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 The safety of arch dams is greatly affected by the nonlinearity of the concrete. This paper 

introduces the basic theories on concrete constitutive models, analyzes the incremental energy 

dissipation function of concrete in the plastic process, and derives an elastic-plastic constitutive 

model for concrete based on thermodynamic principles. The proposed model was applied to 

examine the dynamic nonlinear seismic responses of an actual arch dam, and compared with 

several other models. Besides, the effect of strain rate on the concrete performance was also 

discussed in details. The research findings provide a reference for the safety evaluation of arch 

dam design. 
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1. INTRODUCTION 

 

The dam safety is an important guarantee for the normal 

production and living of downstream residents. The safety 

issues must be fully considered in the design phase, and 

carefully evaluated after construction to see if it satisfies the 

design criteria. Traditionally, the mechanical safety of dams is 

mainly analyzed in terms of the linear elastic response. 

However, the linear elastic analysis cannot capture the exact 

structural response, especially in seismic activities. In recent 

years, the research focus has gradually shifted to the nonlinear 

seismic response. 

An arch dam is a concrete dam that is curved upstream in 

plan. The safety of such a dam lies heavily on the damage 

mechanism of concrete. The concrete properties can be 

examined by several dynamic models [1-7]. However, it is 

necessary to construct a rational constitutive model of concrete 

with few assumptions and clear physical meaning, before 

exploring the nonlinear responses of arch dams. The 

constitutive model should reflect the mechanical properties of 

concrete in all deformation phases, and depict the progress 

failure from strain softening, strength reduction to stiffness 

reduction, making it possible to identify the nonlinear features 

of concrete. The model should also conform to the general 

principle of energy and carry the nonlinear features of concrete. 

As a nonlinear factor, the rate dependency of concrete must 

be considered in dam safety analysis. The theory of metal 

plasticity has long been applied to nonlinear analysis of 

concrete, creating many plastic and viscoplastic models. 

Nonetheless, many problems have arisen in these models, due 

to the difference between concrete and metals. Thus, this 

theory must be further modified before being applied to 

concrete. In addition, the redistribution of structural stress 

should not be included in dam safety analysis, aiming to 

reduce the measurement error of safety behavior of the 

structure. 

In light of the above, this paper develops a proper 

constitutive model of concrete based on thermodynamic 

principles, and adopts the model to analyze the static and 

dynamic responses of arch dams, laying the basis for dam 

safety evaluation. 

 

 

2. LITERATURE REVIEW 

 

Concrete is an important material in civil engineering.  

Traditionally, the mechanical analysis on concrete mainly 

focuses on the linear elastic response of the structure, owing 

to the limited computing power and insufficient understanding 

of the material. As concrete structures become increasingly 

complex, it is of great significance to analyze the nonlinear 

response of the structure in an accurate manner. However, the 

popularity of nonlinear analysis has been restricted by many 

factors, e.g. the concrete properties in confined structure 

cannot be simulated directly [8, 9]. 

Recent years saw the emergence of various constitutive 

models for concrete, such as nonlinear elastic model and 

plastic model. Among them, the nonlinear elastic model is 

often fitted by empirical formulas, and employed to discuss the 

nonlinear compressive deformation of concrete under 

monotonic loading. This model is hailed for the simple 

computation and stable algorithm. Nevertheless, the model 

cannot reveal the complex performance of concrete, as it 

requires a large range of stress-strain data. Some of the 

nonlinear elastic constitutive models use the variable secant 

modulus to depict the full-scale stress-strain relationship [10-

11], and some illustrate the incremental stress-strain 

relationship [12-13]. 

The plastic constitutive model is grounded on the plasticity 

theory, which describes the relationship between stress 

increment and strain increment of a material in plastic state. 

This theory is one of the instruments on the macro stress-strain 

features of concrete, alongside with damage theory and 

endochronic theory. Based on this theory, the plastic 

constitutive models have been created to illustrate the loading 

path, hardening and softening of concrete [14-18]. However, 
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the plasticity theory and its related models cannot accurately 

simulate the macroscale decline of concrete integrity and 

change of concrete performance, which come from the 

microcrack propagation and penetration under external load. 

To overcome the defect, the damage theory [19] has been 

introduced to the analysis on concrete properties. In the 

damage constitutive models of concrete, the damage variable 

and damage evolution, the two basic factors of damage 

mechanics, are introduced into the stress-strain relationship for 

accurate depiction of concrete deterioration. The typical 

damage constitutive models include Loland model [20], 

Mazars model [21], piecewise linear damage model [22] and 

piecewise curve damage model [23]. 

The endochronic theory was conceptualized to overcome 

the difficulties of the plastic theory in experiment and 

numerical calculation using the yield surface. In this theory, 

the yield surface is scrapped to avoid the said difficulties. The 

endochronic constitutive model was initially applied to metals, 

and introduced to concrete by Bazant et al. [24]. This model 

can describe the exact constitutive phenomena of concrete, as 

it is thermodynamically irreversible and free from the 

constraint of the yield surface. Nonetheless, the endochronic 

model is too complex to be applied widely in practice. 

 

 

3. MATHEMATICAL DERIVATION 

 

This section explains the mathematical derivation of a 

concrete constitutive model based on thermodynamic 

principles. 

According to the first and second laws of thermodynamics, 

a material under isothermal deformation obeys the following 

energy relationship: 

 

dW = dF + dD, dD ≥ 0                                                        (1) 

 

where dW = σ: dε  is the incremental stress; dF  is the 

incremental free energy; dD  is the incremental energy 

dissipation. The free energy is a function of independent 

observable state variables like the total strain ε and the plastic 

strain εP. Hence, the incremental free energy can be defined as: 

 

dF =
∂F

∂ε
: dε +

∂F

∂ εP : d εP                                                        (2) 

 

The energy dissipation depends both on state variables and 

the incremental plastic strain. However, it has nothing to do 

with the total incremental strain (otherwise, a purely elastic 

deformation will dissipate energy). For a non-elastic-plastic 

material, the incremental energy dissipation dD  can be 

described by the first-order homogeneous function of 

incremental plastic strain: 

 

dD =
∂(dD)

∂(dεP)
: dεP                                                                    (3) 

 

Substituting the expressions of dH and dD into Equation (1), 

we have: 

 

σ: dε =
∂F

∂ε
: dε + (

∂F

∂ εP +
∂(dD)

∂(dεP)
): dεP                                               (4) 

 

Eliminating dH and dD, we have: 

 

σ =
∂F

∂ε
                                                                                     (5) 

Meanwhile, the dissipative stress, i.e. the generalized stress 

in dissipative stress space, can be defined as: 

 

χ =
∂F

∂ εP = −
∂(dD)

∂(dεP)
                                                                (6) 

 

The value of the dissipative stress can be derived either from 

free energy function or from dissipative function. Eliminating 

dεP  in Equation (6), the yield function f(χ) = 0  can be 

obtained for the dissipative stress space. 

 

For an elastic-plastic material, the free energy can be 

expressed as the sum of the elastic strain and the plastic strain: 

 

F = F1(εe) + F1(εP)                                                              (7) 

 

The elastic part of the above equation can be expressed as: 

 

dWe = σ: dεe = dF1 =
∂F1(εe)

∂εe : dεe                                     (8) 

 

Thus, the elastic constitutive relation can be obtained as: 

 

σ =
∂F1(εe)

∂εe                                                                              (9) 

 

The plastic part of the Equation (7): 

 

dWP = σ: dεP = dF2 + dD =
∂F2(εP)

∂εP : dεP +
∂(dD)

∂(dεP)
: dεP   (10) 

 

Thus, the plastic constitutive relation can be obtained as: 

 

𝜎 =
𝜕𝐹2(𝜀𝑃)

𝜕𝜀𝑃 +
𝜕(𝑑𝐷)

𝜕(𝑑𝜀𝑃)
= 𝜌 + 𝜒                                               (11) 

 

where 𝜒 is the dissipation stress; 𝜌 is the shift stress. 

 

 

4. CONSTITUTIVE MODEL CONSTRUCTION 

 

This section establishes the basic form of the concrete 

constitutive model based on thermodynamic principles and fits 

the model parameters against the experimental data. 

 

4.1 Yield and failure surfaces in dissipative stress space 

 

The plastic deformation of concrete is irreversible and 

energy-dissipating. For simplicity, the concrete deformation 

was divided into volume deformation and shear deformation. 

For the two types of deformation, the stresses were denoted as 

hydrostatic pressure 𝑝 and shear stress 𝑞, respectively, and the 

strains were defined as volumetric strain 𝜀𝑉 and shear strain 𝜀𝑆, 

respectively. It is assumed that the plastic volumetric strain is 

independent of the plastic shear strain, and correspond to 

different dissipation processes.  

The incremental energy dissipation can be defined as: 

 

𝑑𝐷 = √(𝐴𝑑𝜀𝑉)2 + (𝐵𝑑𝜀𝑆)2                                                  (12) 

 

where 𝐴 and 𝐵 are dimensions of stress. The two parameters 

can be viewed as functions of 𝑝, 𝑞, 𝑝𝑐  and 𝑝𝑡 . The simplest 

linear form of 𝐴 and 𝐵 can be written as: 

 

𝐴 = 𝑎1𝑝 + 𝑎2𝑞 + 𝑎3(𝑝𝑡 − 𝑝𝑐)                                             (13) 
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𝐵 = 𝑏1𝑝 + 𝑏2𝑞 + 𝑏3(𝑝𝑡 − 𝑝𝑐)                                            (14) 

 

where 𝑎1, 𝑎2, 𝑎3 and 𝑏1, 𝑏2, 𝑏3 are dissipation parameters. 

According to the dissipation function, the volumetric 

dissipative stress and shear dissipative stress can be 

respectively obtained as: 

 

𝜋 =
𝜕(𝑑𝐷)

𝜕(𝑑𝜀𝑉
𝑃)

=
𝐴2

𝑑𝐷
𝑑𝜀𝑉

𝑃                                                             (15) 

 

𝜏 =
𝜕(𝑑𝐷)

𝜕(𝑑𝜀𝑆
𝑃)

=
𝐵2

𝑑𝐷
𝑑𝜀𝑆

𝑃                                                               (16) 

 

Eliminating the incremental plastic volumetric strain 𝜀𝑉 and 

incremental plastic shear strain 𝜀𝑆 , the yield condition in 

dissipative stress space can be expressed as: 

 
𝜋2

𝐴2 +
𝜏2

𝐵2 = 1                                                                           (17) 

 

Obviously, the yield function and failure function in the 

dissipative stress space are a family of ellipses on the 𝜋 − 𝜏 

plane. The shape of yield function in dissipative stress space is 

described in Figure 1, where O is the origin of the circle, and 

the axes 𝜋 and 𝜏 are the long and short axes, respectively. 

 

 
 

Figure 1. The shape of yield function in dissipative stress 

space 

 

Let 𝜉  and 𝜂  be the migration stresses in the direction of 

volume stress and shear stress, respectively. During the plastic 

deformation, the value of 𝜂 equals zero, for the trajectory of 

yield surface in plane 𝜋  always centers on the hydrostatic 

pressure axis. In other words, the yield surface and failure 

surface only change horizontally due to the zero migration 

stress, when being mapped from the dissipative stress space to 

real stress space. The relationship between real stress and 

dissipative stress can be defined as: 

 

𝑝 =  𝜉 + 𝜋                                                                             (18) 

 

𝑞 = 𝜏                                                                                    (19) 

 

The shape of the yield function in real stress space is shown 

in Figure 2. 

 
 

Figure 2. The shape of yield function in real stress space 

The intersection point (0, 𝜏) of 𝜏 axis and yield surface in 

dissipative stress space was mapped to (𝜉 , 𝜏) in real stress 

space. Thus, the migration stress in the 𝜏 direction equals the 

volumetric stress at the intersection of the yield surface and the 

line with zero plastic volumetric strain in the real stress space. 

 

4.2 Stress-strain relationship 

 

The stress-strain relationship of the elastic part can be 

obtained from the generalized Hook’s law [25], while that of 

the plastic part can be deduced in the following manner:  

The strain increment can be expressed as the sum of elastic 

and plastic parts. 

 

𝑑𝜀 = 𝑑𝜀𝑒 + 𝑑𝜀𝑃                                                                   (20) 

 

According to the flow theory, we have: 

 

𝑑𝜀𝑃 = 𝑑𝜆𝑚                                                                             (21) 

 

From the generalized Hooke’s law, the incremental elastic 

strain can be expressed as: 

 

𝑑𝜀𝑒 = 𝐷−1𝑑𝜎                                                                      (22) 

 

Hence, Equation (20) can be rewritten as: 

 

𝑑𝜀 = 𝐷−1𝑑𝜎 + 𝑑𝜆𝑚                                                            (23) 

 

In the dissipative stress space, the yield function always 

takes an elliptical shape, however the variation in the 

parameters. For the convenience of plotting, the yield function 

can be converted into a parametric equation: 

 

𝜋 = 𝐴 𝑐𝑜𝑠 𝜔 , 𝜏 = 𝐵 𝑠𝑖𝑛 𝜔                                                  (24) 

 

where 𝜔 is the auxiliary angle. 

Substituting stress dimensions and migration stress into 

Equation (24), we have: 

 

{
𝑝 −

1

2
𝛾(𝑝𝑡 − 𝑝𝑐) = (𝑎1𝑝 + 𝑎2𝑞 + 𝑎3(𝑝𝑡 − 𝑝𝑐)) 𝑐𝑜𝑠 𝜔

𝑞 = (𝑏1𝑝 + 𝑏2𝑞 + 𝑏3(𝑝𝑡 − 𝑝𝑐)) 𝑠𝑖𝑛 𝜔
    (25) 

 

The parametric equation of the yield function in real stress 

space can be solved as: 

 

{
𝑝 = ((1 − 𝑏2 𝑠𝑖𝑛 𝜔) (

1

2
𝛾 + 𝑎3 𝑐𝑜𝑠 𝜔) + 𝑎2𝑏3 𝑠𝑖𝑛 𝜔 𝑐𝑜𝑠 𝜔)(𝑝𝑡 − 𝑝𝑐) 𝛥⁄

𝑞 = (𝑏1 𝑠𝑖𝑛 𝜔 (
1

2
𝛾 + 𝑎3 𝑐𝑜𝑠 𝜔) + 𝑏3 𝑠𝑖𝑛 𝜔 (1 − 𝑎1𝑐𝑜𝑠 𝜔))(𝑝𝑡 − 𝑝𝑐) 𝛥⁄

         (26) 

 

where,  

𝛥 = (1 − 𝑏2 𝑠𝑖𝑛 𝜔)(1 − 𝑎1 𝑐𝑜𝑠 𝜔) − 𝑎2𝑏1 𝑠𝑖𝑛 𝜔 𝑐𝑜𝑠 𝜔. 

After the mapping to the real stress space, the shape of the 

yield function is controlled by the parameters of each model. 

The stress points on the yield surface have a complex mapping 

relationship between the two stress spaces. Many anomalies 

may occur if the model parameters are selected randomly. 

Thus, the range of these parameters should be determined. 

The yield function in real stress space was plotted by 

Equation (26). An abnormal shape of the equation is presented 

in Figure 3. The anomality occurs at 𝜔 ∈ [𝜋 2⁄ , 3𝜋 2⁄ ]. For 

avoid the anomality, the yield function should satisfy: 

 

{
𝑝 < 0, 𝑞 ≥ 0       𝑖𝑓  𝜔 ∈ [𝜋 2⁄ , 𝜋] 

𝑝 < 0, 𝑞 ≤ 0      𝑖𝑓   𝜔 ∈ [𝜋, 3𝜋 2⁄ ]
                                       (27) 

 

269



 

 
 

Figure 3. Abnormal yield surface in real stress space 

 

Next, a quadrant analysis was performed to analyze the 

influence of other parameters on the shape of yield function. 

The extreme values of yield surfaces are displayed in Figure 4, 

where 𝑂′ is the origin of dissipative stress space, also the 

origin of the 𝜔 parameter coordinate system. 

 

 
 

Figure 4. Extreme value of yield surfaces 

 

The yield function takes the shape of curve ABC when ω ∈
[0, π 2⁄ ] , that of curve CDEF when ω ∈ [π 2⁄ , π] , that of 

curve FGDH when ω ∈ [ π, 3π 2⁄ ] , and that of curve HIA 

when ω ∈ [3π 2⁄ , 2π].  
The constitutive model has five independent parameters. To 

disclose the effect of each parameter on the yield function, four 

parameter combinations were designed (Table 1). The values 

of parameters pt  and pc  remained constant at 0.2 and -15, 

respectively. The yield function shapes of these combinations 

in the real stress space were drawn, and compared with each 

other.  

 

Table 1. Parameter combinations and corresponding yield functions in real stress space 

 
Parameters Combination 1 Combination 2 Combination 3 Combination 4 

𝛄 -0.5, -1, -1.5 -1 -1 -1 

𝐛𝟏 -0.5 -0.3, -0.5, -0.7 -0.5 -0.3, -0.5, -0.7 

𝐛𝟑 0.25 0.25 0.15, 0.25, 0.35 0.2, 0.25, 0.3 

Yield function shape Figure 5 Figure 6 Figure 7 Figure 8 

 

 
 

Figure 5. The shape of the yield function for combination 1 

 

 
 

Figure 6. The shape of the yield function for combination 2 

 
 

Figure 7. The shape of the yield function for combination 3 

 

 
 

Figure 8. The shape of the yield function for combination 4 
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5. NONLINEAR SEISMIC RESPONSE ANALYSIS 

 

The seismic performance is essential to dam safety. In 

recent years, great progress has been made on the dynamic 

analysis of arch dams under seismic actions. In practice, the 

concrete constitutive model should be selected according to 

the actual needs and loading conditions. In this section, the 

seismic response of an arch dam is analyzed by the proposed 

model and several classic constitutive models. Then, the 

results of these models were compared to determine how the 

seismic response of the dam is affected by strain rate. The 

material parameters of the target arch dam are listed in Table 

2 below. 

 

Table 2. Material parameters of the target dam 

 
 Elastic Modulus Poisson’s Ratio Mass Density Static Compressive Strength Static Tensile Strength 

Dam Body 30GPa 0.2 2,570 kg/m3 22MPa 2.25MPa 

Rock Foundation 30GPa 0.2 2,500 kg/m3 -- -- 

 

The concrete of the dam was analyzed by three constitutive 

models, including our model (Model 1), the rate-independent 

plastic model considering lode angle (Model 2) and the rate-

dependent plastic model considering lode angle (Model 3). 

The seismic wave of the target dam is illustrated in Figure 9 

below, and the analysis results of each model are recorded in 

Table 3. 

 

 
 

Figure 9. The seismic wave of the target dam 

 

Table 3. Extreme values of principal stresses 

 
 Model 1 Model 2 Model 3 

Maximum Principal Tensile 

Stress 
7.52 2.72 2.61 

Maximum Principal Stress 14.65 14.47 14.78 

 

It can be seen from Table 3 that Model 1 had the highest 

maximum principal tensile stress. Compared with Models 2 

and 3, the concrete strength in Model 1 increased while the 

tensile plastic strain decreased after considering the rate effect 

of concrete. The redistribution of principal tensile stress in the 

dam led to a certain variation in the principal stress. Despite 

the changes to the maximum value, the distribution of the 

maximum principal tensile stress remained the same. 

The plastic strain rate had an obvious impact on the strength 

and elastic modulus of concrete. The three models outputted 

similar distributions of plastic strain rate, but differed in the 

magnitude. For Models 1 and 2, the maximum tensile plastic 

strain rates were 7.265× 10−2 and 8.176× 10−3, respectively, 

both of which appeared near the left abutment on the upstream 

surface. Under the multiaxial stress, Model 1 had a slightly 

lower yield strength than Model 2, and a greater plastic strain 

than the latter. The plastic strain rate of Model 1 was also 

significantly larger (4.1%) than that of Model 2.   

 

 

6. CONCLUSIONS 

 

The theoretical derivation of concrete constitutive model is 

a complex and difficult task. On the one hand, the established 

model should be able to simulate the exact deformation and 

strength features of concrete. On the other hand, the derivation 

process and the model should be simple and convenient. In this 

paper, a constitutive model of concrete is established based on 

thermodynamic principles and applied to the seismic analysis 

of an actual arch dam. The experimental results show that the 

proposed model is feasible, and that the tensile strength of 

concrete and the tensile stress of the dam can be improved after 

considering the effect of strain rate on concrete performance. 
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