: 

 

𝒳 ≈ 𝒢 ×1 𝐴 ×2 𝐵 ×3 𝐶 

= ∑ ∑ ∑ 𝑔𝑝𝑞𝑟𝑎𝑟 ∘ 𝑏𝑟 ∘ 𝑐𝑟
𝑅
𝑟=1

𝑄
𝑞=1

𝑃
𝑝=1   

(4) 

 

where, 𝐴 ∈ ℝ𝐼×𝑃 ,  𝐵 ∈ ℝ𝐽×𝑄 , and 𝐶 ∈ ℝ𝐾×𝑅  are the factor 

matrices (usually orthogonal), i.e. the principal components in 

each mode. The tensor 𝒢 ∈ ℝ𝑃×𝑄×𝑅 is called the core tensor, 

whose entries reflect the level of interaction between different 

components. Elementwise, formula (4) can be written as: 

 

𝑥𝑖𝑗𝑘 ≈ ∑ ∑ ∑ 𝑔𝑝𝑞𝑟
𝑅
𝑟=1

𝑄
𝑞=1 𝑎𝑖𝑝𝑏𝑗𝑞𝑐𝑘𝑟

𝑅
𝑟=1   

for i=1, ..., I, j=1, ..., J, k=1, ..., K 
(5) 

 

where, P, Q, and R are the number of components (columns) 

in factor matrices A, B and C, respectively.  

The Tensor-Train decomposition represents a d-way tensor 

𝒳 as d3-way tensors 𝒳(1), ⋯ ,𝒳(𝑑), which are called the TT-

cores. The k-th TT-core has dimensions rk-1, nk, rk. where rk-1, 

rk are called the TT-ranks. Specifically, each entry of 𝒳 ∈
ℝ𝐼1×⋯×𝐼𝑑 can be determined by: 

 

𝑎𝑖1⋯𝑖𝑑 = 𝒳𝑖1
(1)
⋯𝒳𝑖𝑑

(𝑑)
 (6) 

Next, several important concepts were presented with the 

following definitions: 

Definition 2.1 ([32]) Let 𝒳 ∈ 𝑅𝐼1×⋯×𝐼𝑁  be an N-order 

tensor. The k-th mode matrix unfolding is defined as the matrix 

X(k) ∈ R
I𝑘×J, J = ∏ 𝐼𝑖

𝑁
𝑖=1,𝑖≠𝑘 . The tensor element (i1, ..., iN) is 

mapped to the matrix element (ik, j), where 

 

j = 1 + ∑ (𝑖𝑚 − 1)𝐽𝑖
𝑁
𝑚=1,𝑚≠𝑘 , 

with 𝐽𝑖 = ∏ 𝐼𝑚
𝑖−1
𝑚=1,𝑚≠𝑖 . 

(7) 

 

Definition 2.2 ([32]) Let X ∈ RI𝑘×J  be a matrix with J =
∏ 𝐼𝑖
𝑁
𝑖=1,𝑖≠𝑘 . The k-mode (I1, ..., IN) tensor folding 𝒳 is defined 

as the tensor 𝒳 ∈ 𝑅𝐼1×⋯×𝐼𝑁 . The matrix element (ik, j) is 

mapped to the tensor element (i1, ..., iN), where j is defined as 

in formula (7). 

Definition 2.3 ([33]) The higher-order singular value 

decomposition (SVD) of a tensor 𝒳 ∈ 𝑅𝐼1×⋯×𝐼𝑁  can be 

defined as 

 

𝒳 = 𝒮 ×1 𝑈1 ×2 𝑈2 ×3 ⋯×𝑁 𝑈𝑁 (8) 

 

or elementwise as 

 

𝒳(𝑖1, ⋯ , 𝑖𝑁) = ∑ ⋯∑ 𝒮
𝐼𝑁
𝑗𝑁=1

𝐼1
𝑗1=1

(𝑗1, ⋯ , 𝑗𝑁) ∙

𝑈1(𝑖1, 𝑗1)⋯𝑈𝑁(𝑖𝑁 , 𝑗𝑁)  
(9) 

 

where, for 1≤k≤n, the Uk are unitary nk×nk matrices, the core 

tensor 𝒮 ∈ 𝑅𝐼1×⋯×𝐼𝑁  is such that the (N-1)-order subtensor 

𝒮𝑖𝑘=𝑝 defined by 

 

𝒮𝑖1⋯𝑖𝑘−1𝑖𝑘+1⋯𝑖𝑁
𝑖𝑘=𝑝 ≔ 𝑠𝑖1⋯𝑖𝑘−1𝑝𝑖𝑘+1⋯𝑖𝑁  (10) 

 

satisfies: 

(1) all-orthogonality: 

 

〈𝒮𝑖𝑘=𝑝, 𝒮𝑖𝑘=𝑞〉 = 0, ∀𝑝 ≠ 𝑞, 1 ≤ 𝑘 ≤ 𝑁  (11) 

 

(2) the subtensors of the core tensor 𝒮 are ordered by their 

Frobenius norm, i.e., for any 1≤k≤n, 

 

‖𝒮𝑖𝑘=1‖
𝐹
≥ ⋯ ≥ ‖𝒮𝑖𝑘=𝐼𝑁‖

𝐹
≥ 0  (12) 

 

N-rank of a tensor is the straightforward generalization of 

the column (row) rank for matrices. Let rk denote the k-th rank 

of an N-order tensor 𝒳 ∈ 𝑅𝐼1×⋯×𝐼𝑁. Then, it is the rank of the 

mode-k unfolding matrix X(k): 

 

𝑟𝑘 = 𝑟𝑎𝑛𝑘𝑘(𝒳) = 𝑟𝑎𝑛𝑘(𝑋(𝑘))  (13) 

 

A tensor of which the n-rank are equal to rn is called a rank-

(r1, ..., rN) tensor. For any tensor 𝒳 ∈ 𝑅𝐼1×⋯×𝐼𝑁 , vec(𝒳 ) 

denotes the vectorization of 𝒳. 

Next is to introduce the SVD of a matrix. Let there be an 

n1×n2 matrix of rank r, and X = U(Diag𝜎(𝑋))𝑉𝑇 be the SVD 

of X, where U and V are respectively n1×n and n2×n matrices 

with orthonormal columns, and the function σ: 𝐶𝑛1×𝑛2 →
𝑅𝑛(n = min{𝑛1, 𝑛2})  has components 𝜎1(𝑋) ≥ 𝜎2(𝑋) ≥
⋯ ≥ 𝜎𝑛(𝑋) ≥ 0, i.e. the singular values of the matrix X. 

The necessary results in Lewis’s research [34] will be 

briefly described for subsequent formula derivation. 

Definition 2.4 ([34]) For any vector γ in Rn, vector �̃� can be 

written with components |γi| arranged in nonincreasing order. 
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A function f: Rn→[-∞,+∞] is absolutely symmetric, if 

f(γ)=𝑓(�̃�) for any vector γ in Rn. 

Theorem 2.1 ([34, Corollary 2.5]) Suppose function f: 

Rn→(-∞,+∞] is absolutely symmetric, and n1×n2 matrix X has 

σ(X) in domf. Then, the n1×n2 matrix Y lies in 𝜕(𝑓 ∘ 𝜎)(𝑋), if 
and only if σ(Y) falls in ∂𝑓(σ(X))  and there exists a 

simultaneous SVD of the form U(Diagσ(X))VT and 

Y=U(Diagσ(Y))VT, where U and V are n1×n and n2×n matrices 

with orthonormal columns, respectively. In fact, 

 

𝜕(𝑓 ∘ 𝜎)(𝑋)
= {𝑈(Diag𝜇)𝑉𝑇|𝜇 ∈ 𝜕𝑓(𝜎(𝑥)), X = 𝑈(Diag𝜎(𝑋))𝑉𝑇} 

(14) 

 

2.2 Low n-rank tensor completion problem 

 

This subsection briefly illustrates the low n-rank tensor 

completion problem. Suppose there exists a partially observed 

tensor 𝒯 under the low n-rank assumption. Then, the Low n-

rank tensor completion problem can be expressed as: 

 

min
𝒳
∑ 𝑟𝑎𝑛𝑘(𝑋(𝑖))
𝑁
𝑖=1  s.t. 𝒳Ω = 𝒯Ω (15) 

 

where, 𝒳 ∈ 𝑅𝐼1×⋯×𝐼𝑁  is the decision variable whose size is 

identical with 𝒯; Ω is a subset of index, indicating that the 

entries of 𝒯 in the set Ω are given while the remaining entries 

are missing. This problem is the special case of the following 

tensor n-rank minimization problem: 

 

min
𝒳
∑ 𝑟𝑎𝑛𝑘(𝑋(𝑖))
𝑁
𝑖=1  s.t. 𝔸(𝒳) = 𝒃 (16) 

 

where, the linear map 𝔸: 𝑅𝐼1×⋯×𝐼𝑁 ⟶ 𝑅𝑝  with p ≤ ∏ 𝑛𝑖
𝑁
𝑖=1 , 

and vector 𝐛 ∈ 𝑅𝑝 is given. The rank minimization problem is 

NP-hard and computationally intractable ([10]). For low-rank 

matrix minimization problem, the rank function is often 

replaced with the nuclear norm of a matrix. As an elegant 

extension of the matrix case, many scholars have attempted to 

identify a possible convex relaxation as an alternative to the 

rank minimization problem. For example, Liu et al. proposed 

the sum of metricized nuclear norm of a tensor: 

 

min
𝒳
∑ 𝛼𝑖‖𝑋(𝑖)‖∗
𝑁
𝑖=1  s.t. 𝔸(𝒳) = 𝒃 (17) 

 

where, αi≥0 (i=1, ..., N) are constants satisfying ∑ 𝛼𝑖
𝑁
𝑖=1 = 1; 

‖𝑌‖∗ = ∑ 𝜎𝑖(𝑌)
𝑛
𝑖=1  is the nuclear norm of matrix Y; σi(Y) is the 

i-th largest singular value of matrix Y.  

In previous work, the model (17) has successfully imputed 

missing tensor data. Recent studies suggest that the results can 

be significantly improved, using certain nonconvex functions 

[35-37]. 

 

2.3 DC programming and DC algorithm (DCA) 

 

This subsection briefly outlies DC programming and DCA, 

facilitating subsequent model solving by DC programming. 

Definition 2.4 [38] Let C be a convex subset of Rn. A real-

valued function f: C→R is called DC on C, if there exist two 

convex functions g,h: C→R such that f can be expressed as: 

 

𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥) (18) 

 

Definition 2.5 [38] For an arbitrary function 

g:Rn→R{+∞}, the function g*:Rn→R∪{+∞}, defined by 

𝑔∗(𝑦) ≔ 𝑠𝑢𝑝{〈𝑥, 𝑦〉 − 𝑔(𝑥): 𝑥 ∈ 𝑅𝑛} (19) 

 

is called the conjugate function of g. 

Let domg={x∈Rn:g(x)<∞} denote the effective domain of g. 

Suppose x0∈domg, the subdifferential of g at x0, denoted by 

∂g(x0), can be expressed as: ∂g(x0):={y∈Rn: g(x)≥g(x0)+〈x-

x0,y〉,∀x∈Rn}. 

As a closed convex set in Rn, the subdifferential ∂g(x0) 

generalizes the derivative in the sense that g is diffrerntiable at 

x0, if and only if ∂g(x0) is reduced to a singleton which is 

exactly {g'(x0)}. 

DC programming is a programming problem dealing with 

DC functions. The DCA is a continuous approach based on 

local optimality and the duality of DC programming. The 

DCA aims to solve the DC program: 

 

𝛽𝑝 = 𝑖𝑛𝑓{𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥): 𝑥 ∈ 𝑅𝑛} (20) 

 

where, g and h are lower semi-continuous proper convex 

functions on Rn. The dual program of formula (20) can be 

described as: 

 

𝛽𝑑 = 𝑖𝑛𝑓{ℎ
∗(𝑦) − 𝑔∗(𝑦): 𝑦 ∈ 𝑅𝑛} (21) 

 

Two sequences {xk} and {yk} are optimal solutions of 

primal and dual programs, respectively. The DCA consists of 

the two sequences such that the sequences {g(xk)-h(xk)} and 

{h*(yk)-g*(yk)} are decreasing. The two sequences are 

generated as follows: xk+1 (resp.yk) is a solution to the convex 

program (22) (resp. (23)) defined by 

 

inf{𝑔(𝑥) − ℎ(𝑥𝑘) − 〈𝑥 − 𝑥𝑘, 𝑦𝑘〉: 𝑥 ∈ 𝑅𝑛} (22) 

 

inf{ℎ∗(𝑦) − 𝑔∗(𝑦𝑘−1) − 〈𝑦 − 𝑦𝑘−1, 𝑥𝑘〉: 𝑦 ∈ 𝑅𝑛} (23) 

 

Problem (22) is obtained from primal DC program (20) by 

replacing h with its affine minimization defined by 

hk(x):=h(xk)+〈x-xk, yk〉 at a neighborhood of xk. The solution set 

of problem (22) is ∂g*(yk). Similarly, problem (23) is obtained 

from the dual DC program (21) through the affine 

minimization of g* defined by (g*)k(y):=g*(yk)+〈y-yk,xk+1〉 at a 

neighborhood of 𝑦𝑘, and the solution set of problem (23) is 

∂h(xk+1). Then, the DCA yields the next scheme: 

 

𝑦𝑘 ∈ 𝜕ℎ(𝑥𝑘);  𝑥𝑘+1 ∈ ∂𝑔∗(𝑦𝑘). (24) 

 

The complete introduction of DC programming and DCA is 

provided in [38-41]. 

 

 

3. OUR TENSOR COMPLETION ALGORITHM 

 

This section introduces a new model based on the log 

function, and details our Log-TC algorithm. Our main problem 

is the following minimization problem: 

 

min Φ(𝒳) s.t. 𝒜(𝒳) = 𝐛 (25) 

 

where, Φ(𝒳) = ∑ 𝜑(𝑋(𝑖))
𝑁
𝑖=1 , φ(X) = ∑ log (𝜎𝑗(𝑋(𝑖)) +

𝑛
𝑗=1

𝜀). In essence, the log function acting on a tensor X is a convex 

combination of the log functions acting on all matrices X(i) 

unfolded along each mode. Specifically, the log function 

acting on the matrix X(i) is actually a convex combination of 

the log function acting on the singular value of this matrix, i.e. 
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∑ log (𝜎𝑗(𝑋(𝑖)) + 𝜀)
𝑛
𝑗=1 . Next, an unconstrained problem was 

considered: 

 

min Φ(𝒳) +
1

2𝜇
‖𝒜(𝒳) − b‖2

2  (26) 

 

where, μ>0 is a penalty parameter. 

The distributions of rank function, l1 function, and log 

function were compared to further explain the different 

approximation effects. 

 

 
 

Figure 1. Comparison of rank function, l1 function, and log 

function 

 

As shown in Figure 1, log function fell between rank 

function and l1 norm, which can simultaneously increase the 

penalty on small values and decrease the penalty on large 

values. 

Next, the DCA mentioned in Subsection 2.3 was employed 

to solve model (26). 

Let 𝑓(𝒳) = Φ(𝒳) +
1

2𝜇
‖𝒜(𝒳) − b‖2

2 . Then model (26) 

can be expressed as: 

 

min{𝑓(𝒳):= 𝑔(𝒳) − ℎ(𝒳)}  (27) 

 

where, 𝒳 ∈ 𝑅𝑛1×𝑛2×⋯𝑛𝑁. The DC components g(X) and h(X) 

can be respectively given by: 

 

𝑔(𝒳) =
1

2𝜇
‖𝒜(𝒳) − b‖2

2 + ‖𝒳‖∗  (28) 

 

where, λ≥0 is a parameter; and 

 

ℎ(𝒳) = ‖𝒳‖∗ −Φ(𝒳)  (29) 

 

According to Subsection 2.3, the DCA scheme for model 

(27) was determined by computing the two sequences {Xk} 

and {Yk} which satisfy the following conditions:  

 

𝒴𝑘 ∈ ∂ℎ(𝒳𝑘),  𝒳𝑘+1 ∈ ∂𝑔∗(𝒴𝑘)  (30) 

 

The calculation process of ∂h(Xk) and ∂g*(Yk) will be 

repeated in the following subsections. 

 

3.1 Calculation of ∂h(Xk) 

 

From the previous discussion, we have: 

 

 ℎ(𝒳𝑘) = ‖𝒳𝑘‖∗ −Φ(𝒳
𝑘) = ∑ (𝛼𝑖‖𝑋(𝑖)

𝑘 ‖
∗
−𝑁

𝑖=1

φ(𝑋(𝑖)
𝑘 ))  

(31) 

 

where, Φ(𝒳) = ∑ 𝜑(𝑋(𝑖))
𝑁
𝑖=1 ; φ(X) = ∑ log (𝜎𝑗(𝑋(𝑖)) +

𝑛
𝑗=1

𝜀). Then, the subdifferential of h(Xk) is: 

 

𝜕ℎ(𝒳𝑘) = ∑ 𝜕(𝛼𝑖‖𝑋(𝑖)
𝑘 ‖

∗
− φ(𝑋(𝑖)

𝑘 ))𝑁
𝑖=1 =

∑ (𝛼𝑖𝜕𝑓1 ∘ 𝜎(𝑋(𝑖)
𝑘 ) − 𝜕𝑓2 ∘ 𝜎(𝑋(𝑖)

𝑘 ))𝑁
𝑖=1   

(32) 

 

where, σ(X) denotes is the vector consisting of the singular 

values of matrix X, and ∀x∈Rn: 𝑓1(𝒙) = ∑ 𝒙𝑖
𝑛
𝑖=1  and 𝑓2(𝒙) =

∑ log(𝒙𝑖 + 𝜖)
𝑛
𝑖=1 . 

By Theorem 2.1, we have: 

 

𝑌 ∈ 𝜕(𝑓 ∘ 𝜎)(𝑋) =

{𝑈(Diag𝜔)𝑉𝑇|𝜔 ∈ 𝜕𝑓(𝜎(𝑋)), X = 𝑈(Diag𝜎(𝑋))𝑉𝑇}  
(33) 

 

Thereby, following conclusion can be drawn: 

 

𝑈(

𝛼𝑖 0 0 0
0 𝛼𝑖 0 0
0 0 ⋱ 0
0 0 0 𝛼𝑖

)

𝑟𝑖×𝑟𝑖

𝑉𝑇 ∈ 𝛼𝑖𝜕𝑓1 ∘ 𝜎(𝑋(𝑖)
𝑘 ) (34) 

 

and 

 

𝑈

(

 
 
 
 

1

𝜎1(𝑋(𝑖)
𝑘 )+𝜀

0 0 0

0
1

𝜎2(𝑋(𝑖)
𝑘 )+𝜀

0 0

0 0 ⋱ 0

0 0 0
1

𝜎𝑟𝑖(𝑋(𝑖)
𝑘 )+𝜀)

 
 
 
 

𝑟𝑖×𝑟𝑖

  

𝑉𝑇 ∈ 𝜕𝑓2 ∘ 𝜎(𝑋(𝑖)
𝑘 ) 

(35) 

 

where, ri is the rank of matrix 𝑋(𝑖)
𝑘 . Therefore, an element Yk 

could be found in ∂h(Xk) which has the following form: 

 

𝒴𝑘 =
1

𝑁
∑ 𝑓𝑜𝑙𝑑𝑀𝑖
𝑁
𝑖=1   (36) 

 

where, 

 

𝑀𝑖 = 𝑈

(

 
 
 
 

𝛼𝑖 −
1

𝜎1(𝑋(𝑖)
𝑘 )+𝜀

0 0 0

0 𝛼𝑖 −
1

𝜎2(𝑋(𝑖)
𝑘 )+𝜀

0 0

0 0 ⋱ 0

0 0 0 𝛼𝑖 −
1

𝜎𝑟𝑖(𝑋(𝑖)
𝑘 )+𝜀)

 
 
 
 

𝑉𝑇  (37) 

 

3.2 Calculation of ∂g*(Yk) 

 

According to the preliminary knowledge in Subsection 2.3, 

∂g*(Yk) is a solution to the convex program (22). ∀𝒴𝑘 ∈
𝑅𝑛1×𝑛2×⋯𝑛𝑁, 

 
∂𝑔∗(𝒴𝑘) = 𝑎𝑟𝑔 𝑚𝑖𝑛{𝑔(𝒳) − ℎ(𝒳𝑘)−< 𝒳 −𝒳𝑘, 𝒴𝑘 >

:𝒳 ∈ 𝑅𝑛1×𝑛2×⋯𝑛𝑁}  
= 𝑎𝑟𝑔 𝑚𝑖𝑛{𝑔(𝒳)−< 𝒳 −𝒳𝑘, 𝒴𝑘 >:𝒳 ∈ 𝑅𝑛1×𝑛2×⋯𝑛𝑁}  

(38) 

 

Combining (28) and (38), the following optimization can be 

obtained: 

 

min 
1

2𝜇
‖𝒜(𝒳) − b‖2

2 + ‖𝒳‖∗−< 𝒳 −𝒳𝑘, 𝒴𝑘 >

,𝒴𝑘 ∈ ∂ℎ(𝒳𝑘)  
(39) 
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Since the optimal condition for minimization of a convex 

function is 0∈∂φ(x), 𝒳∗ is optimal of formula (39) if and only 

if 

 

0 ∈
1

𝜇
P(𝒳∗) + ∂‖𝒳‖∗ −𝒴

𝑘  (40) 

 

where, P(𝒳∗) = 𝒜∗ (𝒜(𝒳∗) − b)  and 𝒜∗  represents the 

adjoint of 𝒜. 

For ∀τ>0, formula (40) is equivalent to: 

 

0 ∈
1

𝜇
τP(𝒳∗) + τ ∂‖𝒳‖∗ − 𝜏𝒴

𝑘 +
1

𝜇
𝒳∗ −

1

𝜇
𝒳∗  (41) 

 

Then, it holds that 

 

0 ∈ τ ∂‖𝒳‖∗ +
1

𝜇
𝒳∗ −

1

𝜇
(𝒳∗ − τP(𝒳∗)) − 𝜏𝒴𝑘  (42) 

 

Let 𝒵∗ = 𝒳∗ − τP(𝒳∗). Formula (42) can be reduced to: 

 

0 ∈ τ ∂‖𝒳‖∗ +
1

𝜇
𝒳∗ −

1

𝜇
𝒵∗ − 𝜏𝒴𝑘  (43) 

 

After combining, we have: 

 

0 ∈ τ ∂‖𝒳‖∗ +
1

𝜇
(𝒳∗ − (𝒵∗ + 𝜇𝜏𝒴𝑘))  (44) 

 

i.e. 𝒳∗ is the optimal solution to 

 

min τ‖𝒳‖∗ +
1

2𝜇
‖𝒳 − (𝒵∗ + 𝜇𝜏𝒴𝑘)‖𝐹

2   (45) 

 

Under the definition of mode-n unfolding, the problem of 

minimizing (45) can be written as: 

 

min τ ∑ 𝛼𝑖‖𝑋(𝑖)‖∗
+

1

2𝑁𝜇
∑ ‖𝑋(𝑖) − (Z(𝑖)

∗ +𝑁
𝑖=1

𝑁
𝑖=1

𝜇𝜏Y(𝑖)
𝑘 )‖

𝐹

2
  

(46) 

 

Problem (46) is difficult to solve due to the interdependent 

nuclear norms. Therefore, a series of new matrix variables Mi 

(i=1, 2, ..., N) were introduced such that they equal to X(1), 

X(2), ..., X(N), respectively, which represent the different mode-

n  unfoldings of the tensor X. With these new variables, 

formula (46) can be rewritten as: 

 

min  τ∑ 𝛼𝑖‖𝑀𝑖‖∗ +
1

2𝑁𝜇
∑ ‖𝑀𝑖 − (Z(𝑖)

∗ +𝑁
𝑖=1

𝑁
𝑖=1

𝜇𝜏Y(𝑖)
𝑘 )‖

𝐹

2
 s.t. 𝑀𝑖 = 𝑋(𝑖), ∀i ∈ {1,2,⋯ ,𝑁} 

(47) 

 

Relaxing the constraint Mi=X(i), the following problem can 

be obtained: 

 

min τ ∑ 𝛼𝑖‖𝑀𝑖‖∗ +
1

2𝑁𝜇
∑ ‖𝑀𝑖 − (Z(𝑖)

∗ +𝑁
𝑖=1

𝑁
𝑖=1

𝜇𝜏Y(𝑖)
𝑘 )‖

𝐹

2
+

1

2𝛽
∑ ‖𝑀𝑖 − 𝑋(𝑖)‖𝐹

2𝑁
𝑖=1   

(48) 

 

where, β>0 is a penalty parameter. An optimal solution of 

problem (48) approaches an optimal solution of formula (47) 

as β>0 [42]. For convenience, suppose β=μ in problem (48) 

and consider the following minimization: 

 

min
𝒳,𝑀𝑖

τ∑ 𝛼𝑖‖𝑀𝑖‖∗ +
1

2𝑁𝜇
∑ ‖𝑀𝑖 − (Z(𝑖)

∗ +𝑁
𝑖=1

𝑁
𝑖=1

𝜇𝜏Y(𝑖)
𝑘 )‖

𝐹

2
+

1

2𝜇
∑ ‖𝑀𝑖 − 𝑋(𝑖)‖𝐹

2𝑁
𝑖=1   

(49) 

 

Computing Mi Fixing all variables except Mi (i=1, 2, ..., N), 

problem (49) can be transformed into the following matrix 

problem: 

 

min
𝑀𝑖

τ𝛼𝑖‖𝑀𝑖‖∗ +
1

2𝑁𝜇
‖𝑀𝑖 − (Z(𝑖)

∗ + 𝜇𝜏Y(𝑖)
𝑘 )‖

𝐹

2
+

1

2𝜇
‖𝑀𝑖 − 𝑋(𝑖)‖𝐹

2
   

(50) 

 

The optimal solution of problem (50) will be searched for 

by the following theorem. 

Theorem 3.1 Suppose μ>0 and τ>0. For any given i∈{1, 

2, ..., N}, 𝑀𝑖
∗ is an optimal solution to problem (50) if and only 

if 

 

𝑀𝑖
∗ = 𝐷τ𝛼𝑖𝜇𝑁

1+𝑁

(
Z(𝑖)
∗ +𝜇𝜏Y(𝑖)

𝑘 +𝑁𝑋(𝑖)

1+𝑁
)  (51) 

 

Proof: 𝑀𝑖
∗  is an optimal solution to problem (50) if and 

only if 

 

0 ∈ ∂τ𝛼𝑖‖𝑀𝑖
∗‖∗ +

1

𝑁𝜇
(𝑀𝑖

∗ − (Z(𝑖)
∗ + 𝜇𝜏Y(𝑖)

𝑘 )) +
1

𝜇
(𝑀𝑖

∗ − 𝑋(𝑖))  
(52) 

 

where, ∂‖𝑀𝑖
∗‖∗  is the subgradients of ‖∙‖∗  at 𝑀𝑖

∗ . Through 

proper combining and deforming, we have: 

 

0 ∈ ∂
τ𝛼𝑖
1+𝑁

𝜇𝑁

‖𝑀𝑖
∗‖∗ +𝑀𝑖

∗ −

1

𝜇𝑁
1+𝑁

𝜇𝑁

(Z(𝑖)
∗ + 𝜇𝜏Y(𝑖)

𝑘 ) −

1

𝜇
1+𝑁

𝜇𝑁

𝑋(𝑖)  

(53) 

 

which is equivalent to 

 

0 ∈ ∂
τ𝛼𝑖𝜇𝑁

1+𝑁
‖𝑀𝑖

∗‖∗ +𝑀𝑖
∗ −

1

1+𝑁
(Z(𝑖)

∗ +

𝜇𝜏Y(𝑖)
𝑘 +𝑁𝑋(𝑖))  

(54) 

 

i.e. 𝑀𝑖
∗ is an optimal solution to the following minimization 

problem 

 

min 
τ𝛼𝑖𝜇𝑁

1+𝑁
‖𝑀𝑖‖∗ +

1

2
‖𝑀𝑖 −

1

1+𝑁
(Z(𝑖)

∗ +

𝜇𝜏Y(𝑖)
𝑘 +𝑁𝑋(𝑖))‖

𝐹

2

  
(55) 

 

According to the Theorem 3 in Ma et al. [43], an optimal 

solution to problem (55) must be the matrix shrinkage operator 

applied to 
1

1+𝑁
(Z(𝑖)

∗ + 𝜇𝜏Y(𝑖)
𝑘 +𝑁𝑋(𝑖)) . Hence, the optimal 

solution of problem (55) is 

 

𝑀𝑖
∗ = 𝐷τ𝛼𝑖𝜇𝑁

1+𝑁

(
Z(𝑖)
∗ +𝜇𝜏Y(𝑖)

𝑘 +𝑁𝑋(𝑖)

1+𝑁
)  (56) 

 

For ∀νR+, the matrix shrinkage operator Dv(X) can be 

defined as: 
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𝐷𝑣(𝑋) = 𝑈𝐷𝑖𝑎𝑔(𝜎(𝑋))𝑉
𝑇  (57) 

 

Let X = UDiag(𝜎(𝑋))𝑉𝑇 be the SVD for matrix X, 

 

𝜎(𝑋) = {
𝜎𝑖(𝑋) − 𝜈, 𝑖𝑓 𝜎𝑖(𝑋) − 𝜈 > 0

0 , 𝑜. 𝑤.        
  (58) 

 

Then, solution (56) is also the optimal solution to problem 

(50). 

Q.E.D. 

Computing X: Fixing all other variables except X(i), i=1, 

2, ..., N, the following problem was considered to get the 

exact solution: 

min 
1

2𝜇
‖𝑀𝑖 − 𝑋(𝑖)‖𝐹

2
  s. t.  X(𝑖)

∗ = 𝑀𝑖  (59) 

 

From the previous discussion, Mi can be regarded as known 

in model (59). Hence, the solution to model (59) can be 

obtained easily as: 

 

𝒳∗ =
1

𝑁
∑ 𝑓𝑜𝑙𝑑(𝑀𝑖)
𝑁
𝑖=1   (60) 

 

From formulas (56) and (60), the following iterative 

formula can be derived: 

 

{
 
 
 
 
 

 
 
 
 
 

𝑌(𝑖)
𝑘 = 𝑈

(

 
 
 
 

𝛼𝑖 −
1

𝜎1(𝑋(𝑖)
𝑘 )+𝜀

0 0 0

0 𝛼𝑖 −
1

𝜎2(𝑋(𝑖)
𝑘 )+𝜀

0 0

0 0 ⋱ 0

0 0 0 𝛼𝑖 −
1

𝜎𝑟𝑖(𝑋(𝑖)
𝑘 )+𝜀)

 
 
 
 

𝑉𝑇

𝑍(𝑖)
𝑘 = 𝒳𝑘 − τP(𝒳𝑘)                                                                                                         

𝒳𝑘+1 =
1

𝑁
∑ 𝑓𝑜𝑙𝑑 𝐷𝜏𝛼𝑖𝜇𝑁

1+𝑁

(
Z(𝑖)
𝑘 +𝜇𝜏Y(𝑖)

𝑘 +𝑁𝑋(𝑖)

1+𝑁
)𝑁

𝑖=1                                                    

   (61) 

 

Through the above discussion, the Log-TC algorithm can be 

established to solve tensor completion problem (Algorithm 1). 

 

Algorithm 1: Log-TC algorithm 

Input: 𝒜, b, μ, and τ 
Initialization: Set k:=0, and 𝒳𝑘 ≔ 0 

for μ→0, do 

  while not converged, do 

        P(𝒳𝑘)=𝒜∗(𝒜(𝒳∗) − 𝑏) 
        𝒵𝑘 = 𝒳𝑘 − 𝜏𝑃(𝒳𝑘) 
        for  i = 1:N 

             𝑀𝑖
𝑘 = 𝐷𝜏𝛼𝑖𝜇𝑁

1+𝑁

(
𝑍(𝑖)
𝑘 +𝜇𝜏𝑌(𝑖)

𝑘 +𝑁𝑋(𝑖)

1+𝑁
) 

        end 

        𝒳𝑘+1 =
1

𝑁
∑ 𝑓𝑜𝑙𝑑(𝑀𝑖

𝑘)𝑁
𝑖=1  

   end while 

end for 

Output: 𝒳𝑢𝑙𝑡  

 

 

4. NUMERICAL EXPERIMENTS 

 

To verify its empirical performance, the proposed Log-TC 

algorithm was compared with fixed point iterative method for 

low-rank tensor completion (FP-LRTC) [44] and fast low rank 

tensor completion algorithm (FaLRTC) [10] through 

numerical experiments. The FP-LRTC, which combines a 

fixed-point iterative method for solving the low n-rank tensor 

pursuit problem, and a continuation technique, has been 

applied to solve the relaxation model of the low-rank tensor 

completion problem. The FaLRTC utilizes a smoothing 

scheme to transform the original nonsmooth problem into a 

smooth problem, and was found more efficient than simple 

low rank tensor completion (SiLRTC), and high accuracy low 

rank tensor completion (HaLRTC). 

This section is separated into two subsections. In Subsection 

4.1, our algorithm was tested on the randomly generated low 

n-rank tensors. In Subsection 4.2, our algorithm was tested on 

color image recovery problem. All experiments were carried 

out in MATLAB R2016a on a computer running on Windows 

10, with a 3.20GHz CPU and 4GB of memory. For fair 

comparison, each number is the average over 10 separate runs. 

 

4.1 Synthetic data 

 

First, our Log-TC algorithm was tested on several synthetic 

datasets for the tensor completion tasks. Following the method 

proposed by Rauhut et al. [45], a n-order tensor 𝒯 ∈
𝑅𝑛1×𝑛2×⋯×𝑛𝑁  was created randomly with the n-rank (r1, 

r2, ..., rN) of the form 𝒯 ≔ℳ ×1 𝑈1 ×2 ⋯×𝑁 𝑈𝑁 , where 

ℳ ∈ 𝑅𝑟1×𝑟2×⋯×𝑟𝑁  is the core tensor and  𝑈𝑖 ∈ 𝑅
𝑛𝑖×𝑟𝑖(𝑖 =

1,2,⋯ ,𝑁) . Each entry of the core tensor ℳ  was sampled 

independently from a standard Gaussian distribution 𝒩(0,1). 
Then, m entries were sampled randomly from tensor 𝒯  in a 

uniform manner. The sample ratio, denoted by SR, was defined 

as SR = 𝑚 𝐼1⋯𝐼𝑁⁄ . The relative error (RelErr) of the 

recovered tensor defined as: 

 

RelErr =
‖𝒳𝑢𝑙𝑡−𝒯‖𝐹

‖𝒯‖𝐹
  (62) 

 

is used to estimate the closeness of 𝒳𝑢𝑙𝑡  to 𝒯, where 𝒳𝑢𝑙𝑡 is 

the optimal solution to model (26) produced by the algorithms. 

The ratio “fr” [44] between the degree of freedom (DOF) in 

a rank r matrix to the number of samples in the matrix 

completion was extended to tensor completion problem and 

denoted by FR: 

 

FR =
1

𝑁
∑ 𝑓𝑟𝑖
𝑁
𝑖=1 =

1

𝑁
∑

𝑟𝑖(𝐼𝑖+Π𝑖−𝑟𝑖)

𝐼1⋯𝐼𝑁×𝑆𝑅

𝑁
𝑖=1   (63) 

 

where, 𝑟𝑖 = rank(𝑋(𝑖)) ; Π𝑖 = ∏ 𝐼𝑘
𝑁
𝑘=1,𝑘≠𝑖 . In the following 

results, “FR” is used to represent the hardness of the tensor 

completion. If FR is greater than 0.6, then the problems are 

“hard problems”; otherwise, the problems are “easy problems”. 

The parameters wee configured as: μ=1, θμ=1-sr, μ̅ =
1 × 10−8, τ=10, and λ=1. 

The simulated performance of FP-LRTC, FaLRTC and 

158



 

Log-TC for random tensor completion problem, as measured 

by relative error and running time, are reported in Figure 2 and 

Table 1. 

As shown in Figure 2, the relative error for tensor of size 

60×60×60 with the n-rank was fixed at (6,6,6), and the sample 

rate changed from 10% to 80%. As it is known, when the n-

rank is fixed, the complexity of the problem increases with the 

decrease of the SR. The plot illustrates that Log-TC is clearly 

superior to FP-LRTC and FaLRTC. The superiority is 

particularly evidence in the situation of SR=10%: Log-TC 

recovered the tensor with the relative error about 10-4, while 

FaLRTC and FP-LRTC with 100. 

 

 
 

Figure 2. The relative error on tensors of size 60×60×60 with 

sample rate (SR) between 10% to 80% and fixed n-rank 

(6,6,6) 

 

Table 1. Comparison of running time on tensors of size 

60×60×60 with sample rate (SR) 70% and -rank (6,6,6) 

 

Relative 

Error 

Log-TC 

Time (s) 

FP-LRTC 

Time (s) 

FaLRTC 

Time (s) 

10−9 67.23 79.04 132.41 

10−8 26.62 32.75 40.42 

10−6 11.07 16.36 36.21 

10−4 2.82 4.51 41.17 

 

Table 1 shows the performance of each algorithm with SR 

70% in terms of the running time. Log-TC obviously 

outperformed the contrastive algorithms, under the same 

relative error. Even when the precision requirement is 

ultrahigh (10-9), Log-TC can complete the trask in one minute. 

Figure 3 shows the relative error for tensor of size 

60×60×60, when the sample rate was fixed at SR=40% and n-

rank r changed from 2 to 40. Like the previous situation, when 

sample rate is fixed, the complexity of the problem increases 

with the increase of the rank. As shown in Figure 3, Log-TC 

outperformed FP-LRTC and FaLRTC in all cases. Log-TC 

performed especially well at r=20: Log-TC recovered the 

tensors with the relative error about 10-8, while FP-LRTC and 

FaLRTC with only about 10-1. It can also be seen that, when 

r=24, our algorithm solved the problem with the relative error 

10-3, but the other two methods failed to effectively recover 

the tensors. 

 

 
 

Figure 3. The relative error on tensors of size 60×60×60 n-

rank (r,r,r) between 2 and 40 and fixed sample rate 

(SR=40%). 

 

Next, the numerical results of the three algorithms on easy 

problems and hard problems were reported. Tables 2 and 3 list 

the numerical results of several cases in which the test tensors 

have different sizes, n-ranks and sample rates.  

According to the results on easy problems (Table 2), the 

Log-TC outshined the other two algorithms in relative error 

and running time. FaLRTC is inferior to FP-LRTC and Log-

TC in terms of relative error. FP-LRTC and Log-TC 

performed similarly on relative error, but Log-TC consumed 

the shorter time. Overall, Log-TC achieved the best 

performance on easy problems. 

According to the results on hard problems (Table 3), Log-

TC also realized better performance than the contrastive 

algorithms. With the increase of tensor order, the robustness 

of FaLRTC was getting worse. FP-LRTC and Log-TC were 

always capable of recovering the tensors efficiently, but the 

running time of FP-LRTC is about 2.5 times more than that of 

the Log-TC. 

 

Table 2. Comparison results for easy problems 

 

Tensor Rank SR FR 
Log-TC FP-LRTC FaLRTC 

RelErr Time RelErr Time RelErr Time 

20×30×40 (2,2,2) 0.5 0.15 1.72e-08 1.11 3.36e-08 1.82 1.23e-06 3.53 

30×30×30 (5,5,5) 0.3 0.57 5.42e-08 3.24 8.27e-07 4.39 4.83e-06 2.72 

60×60×60 (5,5,5) 0.7 0.12 4.57e-09 2.83 6.71e-09 4.65 1.11e-05 7.88 

100×100×100 (10,10,10) 0.4 0.25 3.95e-09 50.40 5.90e-09 87.28 1.21e-05 36.63 

20×20×30×30 (5,5,5,5) 0.6 0.35 4.40e-09 13.57 5.76e-09 22.87 5.94e-07 90.76 

50×50×50×50 (6,6,6,6) 0.7 0.17 1.23e-09 90.77 1.64e-09 139.19 2.36e-08 189.6 

30×30×30×30×30 (2,2,2,2,2) 0.5 0.13 1.83e-09 635.81 2.44e-09 1573.9 9.83e-08 2896 

30×30×30×30×30 (6,6,6,6,6) 0.6 0.33 1.43e-09 905.60 1.47e-09 1649.1 8.63e-08 2765 
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Table 3. Comparison results for hard problems 

 

Tensor Rank SR FR 
Log-TC FP-LRTC FaLRTC 

RelErr Time RelErr Time RelErr Time 

20×30×40 (2,2,2) 0.1 0.75 3.90e-04 50.82 5.72e-01 67.61 2.11e-01 6.73 

30×30×30 (5,5,5) 0.1 1.71 8.30e-10 57.83 8.45e-7 62.09 8.74e-01 1.31 

70×70×70 (10,10,10) 0.2 0.72 2.28e-08 324.83 2.71e-08 422.34 2.35e-04 56.42 

100×100×100 (10,10,10) 0.2 0.63 1.20e-08 119.29 1.67e-08 187.10 1.09e-04 191.5 

20×20×30×30 (5,5,5,5) 0.3 0.7 1.34e-08 241.36 4.76e-07 373.09 3.42e-07 896.3 

50×50×50×50 (5,5,5,5) 0.2 0.69 7.18e-09 754.08 5.43e-08 1271.51 2.72e-01 1732 

20×20×20×20×20 (5,5,5,5,5) 0.3 0.83 3.04e-08 398.47 6.28e-06 1689.23 3.92e-01 2874 

20×20×20×20×20 (8,8,8,8,8) 0.4 1.00 4.48e-09 746.92 8.52e-08 1939.63 4.53e-08 2145 

 

4.2 Image simulation 

 

This subsection compared the three algorithms on the 

recovery of color images. Color images can be expressed as 

third order tensors. If the images are of low rank, the image 

recovery can be solved as a low n-rank tensor completion 

problem. Assuming that the images are well structured, FP-

LRTC, FaLRTC and Log-TC were applied separately to solve 

the recovery problem.  

The recovery effects of the Log-TC are illustrated in Figure 

4 and Table 4. In Figure 4, (a1), (b1), (c1), and (d1) are original 

color images. Then, 80%, 60%, 40% and 20% entries were 

randomly removed, creating corrupted images (a2), (b2), (c2), 

and (d2), respectively. The images recovered by the Log-TC 

are (a3), (b3), (c3), and (d4), respectively. Only the effects of 

the Log-TC were provided, because the three algorithms 

achieved similar recovery accuracy. The recovery accuracy 

and running time of each algorithm are listed in Table 4. 

 

 
(a1)                    (a2)                     (a3) 

 
(b1)                    (b2)                     (b3) 

 
(c1)                    (c2)                     (c3) 

 
(d1)                    (d2)                     (d3) 

 

Figure 4. Original images, corrupted images, and recovered 

image by Log-TC in the recovery of natural images 

Table 4. Numerical results on the color images 

 

SR 

Log-TC FP-LRTC FaLRTC 

Relative 

Error 

Time 

(s) 

Relative 

Error 

Time 

(s) 

Relative 

Error 

Time 

(s) 

20% 9.14e-02 1300 9.62e-02 1681 8.31e-02 2137 

40% 6.36e-02 598 8.45e-02 740 7.74e-02 1402 

60% 4.89e-02 362 5.71e-02 298 2.57e-02 978 

80% 3.40e-02 209 4.21e-02 302 3.91e-02 721 

 

As shown in Figure 4, the Log-TC recovered the natural 

images with missing information. Table 4 shows that our 

algorithm achieved a recovery accuracy of about 10-2, and a 

clear edge over the contrastive methods in running time. 

 

 
(a1)                    (a2)                     (a3) 

 
(b1)                    (b2)                     (b3) 

 
(c1)                    (c2)                     (c3) 

 
(d1)                    (d2)                     (d3) 

 

Figure 5. Original images, corrupted images, recovered 

images by the Log-TC in the recovery of images with poor 

texture 
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Table 5. Numerical results on the color image with poor texture 

 

SR 
Log-TC FP-LRTC FaLRTC 

Relative Error Time(s) Relative Error Time(s) Relative Error Time(s) 

20% 1.17e-01 1835 5.72e-01 1920 4.53e-01 2341 

40% 6.71e-02 857 8.45e-02 1103 7.47e-02 1780 

60% 5.02e-02 493 2.71e-02 631 3.87e-02 1285 

80% 3.37e-02 291 4.42e-02 329 2.57e-02 943 

 

The original images in Figure 4 have a nice mixture of 

details, shading areas, flat regions, and textures. Next, the 

three algorithms were separately adopted to recover color 

images with poor texture. The recovery effect of our algorithm 

is displayed in Figure 5, and the numerical results of the three 

methods are compared in Table 5. The subgraphs in the middle 

column of Figure 5 were prepared in the same method as those 

in the middle column of Figure 4. It can be seen that, despite 

the poor texture of images, our algorithm still recovered the 

details of the images, and outperformed the other algorithms 

in running time. 

 

 

5. CONCLUSIONS 

 

This paper firstly defines a log function of tensor, and uses 

it as an approximation of tensor rank function. Furthermore, a 

simple yet efficient algorithm named Log-TC algorithm was 

proposed to recover an underlying low n-rank tensor. The log 

function strikes a balance between rank minimization and 

nuclear norm. It can simultaneously increase the penalty on 

small values and reduce the penalty on large values. After that, 

our algorithm was compared with FP-LRTC and FaLRTC 

through numerical experiments on randomly generated tensors 

and color image recovery. The numerical comparisons 

demonstrate that the Log-TC outperformed the other two 

algorithms. The future research will investigate the largescale 

cases by other techniques, and test the performance of our 

algorithm for image inpainting problems. 
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