
  

  

A Traffic Signal Recognition Algorithm Based on Self-paced Learning and Deep Learning  
 

Tingmei Wang*, Haiwei Shen, Yuanjie Xue, Zhengkun Hu 

 

 

College of Applied Science and Technology, Beijing Union University, Beijing 102200, China 

 

Corresponding Author Email: yykjttingmei@buu.edu.cn 

 

https://doi.org/10.18280/isi.250211 

  

ABSTRACT 

   

Received: 2 December 2019 

Accepted: 25 January 2020 

 Traffic signal recognition is a critical function of the intelligent vehicle system (IVS). Many 

algorithms can achieve a high accuracy in traffic signal recognition. But these algorithms 

have poor generalization ability, and their recognition rates vary greatly with datasets. These 

defects hinder their application in unmanned driving. To solve the problem, this paper 

introduces self-paced learning (SPL) to the image recognition of traffic signs. Based on 

complexity, the SPL automatically classifies samples into multiple sets. If machine learning 

(ML) algorithm is trained by the sample sets in ascending order of complexity, a universal 

computing model will be obtained, and the ML algorithm will have a better generalization 

ability. Here, the support vector machine (SVM) is adopted as the classifier for traffic sign 

detection, and the convolutional neural network (CNN) is employed as the classifier for 

traffic sign recognition. Then, the two classifiers were trained by the SPL on two public 

datasets: German Traffic Sign Detection Benchmark (GTSDB) and German Traffic Sign 

Recognition Benchmark (GTSRB). The model obtained through the training was tested on 

Belgium Traffic Sign Detection Benchmark (BTSDB) and KITTI datasets. The results show 

that the obtained computing model achieved similar accuracy on the training sets and test 

sets. Hence, the SPL can indeed enhance the generalization ability of ML algorithms, and 

promote the application of CNN, SVM, and other ML algorithms in unmanned driving. 
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1. INTRODUCTION 

 

Traffic signal recognition is a critical function of the 

intelligent vehicle system (IVS). Since the 1990s, many 

machine learning (ML) algorithms have been applied to 

realize traffic signal recognition of the IVS, namely, principal 

component analysis (PCA) [1], random forest (RF) [2], 

support vector machine (SVM) [3], convolutional neural 

network (CNN) [4-6], and sparse representation [7]. These ML 

algorithms can recognize traffic signals accurately.  

However, experiments show that many ML algorithms have 

a much lower testing accuracy than training accuracy, when 

they are trained on one dataset (e.g. Belgium Traffic Sign 

Detection Benchmark (BTSDB)) and tested on another dataset 

(e.g. German Traffic Sign Detection Benchmark (GTSDB)) 

[4].  

Obviously, the computing models obtained through the 

training of the ML algorithms are overfitted. The overfitting 

indicates the weak generalization ability of these algorithms. 

As a result, the ML algorithms might make more 

misjudgments in actual scenarios than in training scenarios.  

During unmanned driving, the accuracy of image 

recognition is affected by various complicated factors, namely, 

the complex background, vehicle jitter, light and shadow, and 

bad weather (e.g. rain, fog, and snow, see Figures 1-6). 

Sometimes, the traffic signs are damaged, polluted, blocked, 

or faded. It is impossible to cover all these situations in the 

training data. If the traffic signs are not identified stably by the 

image recognition algorithm, the control system of intelligent 

vehicles might make misjudgments, resulting in fatal traffic 

accidents. Therefore, it is a common goal among scholars 

engaging in intelligent vehicles to improve the stability and 

generalization ability of traffic sign recognition algorithms. 

Self-spaced learning is an emerging method that can 

effectively enhance the generalization ability of ML 

algorithms. As a training method for ML algorithms, the self-

paced learning (SPL) is developed from curriculum learning 

(CL). In 2009, Bengio et al. [8] introduced the concept of the 

CL into the ML, creating the CL training method. The CL is 

an ancient thought in pedagogy: Since human cognition is a 

process from simple to complex, the learning objectives of 

human learning should be divided into phased curriculums in 

ascending order of complexity. Under the CL training method, 

the samples are classified to multiple sets based on complexity, 

each of which is called a curriculum. Then, the ML algorithm 

learns the samples in each set from simple to complex. 

Experiments show that the computing models obtained by this 

training method is unlikely to overfit, and enjoys strong 

generalization ability. 

In the original CL method, the complexity of each 

curriculum is evaluated manually. However, subjective errors 

might occur in curriculum classification during the application 

process. Moreover, a huge workload is incurred in the face of 

large sample sets. To solve these problems, Kumar et al. [9] 

proposed the SPL in 2010, aiming to automatically divide the 

samples into curriculums by complexity in the training process. 

Specifically, a regular term related to the samples is added to 

the objective function, such as to give a complexity score of 

each sample after the training. The samples will be grouped 

iteratively based on their complexity scores. After that, the 

model will be trained by the CL method, and new scores will 

be rated. This process continues until the model no longer 
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changes in the training. Eliminating manual intervention, the 

SPL has a great advantage over the CL. Recently, the SPL has 

been implemented to recognize multiple images and videos 

(Khan et al. [10]; Basu and Christensen [11]; Tang et al. [12]; 

Jiang and others [13-22]). Experiments have proved that the 

SPL training could improve the test accuracy of ML 

algorithms, and prevent the occurrence of overfitting. This 

means the SPL enhances the generalization ability of ML 

algorithms. 

The image recognition of traffic signs involves two steps: 

traffic sign detection, and traffic sign recognition. For real-

time performance, the SVM is often adopted for traffic sign 

detection, while the CNN is widely employed for traffic sign 

recognition [23-25]. Both SVM and CNN could be trained by 

the SPL to obtain better generalization ability [26]. Therefore, 

this paper introduces the SPL training to the image recognition 

of traffic signs. The SVM and CNN were selected as the 

classifiers for traffic sign detection and traffic sign recognition, 

respectively, and subjected to SPL training on two public 

datasets, namely, GTSDB and German Traffic Sign 

Recognition Benchmark (GTSRB). The computing model 

obtained through the training was tested on BTSDB and KITTI 

datasets [27]. The test results show that the obtained 

computing model achieved similar accuracy on the training 

sets and test sets. Hence, the SPL can indeed solve the 

overfitting problem in image recognition of traffic signs, 

enhance the generalization ability of ML algorithms, and 

create highly applicable traffic sign recognition models. 

 

 
 

Figure 1. Normal traffic sign 

 

 
 

Figure 2. Faded traffic sign 

 

 
 

Figure 3. Traffic sign with a complex background 

 
 

Figure 4. Damaged traffic sign 

 

 
 

Figure 5. Traffic sign in rain 

 

 
 

Figure 6. Traffic sign in snow 

 

 

2. ALGORITHM DESIGN 

 

2.1 Traffic sign detection 

 

For real-time performance, it is impossible to recognize 

every block in the original image with the traffic sign 

recognition algorithm. Hence, traffic sign detection algorithm 

should be adopted to extract the blocks that might be traffic 

signs from the original image in a quick and accurate manner. 

For the same reason, it is also impossible to detect every block 

in the original image with the traffic sign detection algorithm. 

There must be a step in the algorithm to reduce the number of 

candidate blocks, i.e. to extract the regions of interest (ROIs).  

Following the same set of color and shape standards, traffic 

sign images from the same region carry obvious features. The 

main colors are red, yellow, blue, and white, and the typical 

shapes are triangle, rectangle, circle, and octagon. Therefore, 

the ROIs in the original image could be separated based on the 

hue in the hue-saturation-value (HSV) color space, and then 

denoised based on some shape features. 
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Figure 7. Workflow of traffic flow detection 

 

Most traffic signs have borders and background color. The 

semantics of traffic signs mostly reside in the graphics within 

the borders. The borders and background color complicates the 

original image, reducing the detection accuracy. To solve the 

problem, the traffic sign detection algorithm should also 

remove the borders, convert the original image into a binary 

image, and eliminate noises, leaving only the important shape 

features in the ROIs.  

For unified processing, the traffic sign detection algorithm 

should scale the ROIs to a standard size, and describe the shape 

features of the ROIs with distance to border (DtB). Hence, 

both hue and shape features could be employed to depict the 

ROIs. Figure 7 above illustrates the ROI extraction procedure. 

It is a binary classification problem to judge whether an ROI 

is a traffic sign. The SVM is exceptionally good at obtaining 

the discriminant model of binary classification problems 

quickly and accurately. As a result, the SVM has frequently 

been adopted as a classifier in traffic sign detection algorithms.  

Extracted from the camera data of intelligent vehicles, the 

traffic sign images may have abnormalities like occlusion, and 

color fading. These abnormalities will make the hue and shape 

features of the images different from expected. A good traffic 

sign detection algorithm should be able to accurately detect all 

traffic sign images with abnormalities. 

Taking all normal images as simple samples and all 

abnormal images as complex samples, the classifier of the 

traffic sign detection algorithm could be trained by the CL 

strategy. Under this strategy, the characteristic parameters of 

simple samples are extracted from simple curriculums, while 

the extra characteristic parameters of complex samples are 

extracted from complex curriculums. With the extracted 

parameters, the obtained computing model could distinguish 

as many samples as possible, and thus approximate the real 

model. 

Of course, it is a heavy work to classify original images into 

curriculums, owing to the sheer number of traffic sign samples. 

Thus, this paper decides to train the SVM by the SPL, and 

integrates the training method with the learning method into a 

novel algorithm called SPSVM. The performance of the 

SPSVM was tested in three steps: Firstly, the ROI extraction 

method was implemented to extract the candidate blocks from 

the training set and the test set; Next, every block was given a 

label about whether it is a traffic sign; Finally, the discriminant 

model was obtained by applying the SPSVM on the training 

set, and used to discriminate the training set and the test set, 

producing the accuracy of the SPSVM on the two datasets. 

 

2.2 Traffic sign recognition 

 

The images confirmed by the traffic sign detection 

algorithm as traffic sign images are the input data of the traffic 

sign recognition algorithm, which determines the semantics of 

these images, i.e. allocate each image into its class of traffic 

signs. Considering the various types of traffic signs, the 

recognition process is a multi-classification problem. 

The DL algorithms boast relatively high classification 

accuracy for multi-classification problems. Among them, the 

CNN has been widely reported as the most accurate traffic sign 

recognition algorithm. Therefore, this paper takes the CNN as 

the classifier of the traffic sign recognition algorithm. 

Our CNN consists of three convolutional layers and a fully 

connected layer. The first convolutional layer has 100 7×7 

filers, each of which convolve a 7×7 neighborhood in the input 

image. The second convolutional layer has 150 4×4 filters; 

The third convolutional layer has 250 4×4 filters; The fully 

connected layer contains 300 neurons, and outputs 43 features. 

The input data of the CNN are black and white traffic sign 

images scaled to the pixel size of 30×30. The output data are 

the probability of each input image belonging to a type of 

traffic signs. 

The input data of the traffic sign recognition algorithm 

contain both normal samples and abnormal samples. The 

abnormality of abnormal samples refers to the abnormal shape 

features induced by complex situations, such as occlusion, 

jitter, and noise. The CL strategy could also be applied to train 

the CNN. Under this strategy, the CNN could extract the 

characteristic parameters of simple samples from simple 

curriculums, and the extra characteristic parameters of 

complex samples from complex curriculums. 

Therefore, this paper decides to train the CNN by the SPL, 

and integrates the training method with the learning method 

into a novel algorithm called SPCNN. The performance of the 

SPCNN was tested in three steps: Firstly, the images detected 

from training set and test set were all given labels about which 

type of traffic signs they belong to; Next, the traffic sign 

images detected from the training set were used to train the 

CNN; Finally, the trained CNN was adopted to recognize all 

the images detected from the training set and the test set, 

producing the accuracy of the SPCNN on the two datasets. 

 

2.3 The SPL 

 

The details of the SPL are given below. Let 𝐷 =
{(𝑥𝑖 , 𝑦𝑖)}𝑖=1

𝑛  be the training set, where xi is the i-th sample, and 

yi is the label of the i-th sample. Suppose L(yi, g(xi, w)) is the 

loss of the prediction model brought by the i-th sample, where 
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g is the prediction function, and w is the parameter of the 

prediction model. Then, the objective function of the SPL 

optimization can be defined as: 
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where, h is the self-paced regular function, whose attributes 

and properties are introduced by Meng et al. [28]. The 

following self-paced regular function is selected for this 

research: 

 

( , )h v v = −  (2) 

 

For the CNN, the loss function can be expressed as: 

 

( )( ) ( ), , log |i i iL y f x w p y y x= − =   (3) 

 

where, p(y=yi|x) is the value of CNN output corresponding to 

the class yi. 

For the SVM, the hinge loss function can be expressed as: 

 

( )( ) ( ) , , max 0,1 T

i i i iL y f x w w x b y= − +   (4) 

 

where, b is the bias. 

Obviously, after each training, the loss of each sample can 

be obtained easily from the outputs of the CNN and the SVM. 

Eq. (1) can be solved by the expectation-maximization (EM) 

algorithm (Algorithm 1). 

In the EM algorithm, dataset D is the set of all samples; the 

array v is used to select the samples for each training; w is the 

parameter value of the ML model; L is the value of the loss 

function; λ is the threshold for sample groups; s is used to 

determine the increment of sample complexity in each training. 

During the SPL, the training is divided into multiple rounds. 

In each round, the training samples include all the simple 

samples and part of the complex samples. The sample 

composition reflects the knowledge acquisition in education 

process: reviewing simple knowledge, and probing deep into 

complex knowledge. 

 

Algorithm 1: The EM algorithm 

Input: Input dataset D, w0, λ, and s 

Output: w of minv E(w, v; λ). 

1 repeat 

2   Calculate L of every sample by w; 

3   Sort the samples in ascending order of their loss values 

L; 

4    for i=1 to n 

5        if L(yi, f(xi, w))<λ then vi=1; // select this sample 

6        else 

7            vi=0; // do not select this sample 

8        end 

9    end 

10   Update w by solving min ∑ 𝑣𝑖𝐿𝑖(𝑦𝑖 , 𝑓(𝑥𝑖 , 𝑤)) +
𝑛
𝑖=1

1

2
‖𝑤‖2 

11   λ=λ+s 

12 until w is not changed or vi=1, i=1, 2, ..., n. 

3. EXPERIMENTS 

 

3.1 Datasets 

 

Four datasets were selected for our experiments, including 

GTSDB, KITTI, BTSDB, and GTSRB. The former two were 

for training, and the latter two were for testing. The GTSRB 

contains 51,840 images containing traffic signs; the KITTI 

includes 400 1,242×375 images captured by two cameras (left 

and right); the GTSDB offers 900 1,360×800 images; the 

BTSDB provides 3,133 images shot by eight cameras. 

 

3.2 Traffic sign detection 

 

The SVM is well known for its speed and effectiveness in 

binary classification problems. Therefore, the SPSVM was 

applied to detect the ROIs extracted by the classifier, and judge 

whether the ROIs contain traffic signs. The SPSVM was 

compared with ChnFtrs [29], 3D TS [30], Bayesian classifier, 

and the original SVM, which does not use the SPL. 

The detection results were evaluated by four metrics, 

Accuracy, False Rate, Area under Curve (AUC), and Average 

Precision (AP). Accuracy is the ratio of the number of 

correctly recognized traffic signs to the number of all traffic 

signs; False Rate is the ratio of the number of incorrectly 

recognized traffic signs to the number of all traffic signs; AUC 

is the area under the receiver operating characteristic (ROC) 

curve; AP is the area under the Precision-Recall (PR) curve. 

The AUC has been adopted in many experiments to evaluate 

the performance of the classifier. However, the AP 

outperforms the AUC when the number of samples is unevenly 

distributed across different categories. This metric was 

selected for our experiments for the following reasons: In our 

samples, the number of images with traffic sign has a huge 

difference from that of images without traffic sign. 

In our experiments, the images were not classified by the 

labels (i.e. mandatory, dangerous, and prohibited) of the 

datasets. Instead, every ROI extracted in the previous step was 

allocated one of the two categories: “Yes” (the ROI contains 

traffic sign) and “No” (the ROI does not contain traffic sign), 

making traffic sign detection a binary classification problem 

rather than a multi-classification problem. 

The results (Table 1) show that the five algorithms had 

similar performance in traffic sign detection on the training set. 

However, the SPSVM outperformed the other algorithms on 

the test set. Besides, the Accuracy values of the SPSVM on the 

two datasets differed by less than 1%. This means the SPL 

indeed enhances the generalization ability of the SVM. 

 

3.3 Traffic sign recognition 

 

The SPCNN code was programmed on MATLAB, and 

compared with IDSIA DNN [12], IDSIA MCDNN [12], and 

Multi-Scale CNN [4]. The detection results were evaluated by 

three metrics: Accuracy, mean Area under Curve (mAUC), 

and mean Average Precision (mAP). According to the results 

of traffic sign recognition (Table 2), the proposed SPCNN 

achieved better performance than the contrastive methods on 

the test set. Therefore, the SPL training overcomes the 

overfitting problem, which is common to the DL algorithms, 

and improves the generalization ability of the CNN. 
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Table 1. The results of traffic sign detection 

 
 Training Test 

 Accuracy False Rate AUC AP Accuracy False Rate AUC AP 

ChnFtrs 98.53 3.21 0.9721 0.9272 94.32 9.21 0.9215 0.8927 

3D TS 97.72 4.54 0.9613 0.9193 95.54 10.13 0.9223 0.8902 

Bayesian 95.36 5.18 0.9549 0.9247 94.72 10.35 0.9107 0.8824 

SVM 97.39 4.23 0.9687 0.9231 94.21 10.87 0.9114 0.8892 

SPSVM 98.15 2.73 0.9837 0.9612 97.17 5.53 0.9822 0.9531 

 

Table 2. The results of traffic sign recognition 

 
 Training Test 

 Accuracy AUC AP Accuracy AUC AP 

IDSIA DNN 98.52 0.9415 0.9012 88.27 0.8443 0.8093 

IDSIA MCDNN 99.46 0.9512 0.9194 87.16 0.8310 0.8024 

Multi-Scale CNN 99.17 0.9426 0.9163 88.92 0.8469 0.8102 

SPCNN 99.35 0.9748 0.9284 95.78 0.9353 0.9017 

 

 

4. CONCLUSIONS 

 

In traffic sign detection and recognition, the recognition 

rates of many algorithms vary greatly from dataset to dataset. 

To solve the problem, this paper introduces the SPL to train 

the ML algorithms, and verifies the generalization ability of 

the trained model through numerical experiments. The 

experimental results show that our model could achieve 

similar Accuracies on training set and test set. This means the 

SPL could reduce the overfitting problem, and enhance the 

generalization ability of the ML algorithms. Thus, the SPL is 

suitable for training traffic sign recognition models with a high 

requirement on precision. 

In this research, the SPL is innovatively applied to the 

detection and recognition of traffic signs. However, the 

datasets are not sufficiently large, the traffic sign images are 

not highly diversified, and the complex situations are rather 

limited. As a result, the obtained model cannot be directly 

applied to actual unmanned driving control systems. In the 

future research, more largescale datasets from different 

countries will be learned, and the scale of the CNN will be 

expanded, aiming to create a highly accurate recognition 

model for industrial use. 

The SPL has not been extensively studied, when compared 

with immensely popular learning methods like reinforcement 

learning [31], active learning [32], and ensemble machine 

learning [33]. Many researches fail to consider the SPL, 

because this learning strategy, only capable of enhancing the 

generalization ability of the target algorithm, performs poorly 

on the training set. However, many experiments have proved 

that the SPL helps to develop highly universal models for the 

ML algorithms, making the learning results are applicable to 

real-world scenarios. As a result, it is of great value to promote 

the SPL. 
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