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The present study revolves around the quantification of heat transfer rates in struts of rectangular 

profile using an exact and two approximate solutions, which are expressed in terms of two 

controlling parameters: the transversal Biot number Bit and the slenderness ratio S. The exact, 

analytical formulation of the heat conduction problem for the strut of rectangular profile deals 

with the two-dimensional heat conduction equation, namely Laplace equation subject to four 

boundary conditions of Dirichlet, Neumann and Robin type. The exact, analytical solution is 

expressed by infinite series. One approximate solution uses the truncated one terms series.  The 

approximate, analytical formulation relies on the standard quasi one-dimensional heat 

conduction equation subject to two boundary conditions of Dirichlet and Neumann type. The 

regions of validity of the two approximate heat transfer rates are delineated for engineering 

usage. 

1. INTRODUCTION

Struts (or extended straight fins of rectangular profile) are 

extensively used in a multitude of heat exchange devices for the 

purpose of increasing the heat transfer rate between two 

opposed planar walls that are heated and an incoming fluid 

flowing at a low temperature between the planar walls [1].  

From heat conduction theory, a strut transfers heat by 

longitudinal conduction within its defining boundaries, 

whereas the two exposed surfaces transfer heat by transverse 

convection to the fluid in which it is immersed. The heat 

conduction analysis in struts has been traditionally carried out 

through fin theory using the quasi one-dimensional heat 

conduction equation [1]. In general, the beneficial features of 

struts revolve around low mean convection coefficients, as is 

often the case for natural convection with air and gases or even 

in situations of forced convection with liquids moving at low 

velocities. 

The formal mathematical formulation of a strut (extended 

straight fin) with rectangular profile must begin with the two-

dimensional heat conduction equation along with the proper 

boundary conductions [2]. The heat conduction problem has 

two figures-of-merit: one is the thickness t) and the other is 

the slenderness ratio 𝑆 =
𝐿

𝑡
. 

The dimensionality of straight fins of rectangular profile has 

been investigated by Lau and Tan [3], who performed a 

comparative numerical study of the heat transfer rates 

utilizing the formal two-dimensional heat conduction 

equation and the simplified quasi one-dimensional heat 

conduction equation. The authors used a combination of 

𝐵𝑖𝑡 =
ℎ 𝑡

𝑘
 (based on the half-thickness t) ranging between 

0.01 and 10 and 𝑆 =
𝐿

𝑡
 taking values from 1 up to 100 

(resembling an infinite straight fin). In the publication, the 

relative errors between the two-dimensional and quasi one-

dimensional heat transfer rates were reported in graphical 

form. Setting a relative error at ε=5 %, it was found that the 

simplified quasi one-dimensional model rests on two 

components: 1) the transverse Biot number 𝐵𝑖𝑡 ≤ 0.5 and 2)

the slenderness ratio S must be of order of 1 or greater. 

Subsequently, the relative error ascends to ε=10 % when 
tBi

=1, irrespective of the value of S. Overall, the pattern 

displayed by the relative errors shows that ε raises gradually 

with increments in 𝐵𝑖𝑡 , whereas ε remains invariable to

enlargements in S.  

The primary objective of the present study is to utilize the 

physics-based two-dimensional heat conduction equation. The 

secondary objective is to develop a systematic procedure to 

establish a convenient criterion to assess the validity of the 

approximate, one-term series solution derived from the exact, 

infinite series solution of the two-dimensional heat conduction 

equation. The suited criterion shall be able to articulate the 

geometric, hydrodynamic and thermal quantities affecting the 

strut of rectangular profile. At the end, the transverse Biot 

number 𝐵𝑖𝑡 united with the slenderness ratio S establish the

definitive borderline between the two-dimensional and the 

quasi one-dimensional heat transfer rates, along with the 

intrinsic relative errors for suitable pairs of 
tBi and S. 

A literature review brings forth publications that gravitate 

around the exact two-dimensional heat conduction 

formulation for the straight fin of rectangular profile. Hence, 

the relevant publications are those by Sparrow and Hennecke 

[4], Look [5], Huang and Shah [6], Juca and Prata [7] and 

Singh et al. [8], which surprisingly did not touch upon the 

expedient approximate heat conduction formulations. 

2. FORMAL MATHEMATICAL MODEL

A strut is an extended straight fin of rectangular profile that 
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connects two opposed planar walls maintained at the same 

temperature Tb. In Figure 1, the proper dimensions of the strut 

are half-length L in the x-direction, thickness δ=2t in the y-

direction and depth w in the z-direction, which is very large in 

comparison with both L and δ. A viscous fluid at a low 

temperature Tf flows perpendicular across the upper and lower 

parts of the strut. The thermal conductivity of the strut material 

k is assumed to be constant or nearly invariant with temperature. 

For convenience, the variable convection coefficient h over the 

strut surface is taken as the mean convection coefficient ℎ.  

 
 

Figure 1. Sketch of the left part in a strut of rectangular profile  

Accordingly, the formal mathematical model for hte heat 

conduction problem implicates the two-dimensional heat 

conduction equation, i.e., Laplace’s equation 

 

 𝜕2𝜃

  𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
= 0                                                    (1)  

 
where  = T – Tf stands for the temperature excess.  

 

The applicable boundary conditions for the upper left part 

of the strut are:  

i) Prescribed temperature excess at the base: 

 

, 0, allb x y = =                                                       (2a) 

 

ii) Thermal symmetry at the vertical mid-plane: 

 
𝜕𝜃

𝜕𝑥
= 0,       𝑥 = 𝐿, all 𝑦                                        (2b) 

  

iii) Thermal symmetry at the horizontal mid-plane: 

 

 
𝜕𝜃

𝜕𝑦
= 0,       𝑦 = 0, all 𝑥                                       (2c) 

 

iv) Heat convection along the upper surface: 

 

, , allk h y t x
y





− = =


                                            (2d) 

 

Collectively, the mixed boundary conditions in Eqns. (2a)-

(2b) are of Dirichlet, null Neumann and Robin type. 

With regards to the experimental determination of the mean 

convection coefficient h  showing up in eq. (2d), Moffat [9] has 

stated that the uncertainties in h  have relative errors that 

usually range between  10 % and  25 %. The different 

sources of relative errors are: (1) Instrumentation errors, (2) 

Calibration errors and (3) Errors inherent to the regression 

equation in the analysis of the experimental data.  

 

 

3. EXACT ANALYTICAL SOLUTION  
 

The method of separation of variables engages the product of 

two functions 

 

( , ) ( ) ( )x y X x Y y =                                                                (3) 

 

and transforms the elliptic partial differential Eq. (1) into a 

system of two ordinary differential equations of second order 

[2]. One ordinary differential equation of second order 

associated with the y-direction is 

 
2

2

2
0

d Y
Y

dy
+ =                                                                          (4) 

 

subject to two homogeneous boundary conditions 

 

 
(0)

0
d Y

dy
=                                                                                (5a) 

 

( )
( )

Y t
k hY t

y


− =


                                                   (5b) 

 

coming from Eqns. (2c) and (2d). Correspondingly, the set of 

Eqns. (4), (5a) and (5b) defines an eigenvalue problem in the 

y-direction. Another ordinary differential equation of second 

order connected to the x-direction is 

 
2

2

2
0

d X
X

dx
− =                                                                 (6) 

 

subject to a homogeneous boundary condition 

 

( )
0

d X L

dx
=                                                                       (7a) 

 

and a non-homogeneous boundary condition  

 

(0) bX =                                                     (7b) 

 

coming from Eqns. (2a) and (2b).  

Conceptually, the set of Eqns. (6) and (7a) and (7b) defines 

a boundary value problem (BVP) in the x-direction.  

On one hand, the general solution of eq. (6) is 

 

( ) cosn n nY y C y=                                                     (8) 

 

where Cn is an arbitrary constant and n are the roots of the 

transcendental equation 

( )sin (cos )n n nk t h t  =                                       (9) 

 

On the other hand, the general solution of Eq. (4) is 

expressed in terms of exponential functions  

 
(2 )

( ) n nx L x

n nX x B e e
 − = +                                                (10) 
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where Bn is an arbitrary constant. 

In compliance with the trio of Eqns. (3), (8) and (10), the 

product solution  (x, y) is next expressible by the infinite series 

 

(2 )

1

( , ) cosn nx L x

n n

n

x y a e e y
  


−

=

 = +                            (11)  

                                                                            

where the new coefficients are 

 

an = Bn Cn.                                                                                (12)  

 

Substituting the boundary condition for the base temperature 

excess 𝜃𝑏 stated in Eq. (7b) into Eq. (11), delivers the infinite 

series 

 

𝜃𝑏 = ∑ 𝑎𝑛(1 + 𝑒2𝐿𝜆𝑛) cos∞
𝑛=1  𝜆𝑛𝑦                            (13) 

 

The mathematical meaning of this equation signifies that the 

function f (y) = 𝜃𝑏 needs to be represented in terms of a Fourier 

series, where the unknown coefficients ( )2
1 nL

na e


+  are 

Fourier series coefficients. These Fourier series coefficients 

( )2
1 nL

na e


+  are obtained from the expansion of the cosine 

Fourier series in Eq. (13) in a series of orthogonal functions. On 

account of this, the appropriate formula found in Arpaci [2] is 

 

( )

1

2 0

1
2

0

cos
1

cos

n
b nL

n

n

y dy
a e

y dy


 


+ =




                                           (14) 

 

Performing the integrations while skipping the algebra, the 

coefficients ( )2
1 nL

na e


+  are given at the end by the equation 

 

( )2 sin
1 2

sin cos
nL n

n b

n n n

t
a e

t t t

 


  

 
+ =  

+ 
                         (15) 

 

Introducing Eq. (15) into Eq. (12), delivers the infinite series   

 

𝜃(𝑥, 𝑦) = 2𝜃𝑏 ∑
1

(1+𝑒2𝐿𝜆𝑛)

∞
𝑛=1 (

 𝑠𝑖𝑛 𝜆𝑛𝑡

𝜆𝑛𝑡+𝑠𝑖𝑛 𝜆𝑛𝑡  𝑐𝑜𝑠 𝜆𝑛𝑡
) [𝑒𝜆𝑛𝑥 +

𝑒(2𝐿−𝑥)𝜆𝑛] 𝑐𝑜𝑠 𝜆𝑛 𝑦                                                               (16) 

 

which is the exact, analytical solution of Eq. (1) subject to Eqns. 

(2a)-(2d).  

Returning to Eq. (9), the simultaneous effect of the mean 

convection coefficient h  and the thermal conductivity k on the 

roots n are adequately encapsulated into a thermo-geometric 

parameter. That is, knowing that the internal conductive 

resistance is RK = 
𝑡

𝑘𝐴
 and the external convective resistance is 

RC = 
1

ℎ𝐴
, their ratio sets up the transverse Biot number Bit: 

 
 𝑅𝐾

𝑅𝐶
=

𝑡/𝑘𝐴

1/ℎ̅𝐴
=

ℎ̅𝑡

𝑘
= 𝐵𝑖𝑡                                                             (17) 

 

where the half-thickness of the strut t acts as the 

characteristic length.  

With the previous background, and resorting to the 

eigenvalues n = nt for compactness, Eq. (9) is reformulated 

into the dimensionless transcendental equation 

tann n tBi  =                                                                 (18) 

 

For a given Bit inside the range 0 < Bit < ∞, there is an 

infinite number of positive eigenvalues n that satisfy eq. 

(18). The first six eigenvalues n (n = 1,…, 6) are available in 

the heat conduction textbooks by Schneider [10], Luikov [11] 

and Özişik [12]. Advantageously, the entire set of eigenvalues 

n = f (Bit) can be computed nowadays with explicit equations 

developed by Milkhailov and Vulchanov [13] and Haji-Sheik 

and Beck [14]. 

In view of the foregoing, Eq. (16) can be rewritten in terms 

of the eigenvalues n as follows 

 

𝜃(𝑥, 𝑦) =

2𝜃𝑏 ∑

[𝑒
𝜇𝑛

𝑥
𝑡 +𝑒

1
𝑡

(2𝐿−𝑥)𝜇𝑛]

(1+𝑒
2 

𝐿
𝑡𝜇𝑛)

∞
𝑛=1 (

sin 𝜇𝑛

𝜇𝑛+sin 𝜇𝑛cos 𝜇𝑛
)  cos 𝜇𝑛

𝑦

𝑡
        (19) 

 

Actually, Eq. (19) embodies the exact, analytical two-

dimensional temperature distribution in the strut of rectangular 

profile under study. Certainly, this equation is useful in gaining 

physical insight into the heat conduction features in the strut. 

The exact heat transfer rate from the strut of rectangular 

profile to the nearby fluid is determined from Fourier’s law 

applied at the left base of the strut x = 0:  

 

𝑄2−𝐷 = −2𝑘𝑤 ∫
𝜕𝜃(0,𝑦)

𝜕𝑥

𝑡

0
𝑑𝑦                 (20) 

 
Next, after introducing the temperature distribution 𝜃(𝑥, 𝑦) 

from Eq. (19), Q is represented by the infinite series 

 

𝑄2−𝐷 = 4𝑘𝑤 𝜃𝑏 ∑ (
sin2 𝜇𝑛

𝜇𝑛+sin 𝜇𝑛cos 𝜇𝑛
) tanh 𝑆𝜇𝑛     ∞

𝑛=1 (21) 

 

where 𝑆 =
𝐿

𝑡
 stands for the fin slenderness ratio.  

In the two Eqns. (19) and (21) for the respective  

𝜃(𝑥, 𝑦) 𝑎𝑛𝑑 𝑄2−𝐷 , the ensuing eigenvalues n = f (Bit) are 

determined from Eq. (18).  

 

 

4. APPROXIMATE ANALYTICAL SOLUTION  

  

Focusing on the exact infinite series in the pair of Eqns. (19) 

and (21), a particular case of importance deals with the 

approximate one-term series, which might be sufficient for 

engineering calculations. 

From Sturm–Liouville theory [15], the set of eigenvalues 

𝜇𝑛 in Eq. (18) follow the sequence of inequalities 

 

𝜇1 < 𝜇2 < ...< 𝜇𝑛−1 < 𝜇𝑛                                               (22) 

 

From here, it is recognized that the contribution of the first 

eigenvalue 𝜇1 in the component  
1

1+ 𝑒2𝐿𝜇𝑛
 of the first term in 

Eqns. (19) becomes dominant. This issue signifies that the 

successive eigenvalues n , n≥2 in Eq. (19) can be taken as 

negligible for practical purposes. Consequently, the exact, 

infinite series in Eq. (19) can be approximated by the 

truncated one-term series, 
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𝜃1(𝑥, 𝑦) = 2𝜃𝑏

[𝑒
𝜇1

𝑥
𝑡 +𝑒

1
𝑡

(2𝐿−𝑥)𝜇1]

(1+𝑒
2 

𝐿
𝑡𝜇𝑛)

(
sin 𝜇1

𝜇1+sin 𝜇1cos 𝜇1
) cos 𝜇1

𝑦

𝑡
 (23) 

 

related to the set of transverse Biot numbers Bit   in the range 0 

< Bit < ∞.  

Analogously, from Eq. (21) the equivalent one-term series 

that quantifies the heat transfer rate simplifies to  

 

𝑄2−𝐷,1 = 4𝑘𝑤𝜃𝑏 (
sin2𝜇1

𝜇1+ sin 𝜇1 cos 𝜇1
) tanh 𝑆𝜇1                         (24)  

         
In the pair of Eqns. (23) and (24), 

1  represents the first 

eigenvalue from the transcendental equation 

 

𝜇1 tan 𝜇1 =  𝐵𝑖𝑡                                                              (25) 

 

coming from Eq. (18).  

 

4.1 Regression analysis of the 𝜇
1
= f (Bit) data  

 

The first eigenvalue 𝜇
1

 depends on Bit spanning from a 

very low Bit=0.01 to an extremely high Bit=100 (resembling 

prescribed surface temperature). A table listing 𝜇
1
 in terms of 

Bit is available in the textbooks on heat transfer by Luikov 

[11] and Özişik [12].  

It is obvious that reading numbers from tables is inaccurate, 

inconvenient and time consuming for engineering 

calculations. Even more, for those Bit values not listed in the 

table, the adequate estimation of 𝜇
1

 forcibly requires 

quadratic interpolation. 

In light of the foregoing, the tabulated  𝜇1
2 vs 𝐵𝑖𝑡  data 

reported in Luikov [11] and Özişik [12] has been treated with 

regression analysis. The outcome of the calculations delivers 

the two-part correlation equation: 

 

𝜇1
2 = 𝐵𝑖𝑡       for 0 ≤ Bit ≤ 0.1                                            (26a) 

 
1

𝜇1
2 = 0.40 +

0.92

𝐵𝑖𝑡
   for 0.1 ≤ Bit ≤ 100                               (26b)    

 

covering the entire Bit spectrum 0 < Bit < 100. 

 

 

5. APPROXIMATE MATHEMATICAL MODEL 

 

The approximate mathematical model begins with the mean 

temperature excess: 
 

0

1
( ) ( , )

t

x x y dy
t

 =                                                            (27) 

 

where θ(x,y) is the two-dimensional temperature excess in Eq. 

(19). 

A thermodynamic energy balance in a control volume of 

thickness Δx placed in the strut (extended straight fin) of 

rectangular profile provides the quasi one-dimensional heat 

conduction equation  

 
2

2

2
0

d
m

dx


− =                                                                  (28) 

where 𝑚2 =
ℎ 

𝑘𝑡
 denotes the thermo-geometric parameter with 

units 1/m2 [16]. The boundary conditions for Eq. (28) are 

Eqns. (2a) and (2b) replacing 𝜃 with �̅�   

 

, 0b x = =                                                               (29a) 

 
𝑑�̅�

𝑑𝑥
= 0,      𝑥 = 𝐿                                                                  (29b) 

 

These boundary conditions are of Dirichlet and null 

Neumann type. 

The general solution of Eq. (28) subject to Eqns. (29a) and 

(29b) gives the particular solution, which is expressed 

compactly as 

 

 cosh ( )( )

coshb

m L xx

mL





−
=                                                   (30)   

 

This equation entails to the quasi one-dimensional mean 

temperature distribution in the strut of rectangular profile.   

The heat transfer rate is calculated with Fourier’s law applied 

at the base x = 0 of the left part,  

 

1

(0)
(2 )quasi D

d
Q k tw

d x


− = −                                        (31) 

 

where the cross-sectional area is Ac=2tw. After introducing 

Eq. (30) into Eq. (31), the final expression for the heat 

transfer rate is  

 

𝑄quasi 1−𝐷 = 2𝑘𝑤𝜃𝑏√𝐵𝑖𝑡 tanh  (𝑆 √𝐵𝑖𝑡)                   (32) 

 

Herein, the thermo-geometric parameter m and the 

transverse Biot number Bit are related by the equality 𝑚2 =
𝐵𝑖𝑡

𝑡2 . 

 

 

6. PRESENTATION AND DISCUSSION OF RESULTS  

 

The suitability of the heat transfer analysis of struts of 

uniform profile must rely on the accurate calculation of the heat 

transfer rate Q. Therefore, the exact, analytical heat transfer rate 

given by the infinite series in Eq. (21) was evaluated with a 

symbolic computer code containing automatic convergence 

control between consecutive terms. A total of 212 terms were 

retained in Eq. (21) for combinations of the transverse Biot 

number Bit=0.01, 0.1, 05 and 1 and slenderness ratios S=1, 5, 

10 and 100. 

 

First, the relative error εa between the approximate  

𝑄2−𝐷,1𝑡𝑒𝑟𝑚  in Eq. (24) and the exact Q2-D in Eq. (21) is 

defined by 

 

𝜀𝑎 =
𝑄2−𝐷−𝑄2−𝐷,1 

𝑄2−𝐷
                                                               (33) 

 
Second, the relative error εb between the approximate 

Qquasi 1-D in Eq. (32) and the exact Q2-D in Eq. (21) is 

defined_by    
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𝜀𝑏 =
𝑄2−𝐷−𝑄𝑞𝑢𝑎𝑠𝑖 1−𝐷 

𝑄2−𝐷
                                                    (34) 

 

In general, it is observable in Table 1 that for all 

combinations of the transverse Biot numbers Bit=0.01, 0.1, 0.5 

and 1 with the slenderness ratios S=1, 5 and 10, the relative 

errors εa for the one-term series are always less than the relative 

errors εb of the quasi one-dimensional solution. In particular, 

for combinations of Bit=0.5 and 1 along with all S=1, 5 and 10, 

the relative errors εb of the quasi one-dimensional model are 

very large, whereas the relative errors εa for the one-term series 

are acceptable. On one hand, for Bit = 1 with one S = 1 the 

relative error of the one-term series is εa=–8.43 %, the relative 

error of the two-term series is –1.86 % and the relative error of 

the three-term series is –0.93 %. On the other hand, for Bit = 1 

united to two S=5 and 10 the relative error of the one-term 

series is εa=–6.03 %, the relative error of the two-term series is –

1.33 % and the relative error of the three-term series is –0.67%. 

As an additional observation, it should be pointed out that the 

relative error εb=−10.8 % associated with 
tBi =1 together with 

S=5 and 10 provided by the approximate quasi one-dimensional 

model is consistent with the consonant relative error around 

−10% found in the publication by Lau and Tan [3]. The 

approximate quasi one-dimensional solution for the straight fin 

of rectangular profile works well for struts of rectangular profile 

characterized by Bit = 0.01 and 0.1 coupled with S=1, 5 and 10; 

all cases manifesting relative errors of less than εb=–2 %. Firstly, 

increasing Bit to 0.5 articulated with S=1, the relative error 

climbs to εb=–4.13 %, i.e., less than the acceptable relative error 

–5% in engineering applications. Therefore, tolerating a relative 

error of εb=–5 % common in engineering calculations, and 

utilizing quadratic interpolation, Bit turns out to be 0.31 when 

S=5, and Bit turns out to be 0.43 when S=10. Secondly, 

increasing Bit to 1 for all S=1, 5 and 10, the approximate quasi 

one-dimensional solution for the straight fin of rectangular 

profile contains large relative errors that are equal or exceed 

εb=–10.80 % evidencing that it does not work. 

 

Table 1. Relative errors ε of the approximate heat transfer rates 

𝑄2−𝐷,1𝑡𝑒𝑟𝑚 and Qquasi 1-D with respect to the exact heat transfer 

rate Q2-D for combinations of the transverse Biot number 𝐵𝑖𝑡 

and the slenderness ratio S  

 

 
t

h t
Bi

k
=  

L
S

t
=  

Approx. 

2-D 

model with one 

term series 

𝜀𝑎 % 

Approx. 

quasi 1-D 

model 

𝜀𝑏 % 

0.01 1 –0.078 – 0.26 

0.01 5 –0.017 –0.29 

0.01 10 –0.010 – 0.25 

0.1 1 –0.39 – 0.25 

0.1 5 –0.26 –1.88 

0.1 10 –0.24 –1.48 

0.5 1 –4.07 –4.13 

0.5 5 –2.07 –7.41 

0.5 10 –2.04 – 6.29 

1 1 –8.43 –18 

1 5 –6.03 –11 

1 10 –6.03 –11 

  

The truncated approximate one term series for a relative 

large Bit =1 united to S=1, 5 and 10 exhibits relative errors 

that slightly exceed –5 %. Therefore, if a relative error is 

fixed at the traditional εb=–5 %, then the corresponding Bit 

values computed with quadratic interpolation are: 0.60 S=1, 

0.92 for S=5 and 10. 

 

 

7. CONCLUSIONS 

 

The main conclusions that may be drawn from the present 

study on the determination of heat transfer rates in two-

dimensional struts of rectangular profile are listed next: 

1) An exact, analytical solution of the two-dimensional heat 

conduction equation subject to the proper boundary conditions 

provides the exact benchmark heat transfer rates represented by 

an infinite series in terms of two controlling parameters: the 

transversal Biot number Bit and the slenderness ratio S.  

2) The approximate solution of the quasi one-dimensional 

heat conduction equation for the straight fin of rectangular 

profile works well for two-dimensional struts of rectangular 

profile when the transversal Biot numbers are small of the order 

of Bit=0.01 and 0.1 in conjunction with the slenderness ratios 

S=1, 5 and 10; all cases manifest relative errors ε of less than –

2 %. For Bit>0.5 regardless of S, the relative errors increase 

significantly. 

3) Numerical evaluation of the exact infinite series solution 

of the two-dimensional heat conduction equation is not 

necessary. It was demonstrated in the present study that the 

approximate one term series solution display relative errors ε 

that are less than –5% whenever the transversal Biot number 

Bit≤0.60 is combined with the slenderness ratio S=1. 

Additionally, the same relative error criterion of –5% applies to 

situations when the transversal Biot number Bit≤0.92 is 

combined with the slenderness ratios S=5 and 10. 
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NOMENCLATURE 

 

an Fourier series coefficients in eq. (13) 

A surface area of strut (m2) 

Ac  cross-sectional area of strut, 2tw (m2) 

Bit transverse Biot number, 
ℎ 𝑡

𝑘
 

h  convection coefficient (W/m2 K) 

h  mean convection coefficient (W/m2 K) 

k thermal conductivity (W/m K) 

L half-length of strut (m) 

m2 thermo-geometric parameter, (1/m2) 

Q heat transfer rate (W) 

RC external convection resistance (K/W) 

RK internal conduction resistance (K/W) 

S slenderness ratio of strut, 
L

t
 

t half-thickness of strut (m) 

T temperature (K) 

Tb base temperature (K) 

Tf fluid temperature (K) 

T  transverse mean temperature (K) 

w depth of strut (m) 

x                   axial coordinate (m) 

y  transversal coordinate (m) 

 

Greek symbols 

 

δ  thickness of strut, 2t (m) 

ε relative error 

 temperature excess, T – Tf (K) 

  transverse mean temperature excess, T  – Tf (K) 

n  roots of transcendental eq. (9) 

n
  eigenvalues in eq. (18) 

 

Subscripts 

 

opt optimal 

1 one term 
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