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 Featuring complex functions, dense population, and large span, high-rise buildings are an 

iconic product of economic and technical growths in modern society. Fire poses an 

imminent threat to high-rise buildings. Once a high-rise building catches fire, the loss of 

life and property will be incalculable. However, the traditional assessment methods for fire 

safety of high-rise buildings are incapable of handling the complex influencing factors. To 

solve the problem, this paper combines the fuzzy logic inference system and radial basis 

function neural network (RBFNN) into an intelligent assessment method mimicking the 

nonlinear inference process of fire safety experts. Firstly, the factors affecting the fire safety 

of high-rise buildings were quantified, and the relevant rating standard was established. 

Next, the classic statistics were transformed into fuzzy indices, using the fuzzy logic system. 

To avoid the local minimum trap, the RBFNN was adopted to replace the traditional 

backpropagation neural network (BPNN), and integrated with the fuzzy logic system, 

creating an adaptive fuzzy-RBFNN to assess the fire safety of high-rise buildings. The 

proposed network was trained by numerous expert evaluation samples, and verified by 

examples. The simulation results show that the proposed network could mimic the nonlinear 

inference process of fire safety experts, and evaluate the fire safety of high-rise buildings in 

real time with little error. The research results provide new insights on the application of 

artificial intelligence (AI) in fire safety assessment.  
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1. INTRODUCTION 

 

China is currently the second largest economy in the world. 

With the rapid growth of economy and technology, more and 

more high-rise buildings have been constructed [1, 2]. Fire 

poses an incalculable threat to high-rise buildings. In less 

severe cases, fire may burn buildings and furniture. If things 

get worse, people could be injured or killed by fire [3-5]. The 

current fire safety standards for buildings cannot satisfy the 

demand of modern buildings for fire safety. It is impossible to 

assess the overall fire safety of high-rise buildings based on 

the score of a single item in the standards. The assessment of 

fire safety experts, who have rich experience in engineering, is 

more reliable and accurate. But such experts are hard to find, 

and take a long time to make the assessment. Besides, there is 

no mathematical formula that accurately describes the expert 

assessment of fire safety, which is a typical nonlinear 

reasoning process. Therefore, it is urgent to develop an 

artificial intelligence (AI)-based method to simulate the 

nonlinear reasoning by experts, and to realize fast and accurate 

assessment of the fire safety of high-rise buildings. 

In the past few decades, many cities have constructed high-

rise buildings to accommodate the fast-growing urban 

population. Meanwhile, many fire accidents broke out in high-

rise buildings, causing serious casualties and property losses. 

These accidents are resulted from the lack of maintenance and 

poor management. The reliability of fire safety measures in 

buildings is greatly affected by the level of maintenance. In 

other words, the service time of fire safety components 

depends on the interaction between the maintenance strategy 

and its environment [6]. However, building owners and 

managers always want to keep maintenance cost as low as 

reasonably possible. Hence, it is necessary to evaluate fire 

safety in advance and prioritize relevant tasks. In addition to 

maintenance requirements, the government should issue legal 

notices to building owners, requiring them to improve fire 

safety, and establish a reasonable rating system to evaluate and 

classify the safety level of buildings. Currently, the safety level 

of buildings could be analyzed based on existing codes and 

basic physical and thermodynamic models. Nonetheless, none 

of these thermodynamic simulation methods are sufficiently 

comprehensive, consistent, or convenient for fire safety 

assessment. After all, most high-rise buildings are multi-story 

complex buildings, with incomplete records of construction 

methods and materials. 

Against this backdrop, various methods have been 

developed to assess the fire safety of high-rise buildings. Watts 

[7] was the first to elaborate the fire safety rating system in a 

comprehensive manner. Zheng et al. [8] introduced the 

backpropagation neural network (BPNN) to assess the fire 

safety of large shopping malls. Chow [9] proposed a 10-point 

safety rate system to evaluate fire safety, according to the fire 

safety requirements on high-rise buildings in Hong Kong. Han 

et al. [10] integrated data collection, risk distribution 

calculation, and evaluation reroute planning, and put forward 

a comprehensive real-time evacuation route planning method 

for high-rise building fire; this method could evaluate fire 

status and make evacuation plans. Considering the inaccuracy 
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of the information to be processed, Watts [11] included fuzzy 

set theory [12, 13] into the fire safety assessment system. 

Based on multi-criteria and fuzzy logic, Paralikas [14] 

presented a rapid assessment method for chemical substances 

and devices. Extended from fuzzy theory, the above fire safety 

assessment systems [15-18] face an inevitable problem: the 

difficulty of pairwise comparisons increases with the number 

of attributes or experts. 

To overcome the problem, Lo [19] proposed an inaccurate 

information processing method based on reliability interval 

and grey relational model; this method allows experts to assign 

interval scores rather than fixed scores to attributes. Later, Lo 

[20] developed a fuzzy fire safety assessment mechanism, in 

which fire safety attributes are identified by Delphi method, 

and the weight of each attribute was evaluated through analytic 

hierarchy process (AHP) [21]. Drawing on the statistical 

theory of fuzzy set, Xia et al. [22] to mathematically analyzed 

the stochasticity in fire risk assessment of high-rise buildings, 

calculated the total weight of all indices, and evaluated the fire 

risk by the linear weighted model. Since it is difficult to 

identify risk factors amidst uncertainties, fire safety could not 

be assessed easily based on event tree or fault tree. For high-

rise buildings, it is hard to apply statistical inference to fire 

safety assessment, because historical data are often 

insufficient or too indicative. 

The fire safety of high-rise buildings is affected by various 

complex factors. This highlights the importance of fire safety 

experts, known for their rich experience and knowledge, in fire 

safety assessment of high-rise buildings. Because the previous 

analyses are mostly qualitative, this paper attempts to analyze 

the fire safety of high-rise buildings in a quantitative fashion. 

First, a fire safety evaluation system was established for high-

rise buildings, using the advantages of the AI in system 

learning and automatic pattern recognition. The fire protection 

system, fire extinguishing system, the safety evacuation 

system, and other factors were quantified under the established 

system. On this basis, an adaptive fuzzy-radial basis function 

neural network (RBFNN) was proposed, and trained with 

numerous expert evaluation samples. The trained evaluation 

network was verified by examples. The results show that our 

network could judge whether high-rise buildings meet the fire 

safety requirements of modern buildings rapidly and 

accurately. 

 

 

2. FIRE SAFETY ASSESSMENT SYSTEM FOR HIGH-

RISE BUILDINGS 

 

2.1 Evaluation index system 

 

For high-rise buildings, the prevention of fire largely hinges 

on a comprehensive fire safety assessment system. From the 

perspective of fire prevention and control, this paper mainly 

considers four primary indices in the assessment of fire safety, 

namely, fire protection system, fire extinguishing system, 

safety evacuation system, and other factors. 

(1) Fire protection system 

Fire protection system can effectively curb the spread of fire, 

making it possible for personnel to evacuate from the building. 

This system could be further decomposed into piping shafts 

and building components; smoke exhaust and ventilation 

systems; fire power supply and power distribution. 

(2) Fire extinguishing system 

Fire extinguishing system can detect the fire in the early 

stage. Then, the system will issue an alarm to remind 

personnel to evacuate and escape, and activate the firefighting 

equipment to put out or contain the early fire. It is very 

important to evaluate the success probability PS of the fire 

extinguishing system: 

 

S RE OLA OPRP P P P=  
 (1) 

 

where, PRE, POLA, POPR are the response efficiency, online 

availability, and operability, respectively. 

(3) Safety evacuation system 

In high-rise buildings, the safe escape of personnel from fire 

directly depends on the rational design of safe evacuation 

passages and the effective organization of evacuees. The 

safety evacuation system could be broken down into: fire 

elevators; fire lanes or the sites for aerial platform fire trucks; 

safe passages; evacuation distances; evacuation stairs; 

evacuation signs. Among them, evacuation signs are essential 

in high-rise buildings: the signs guide personnel to escape 

safety from the fire scene. The intact rate A0 of the safety 

evacuation system reflects the level of fire hazard:  

 

1 1

0

1 2

100%
n n

A
n n n

= = 
+

 

(2) 

 

where, n1, n2 and n are the number of intact basic units, the 

number of incomplete basic units, and the total number of 

basic units. 

(4) Other factors 

If the fire is serious, a fire brigade is needed to put out the 

fire. The sooner the fire brigade reaches the scene, the more 

likely it is to extinguish the fire. The other factors include 

firefighting skills; personnel management; maintenance 

situation; surrounding environment. 

 

2.2 Quantification of fire safety assessment indices for 

high-rise buildings 

 

For simplicity, the fire safety assessment system for high-

rise buildings can be expressed as a set: 

 

 1 2 3 4, , ,u= u u u u
 

(3) 

 

where, u is the composite evaluation index; u1_u4 are the four 

primary indices, namely, fire protection system, fire 

extinguishing system, safety evacuation system, and other 

factors, respectively. 

The qualitative secondary indices under each primary index 

can be expressed as: 

 

 1 11 12 13 14, , ,u = u u u u
 

(4) 

 

 2 21 22 23 24 25 26, , , , ,u = u u u u u u
 

(5) 

 

 3 31 32 33 34 35 36, , , , ,u = u u u u u u
 

(6) 

 

 4 41 42 43 44, , ,u = u u u u
 

(7) 
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Table 1. Classification of fire protection system u1 

 
Level 1 2 3 4 5 

Description Strong compliance Slight compliance Neutral Slight non-compliance Strong non-compliance 

Score  100 95~100 90~95 85~90 <85 

 

Table 2. Classification of fire extinguishing system u2 

 
Level 1 2 3 4 5 

Description Strong compliance Slight compliance Neutral Slight non-compliance Strong non-compliance 

Score  >95 90~95 85~90 80~85 <80 

 

Table 3. Classification of safety evacuation system u3 

 
Level 1 2 3 4 5 

Description Strong compliance Slight compliance Neutral Slight non-compliance Strong non-compliance 

Score  100 95~100 90~95 85~90 <85 

 

Table 4. Classification of other factors u4 

 
Level 1 2 3 4 5 

Description Strong compliance Slight compliance Neutral Slight non-compliance Strong non-compliance 

Score  >80 70~80 60~70 50~60 <50 

 

 

The qualitative secondary indices can be quantified as: 

 

𝑢𝑖𝑗 =

{
 
 

 
 
1           v𝑖𝑗 = 𝜃1
2           v𝑖𝑗 = 𝜃2
3           v𝑖𝑗 = 𝜃3
4          v𝑖𝑗 = 𝜃4
5           v𝑖𝑗 = 𝜃5

 (8) 

 

where, uij and vij (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5) are the quantified value and 

original description of qualitative secondary index j under 

primary index i, respectively. 

Then, the level of quantitative secondary index j under 

primary index i can be determined by: 

 

𝑢𝑖𝑗 =

{
 
 

 
 
𝛼1          M1 < 𝑥𝑖𝑗 < 𝑀2

𝛼2          M2 < 𝑥𝑖𝑗 < 𝑀3

𝛼3          M3 < 𝑥𝑖𝑗 < 𝑀4

𝛼4         M4 < 𝑥𝑖𝑗 < 𝑀5

𝛼5           𝑥𝑖𝑗>M5

 (9) 

 

where, 𝛼1 ,𝛼2 , 𝛼3 , 𝛼4 , 𝛼5 are values within 1, 2, 3, 4, and 5 

change intervals, respectively; xij is the original collected value 

of secondary index j under primary index i; M1, M2, M3, M4, 

M5 are the critical values of the change of three levels, 

respectively. 

Considering their sheer number, the variables can be 

reduced through mean filtering: 

 

1 2i i in

i

u u u
X

n

+ +
=

 

(10) 

 

where, Xi is the given data; uin are the data on the secondary 

indices under a primary index; n is the number of secondary 

indices under that primary index. 

Through the above analysis, the primary indices could be 

quantified by the following standards (Tables 1-4). 

3. FUZZY RBFNN FOR FIRE SAFETY ASSESSMENT 

OF HIGH-RISE BUILDINGS  

 

For high-rise buildings, the fairness and reliability of fire 

safety assessment rely on the assessment method. The selected 

method must be fair, comprehensive, objective, and consistent. 

It is known to all that artificial neural networks (ANNs), an AI 

technique, have a strong ability to generalize real-world 

objects. To reduce subjectivity of expert assessment, the 

ANNs could be introduced to set up the fire safety assessment 

system for high-rise buildings. However, safety engineers 

have long been puzzled by how to quantify expert experience 

and a priori knowledge into data inputs of the ANNs. Based 

on the fuzzy rule base, fuzzy logic inference can infer the fuzzy 

output variables from the fuzzy input variables, making it easy 

to transform the real-world knowledge into mathematical 

language.  

Therefore, this section proposes a neural network for fire 

safety assessment of high-rise buildings based on the AI. 

Firstly, a fuzzy inference system was developed for fire safety 

of high-rise buildings, which implements fuzzy inference of 

the fire safety evaluation indices of such buildings. Next, the 

fuzzy outputs were connected to the RBFNN, and the fuzzy 

sets were imported to the proposed neural network. Then, the 

proposed network was trained with lots of samples, enhancing 

its understanding of security assessment issues. In addition, 

the anterior and posterior parameters were updated in real time, 

making the network more accurate and effective. 

 

3.1 Fuzzy logic inference system 

 

The fire safety assessment of high-rise buildings is a 

complex task. Many techniques and equipment are involved in 

the task, including critical systems like the fire protection 

system and safety evacuation system. To complete the 

complex task, it is imperative to have scientific understanding 

and engineering knowledge on various issues. However, the 

more complex the system, the less accurate the information. 
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To solve highly complex problems, Zadeh [13] put forward 

the fuzzy theory in 1973, which has developed rapidly ever 

since. However, there remains many incomplete and uncertain 

information hidden in variables, models, and subject 

assessment. This situation is particularly serious in important 

tasks like fire safety assessment of high-rise buildings. 

Uncertain information can be analyzed by various methods, 

such as classical statistical analysis, probabilistic analysis, 

sensitivity analysis, etc. At present, the fuzzy logic is widely 

accepted as the best method to deal with uncertainties (the lack 

of knowledge and fuzziness). The fuzzy logic is the collective 

term for fuzzy set analysis and possibility theory [23]. 

The general set X of the objects can be defined as a fuzzy 

set A, which has a continuous membership. The unique feature 

of the fuzzy set is that the membership function μ(x) assigns 

each object a membership in the interval of [0, 1]. Thence, the 

fuzzy set can be defined as [24]: 

 

( ) XxxxA = ;)(,
 

(11) 

 

where, 𝜇(𝑥): 𝑋 → [0, 1] is a membership function reflecting 

the likelihood for x to fall in set A. 

Figure 1 illustrates the difference between the classic and 

fuzzy sets in safety assessment. 

 

 
 

Figure 1. The classic set and fuzzy set of safe state and 

unsafe state 

 

The classic set separates the safe state from the unsafe state 

with clear and accurate boundaries. By contrast, the fuzzy set 

displays the smooth change form safe state to unsafe state, 

indicating that safety is a fuzzy problem. The fire hazard is an 

inherent problem of high-rise buildings. Thus, the fire safety 

of such building cannot be strictly classified as safe or unsafe. 

The true level of fire safety partly belongs to a state and partly 

belongs to another state. Here, the fuzzy situation is solved by 

the fuzzy logic system: the likelihood of a phenomenon was 

described by the membership function, and the fuzzy set 

theory was effectively integrated to the fire safety analysis, 

reducing the uncertainty of knowledge. 

As shown in Figure 2, the fuzzy logic inference system 

involves three steps: fuzzification, fuzzy reasoning, and 

defuzzification. 

 

 
 

Figure 2. Fuzzy logic inference system 

 

(1) Fuzzification  

To realize the fuzzy system, several fuzzy rules can be 

designed as: 

Rule 1: If M is p1 & N is q1 & … then R is g1; 

Rule 2: If M is p2 & N is q2 & … then R is g2. 

where, Mi, Ni… are conditional variables; pi, qi, and gi… are 

fuzzy parameters obtained by membership function; R is the 

control output of fuzzy logic.  

In the fuzzy rules, the condition variables are often 

configured by setting the membership of input point to 1 or 

configured based on the membership value. The Mamdani 

fuzzy inference method is an operation rule that combines 

fuzzy relation and fuzzy set. By this method, the membership 

values μp1(m), μq1(n), μp1(m) and μq1(n) in the range of D1 and 

D2 are matched with the corresponding fuzzy variables. 

(2) Fuzzy reasoning 

Let M = m and N = n. The control rules can be matched 

based on membership: 

Rule Ⅰ: μ1 = μp1(m)^μq1(n); 

Rule Ⅱ: μ2 = μp2(m)^μq2(n). 

where, ∧ is a Mamdani inference method similar to the min 

function. 

 

 
 

Figure 3. The fuzzy reasoning process 
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The truth degrees of Rules I and II can be denoted as μ1 and 

μ2, respectively. Then, the fuzzy reasoning process can be 

described as Figure 3, where μg1(R) and μg2(R) are the defined 

fuzzy subsets g1(R) and g2(R) of m and n for measurement; D3 

is the value range of output variable; g(R) is the fuzzy control 

output, i.e. the set of fuzzy subsets gi(R). The membership 

μgi(R) of g(R) is the sum of all membership values: 

 

μg(R) = μc1(R) * μc2(R) (12) 

 

where, * is a Mamdani inference method that takes the 

maximum value in the set. 

(3) Defuzzification 

Defuzzification aims to convert the fuzzy result (inference 

result) into a real value that can be used as a control input. The 

control output was obtained from μgi(R), because fuzzy result 

is not desired. The center of gravity method can be adopted for 

defuzzification: 

 

( )

( )

A
Z

C

A
Z

Z Z dz
Z

Z dz






=


  

(13) 

 

where, ∫z is the algebraic integral of the membership values of 

all elements in the subset output by fuzzy logic system on the 

continuous domain Z. 

 

3.2 The RBFNN 

 

Due to their excellence in generalization and learning, the 

ANNs have been extensively applied in various fields, ranging 

from including pattern recognition, flow prediction, industrial 

control, to evaluation. The most common ANN in safety 

assessment is the BPNN. However, the learning speed and 

convergence speed of the BPNN are far from ideal. As a result, 

the BPNN is easy to fall into the local minimum trap, which 

affects the accuracy of safety assessment. These defects of the 

BPNN could be overcome by the RBFNN, which is rarely 

applied to fire safety assessment of high-rise buildings. 

 

 
 

Figure 4. The RBFNN 

 

(1) Working principles 

As shown in Figure 4, the RBFNN is a feedforward local 

approximation network with a single hidden layer. There are 

three layers in the RBFNN: input layer, hidden layer, and 

output layer [25-27]. The hidden layer nodes are usually 

activated by the Gaussian function, making the RBFNN 

radially symmetric about the center of the Gaussian function. 

Let 𝑋 ∈ 𝑅  (𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇 ) be the input vector. Then, 

the hidden layer output can be expressed as: 

2

2
( ) exp

2

j

j

j

X r
h x



 − −
 =
 
  , 

1,2, ,j N=
. 

(14) 

 

where, rj is the center of the Gaussian function in the hidden 

layer; 𝜎𝑗 is the width of the Gaussian function. 

When the input vector Xn is imported to the RBFNN, the 

network will output: 

1

( ) ( )
N

n i i n

i

Y X h X
=

=
 

(15) 

 

where, 𝜔𝑖 is the connection weight between the hidden layer 

and output layer. 

(2) Training algorithm for the RBFNN 

The training algorithms of the ANNs are either 

unsupervised learning algorithm or supervised learning 

algorithm. Here, unsupervised learning is adopted to train the 

RBFNN. The center of the Gaussian function was determined 

by fuzzy C-means (FCM) clustering. In the FCM clustering, 

the data are classified based on the membership function 𝑈 =

{𝜇𝑖
𝑝
}
𝑐×𝑛

, where 𝜇𝑖
𝑝
 is the membership of sample p relative to 

cluster center i. Then, the objective function κ can be 

processed as: 

 
2 2

2

1 2

1 1 1

( , , , , ) ( )
N N n

p L

c i i ip

i i k

U v v v d  
= = =

= = 
 

(16) 

 

where, 𝑑𝑖𝑝 = √∑ (𝑥𝑝𝑞 − 𝑣𝑖𝑞)
2𝑠

𝑞=1  is the Euclidean distance 

between cluster center and fuzzy group; 𝐿 ∈ (1, +∞), 𝑐 ≥ 2; 

𝑢𝑖𝑝 ∈ (0,1). 

Supervised learning, the key to the RBFNN, iteratively 

updates the network weights for a given network structure 

based on label information (desired output). This learning 

strategy ensures that the RBFNN operates according to the 

desired assessment method. In the error backpropagation 

training of the RBFNN, the network weights 𝜔𝑖 were trained 

by the gradient descent with a momentum factor. Let z(t) be 

the evaluation outputted by the RBFNN, and zm(t) be the 

evaluation made by experts. Then, the network weights can be 

adjusted by: 

 

( ) ( ( ) ( ))j m j

j

E
t z t z t

w
   


 = − = −


 

(17) 

 

( ) ( 1) ( ) ( ( 1) ( 2))j j j j jt t t t t     = − +  + − − −
 (18) 

 

where, 𝜉 ∈ (0,1)  is the learning rate; 𝛾 ∈ (0,1)  is the 

momentum factor. 

The RBFNN was trained into an intelligent fire safety 

evaluator by learning the sample data of the fire safety experts. 

The trained network mimics the assessment process of fire 

safety experts. 

 

3.3 Fuzzy-RBFNN fire safety evaluation model 

 

The fuzzy inference system was combined with the RBFNN 

into an adaptive fire safety assessment model for high-rise 

buildings (Figure 5). The proposed model was trained by 

numerous expert evaluation samples on fire safety of high-rise 

buildings. During the training, the center of Gaussian function 
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and network weights were adjusted adaptively, making the 

model intelligent, accurate, and efficient. 

For simplicity, the same function was adopted for the nodes 

on each layer. The structure and mechanism of the adaptive 

fuzzy-RBFNN are introduced below: 

In the first layer (input layer), the nodes are directly 

connected to the input 𝛽𝑖  to pass the input vector 𝐵 =
[𝛽1, 𝛽2, … , 𝛽𝑛] to the next layer. There are 𝑁1 = 𝑛 nodes in 

this layer. 

 

1x
1x

1

1

1
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1r

2r
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Figure 5. The structure of adaptive fuzzy-RBFNN 

 

In the second layer (membership function layer), each node 

represents a fuzzy set. If the membership function is defined 

as the Gaussian function, then the output function 

corresponding to each node constitutes the membership 

function of the fuzzy set: 

 
2 2exp[ ( ) / ]j

i i ij ijr  = − −
 

(19) 

 

where, i=1,2,…,n; j=1,2,…,mi; rij and σij are the center and 

width of the Gaussian function, respectively. There are 𝑁2 =
∑ 𝑚𝑖
𝑛
𝑖=1  nodes in this layer. The center of the membership 

function directly bears on the assessment result. Hence, the 

FCM clustering was performed on all input samples to 

determine the center rij of each Gaussian function. To assess 

the fire safety of high-rise buildings, the mean of the evaluated 

values of each level was taken as the initial value of rij. 

In the third layer (fuzzy inference layer), each node stands 

for a fuzzy inference rule: 

 
1 2

1 2min( , , , )nii i

l n   =
 

(20) 

 

where, 𝑖1 ∈ {1,2, … ,𝑚1} ; 𝑖2 ∈ {1,2, … ,𝑚2} ,… 𝑖𝑛 ∈
{1,2, … ,𝑚𝑛}; 𝑙 = 1,2,… ,∏ 𝑚𝑖

𝑛
𝑖=1 .  The closer the input is to 

the center of the input variables, the greater its membership 

function. The inverse is also true. There are 𝑁3 = 𝑚 =
∏ 𝑚𝑖
𝑛
𝑖=1  nodes in this layer. 

In the fourth layer (normalization layer), the results are 

normalized by: 

 

1

i

i m

n

n





=

=


 

(21) 

 

In the fifth layer (output layer), all signals are superimposed 

into the network output: 

 

1

m

kl l

l

y C
=

=
, 1,2, ,k r=  

(22) 

where, Cl is the value of consequent evaluation; ωkl is the 

matrix of weights in the adaptive fuzzy-RBFNN. 

In the adaptive fuzzy-RBFNN, the connection weights 

between fuzzy inference layer and output layer, as well as the 

center and width of Gaussian function, were optimized 

through the training on expert evaluation samples based on the 

gradient descent with momentum factor. After the training, the 

proposed network fit better with the assessment rules of fire 

safety experts. 

 

 

4. SIMULATION VERIFICATION 

 

To verify the proposed network, a training set and a test set 

were developed based on the comments of fire safety experts 

on 22 high-rise buildings in a province of China. The expert 

evaluation samples of 14 high-rise buildings were used to train 

the proposed adaptive fuzzy-RBFNN, and those of 8 high-rise 

buildings were used to test the network. The center of 

membership function (Gaussian function) was determined by 

the FCM clustering algorithm based on the training set. The 

other parameters were configured as follows: the width of 

Gaussian function σ=3.2, the learning rate η=0.4, the 

momentum factor ξ=0.02, and the initial weight ωj=0.01. The 

trained adaptive fuzzy-RBFNN was adopted to assess the fire 

safety of the 8 high-rise buildings in the test set. 

Figure 6 depicts the convergence of the training error of the 

adaptive fuzzy-RBFNN. Obviously, the assessment error of 

the proposed network meets the requirements after 14 

iterations. 

The evaluation results and relative errors of our network on 

the 8 test samples are listed in Table 5. 

 

 
 

Figure 6. The convergence of the training error 

 

Table 5. Evaluation results and relative errors on the 8 test 

samples 

 
Samples Expert results Our results Relative errors 

1 1.4 0.9 -35.7% 

2 3.6 3.5 -2.8% 

3 3.0 2.9 -3.3% 

4 2.5 2.5 0 

5 2.5 2.4 -4% 

6 2.5 2.5 0 

7 2.5 2.5 0 

8 2.5 2.5 0 
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Figure 7. Comparison of evaluation results 

 

 
 

Figure 8. Relative error of the BPNN 

 

Meanwhile, the traditional BPNN was also applied to assess 

the 8 test samples. The results and relative errors of the BPNN 

are displayed in Figures 7 and 8, respectively. It can be seen 

that our network output similar results as expert evaluation, 

while the BPNN results exhibited the right trend but contained 

a high error. The excellence of our network is attributable to 

the following factors: through the learning and training of 

expert evaluation samples, the nonlinear evaluation process is 

converted into network data that can be understood by the 

evaluation model. The above results show that our network 

can generalize the logic of experts after training. 

 

 

5. CONCLUSIONS 

 

Targeting the fire safety assessment of high-rise buildings, 

this paper combines fuzzy theory and the RBFNN into a novel 

adaptive fuzzy-RBFNN model. The proposed method greatly 

improves the learning speed and simulation accuracy of the 

BPNN, and avoid the local minimum trap. Through the 

verification on actual high-rise buildings, our method was 

found to mimic the reasoning process of fire safety experts 

quickly and accurately. Compared with a single standard and 

the BPNN, the proposed adaptive fuzzy-RBFNN can evaluate 

the fire safety of high-rise buildings with high efficiency, 

accuracy, and reliability.  

So far, the AI techniques like fuzzy theory-based RBFNN 

have not been widely applied to fire safety assessment of high-

rise buildings, failing to provide sufficient experimental 

evidence. The future research will apply the proposed network 

to more high-rise buildings, and use the ample experimental 

data to enhance the stability and accuracy of our network. 

Furthermore, the fuzzy rules will be modified to make our 

network more applicable to fire safety assessment of 

engineering projects. 
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