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 Hyperspectral sensors collect spectral data in numerous adjacent spectral bands which are 

usually redundant and cause some challenges such as Hughes phenomenon. In this study, an 

automatic unsupervised method is presented for feature selection from hyperspectral images. 

To do so, a new statistical feature space is introduced in which each band is regarded as a 

sample point. This feature space is originated from the statistical attributes of image bands 

while these attributes are extracted from different partitions of the entire image. A fuzzy 

clustering of bands, performed in the PCA transformed space of previously mentioned 

statistical feature space, leads to band clusters with similar characteristics. The proposed 

band selection technique chooses a representative band in each cluster and removes the other 

redundant ones. The proposed method is investigated in terms of the classification accuracy 

of the Pavia University hyperspectral image. Obtained results, which are compared to two 

recent states of art methods, prove its efficiency. 

 

Keywords: 

hyperspectral classification, band selection; 

statistical attributes, fuzzy c-means 

clustering, virtual dimensionality, principal 

component analysis 

 

 

 
1. INTRODUCTION 

 

Hyperspectral sensors collect data simultaneously in 

hundreds of narrow and adjacent spectral bands over the 

wavelengths from the near-ultraviolet through the thermal 

infrared and form a data cube that its third dimension specified 

by wavelengths. These sensors have great ability in the 

accurate reconstruction of the spectral signature curve which 

is a powerful tool for the identification of ground materials [1].  

Redundant adjacent bands in a hyperspectral image cause 

storage and transmission challenges, increasing computational 

complexity and commonly, can decrease the performance of 

the classifiers [2]. Dimensionality reduction is a strategy to 

deal with the mentioned challenges. For hyperspectral remote 

sensing, dimensionality reduction references to compress the 

number of the bands without the decrease of the useful 

information [3]. Generally, dimensionality reduction methods 

can be categorized into two main groups; feature extraction 

and feature selection. The main goal of feature extraction is to 

find a transformation that maps data to the new low 

dimensional space which preserves essential discriminative 

information [4] but Feature selection methods attempt to select 

a group of bands with more information and less correlation.  

Both dimensionality reduction categories again can 

categorize into two main subgroups: unsupervised and 

supervised whether it uses the labeled samples or not. In the 

subgroup of unsupervised feature extraction, there are well-

known methods such as Principal component analysis (PCA), 

independent components analysis (ICA), and minimum noise 

fraction (MNF) which ranks the extracted features based on 

some criteria [5]. 

There are numerous improved versions of these traditional 

methods in literature such as; segmented principal components 

analysis [6], non-linear PCA [7], Superpixel-based PCA 

(SuperPCA) [8], and segmented minimum noise fraction [9] 

for classification of hyperspectral images. In addition to these 

traditional approaches, there are some advanced nonlinear 

manifold-based methods such as; locality preserving 

projection (LPP) [10] and its new two stage version (TwoSP) 

[11] for classification of hyperspectral images. In the recent 

years some pixel-based methods such wavelet decomposition 

[12], rational curve fitting [4] and fractal dimension of spectral 

response curve [13] are proposed which considered the 

spectral curves of each pixel for extracting the new features. 

In the subgroup of supervised feature extraction, there are 

methods such as decision boundaries (DBFE) [14], 

nonparametric weighted feature extraction (NWFE) [15], 

linear discriminant analysis (LDA) [16], spectral segmentation 

and integration (SSI) based on PSO optimization [17]. 

Feature selection methods can be categorized into six 

subgroups as below [18]: 

(1) Ranking based methods: in these methods the 

importance of each feature is computed and bands are sorted 

based on their importance and the desired number of features 

is selected from top-ranked ones. Information divergence [19] 

and mutual information [20] are the most important 

unsupervised and supervised methods of this subgroup. 

(2) Searching-based methods: In these methods band 

selection problem considered as an optimization problem. 

Integration genetic and PSO [21] and PSO with dynamic sub-

swarms [22] are the recent methods of this subgroup. 

(3) Sparsity-based methods: In these methods band 

selection problem considered as a sparsity constraint 

optimization. sparse nonnegative matrix factorization (SNMF) 

[23], a collaborative sparse model [24], a group-sparsity-based 

algorithm [25] are well-known methods of this subgroup. 

(4) Embedding learning-based method: Embedding 

learning-based methods select the bands for the specific 

application such as classification of unmixing based on 

optimization. modified recursive SVM (MR-SVM) belongs to 
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this category [26]. 

(5) Clustering-based methods: in these methods, correlated 

bands are grouped in the same cluster and the representative 

band is selected from each cluster. A supervised band selection 

method named PSBS has been proposed by Mojaradi et al. 

[27] based on k-means clustering of bands. Also, its 

unsupervised feature extraction version is proposed by 

Beirami and Mokhtarzade [28]. 

(6) Hybrid scheme-based methods: In these methods, two 

or more methods of different subgroups are integrated to 

produce the new method. For example, clustering and ranking 

methods can be integrated for unsupervised band selection of 

the hyperspectral image [29]. 

Clustering-based methods are fast and efficient methods for 

dimensionality reduction of hyperspectral data. The idea of 

MartÍnez-UsÓMartinez-Uso et al. [30] is based on a 

hierarchical clustering structure to group bands to minimize 

the intra-cluster variance and maximize the inter-cluster 

variance. This aim is pursued using information measures, 

such as distances based on mutual information or Kullback-

Leibler divergence, in order to reduce data redundancy and 

non-useful information among image bands. An unsupervised 

method is proposed by Sohaib and Mushtaq [31] based on k-

means clustering of bands with statistical measures such as 

variance (Var), standard deviation (STD), and mean absolute 

difference (MAD). This method was later reinforced by Saqui 

et al. [32] who added kurtosis measure and changed the 

clustering method to fuzzy c-means. These researchers also 

introduced a new within-cluster measure for selecting the 

representative band of each cluster. The current study extends 

the 2 last aforementioned studies in different aspects as below: 

(1) A comprehensive set of statistical attributes are 

proposed to characterize hyperspectral image bands. These 

attributes are used later to produce new features space for 

describing the bands.  

(2) An image partitioning is suggested to consider the local 

nature of the band’s statistical attributes.  

To summarize the study, this paper aims to propose a new 

method for the unsupervised feature selection of HSI. This is 

done by the fuzzy clustering of HSI’s bands in the rich 

statistical attribute state of bands. This paper consists of five 

sections. After the introduction, in the second section of this 

study, we presented band attributes and our methodology for 

dimensionality reduction. In the third section, we introduce the 

data set. Experimental results and conclusions are presented in 

the fourth and last section, respectively.  

 

 

2. METHODOLOGY 

 

As mentioned earlier, MAD and kurtosis measures are used 

as statistical measures [32]. It seems that using the more 

statistical measures can enhanced their method. As an example, 

consider two vectors as below: 

A=[1.13, 2.87, -0.38, -0.31, -0.11, 1.91, 1.17, -0.36, 1.71, 

0.29] 

B=[1.87, 2.55, -0.074, 0.879, 0.058, 1.63, 0.22, 0.012, 1.46, 

1.066]. 

Some statistical measures of these two vectors are as Table 

1. 

It can be understood that the largest difference between the 

two vectors is in iqr measure. As the results in this study, some 

additional statistical measures (Table 2) are considered in 

comparison to [32] to better describe the hyperspectral bands. 

Table 1. Some statistical measures of vectors A and B 

 
 A B 

Mean 0.79 0.96 

MAD 0.96 0.75 

Kurtosis 1.97 1.86 

Inter quartile range (iqr) 2.02 1.57 

 

Table 2. Statistical attributes of bands  

 
Statistical 

attributes 
Formula 

Mean absolute 

deviation 

(MAD) 

SM1b=
1

𝑀.𝑁
∑ |𝐵𝑖 − 𝑚𝑒𝑎𝑛(𝑏)|𝑀.𝑁

𝑖=1  

Standard 

deviation 

(STD) 
SM2b=√

1

𝑀.𝑁
∑ (𝐵𝑖 − 𝑚𝑒𝑎𝑛(𝑏))

2𝑀.𝑁
𝑖=1  

Variance (Var) SM2b=
1

𝑀.𝑁
∑ (𝐵𝑖 − 𝑚𝑒𝑎𝑛(𝑏))2𝑀.𝑁

𝑖=1  

Level-3 

Moment 
SM4b=E((𝐵𝑖 − 𝑚𝑒𝑎𝑛(𝑏))3) 

Mean SM5b=
∑ 𝐵𝑖

𝑀.𝑁
𝑖=1

𝑀.𝑁
 

Median 

For B1=min, B2,…, BM.N=max 

If M.N is odd 

SM6b =𝐵(𝑀.𝑁+1)

2

 

If M.N is even 

SM6b =
1

2
(𝐵(𝑀.𝑁)

2

+𝐵
1+

(𝑀.𝑁)

2

) 

Kurtosis SM7b=

1

𝑀.𝑁
∑ (𝐵𝑖−(𝑚𝑒𝑎𝑛(𝑏))4𝑀.𝑁

𝑖=1

(
1

𝑀.𝑁
∑ (𝐵𝑖−(𝑚𝑒𝑎𝑛(𝑏))2)𝑀.𝑁

𝑖=1

2 

Skewness SM8b=

1

𝑀.𝑁
∑ (𝐵𝑖−(𝑚𝑒𝑎𝑛(𝑏))3𝑀.𝑁

𝑖=1

√(
1

𝑀.𝑁
∑ (𝐵𝑖−(𝑚𝑒𝑎𝑛(𝑏))2)𝑀.𝑁

𝑖=1

3
 

Inter quartile 

range (irq) 
SM9b=Q3-Q1 

 

In Table 2, Bi is value of 𝑖th pixel, M and 𝑁 show image 

dimensions, 𝑚𝑒𝑎n(𝑏) is mean of all pixel values in band 𝑏 and 

𝑄3, 𝑄1 are third and first quartile. Figure 1 shows the 

flowchart of the proposed method. The details are presented 

below: 

 

 
 

Figure 1. Flowchart of proposed method 
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Noisy bands (such as water vapor bands) have no useful 

information and thus the proposed method begins by removing 

them manually via visual inspection. The remained bands are 

then introduced to Harsanyi, Farrand, and Chang (HFC), well-

known virtual dimensionality (VD) estimation algorithm [33], 

to estimate the number of distinct signatures. 

Image-space is spatially partitioned to equal size segments 

(Figure 2). This is due to the elongation of the image object 

illustrated along the width of the image (such as road and 

buildings). An attribute feature space is then formed by 

extracting some statistical attributes from each image segment 

and for each hyperspectral band. It can help our method 

catches the local characteristics of each band in comparison to 

other previous methods. 

 

 
 

Figure 2. Image partitioning 

 

These nine features, if extracted from L image partition, 

lead to 9×L attributes for each band which means that bands 

can be regarded as points in that 9×L dimension space. In other 

words, band b can be described by a vector in the form of Eq. 

(1): 

 

𝒃=[𝑆𝑀11, …, 𝑆𝑀91, …, 𝑆𝑀1𝐿, …, 𝑆𝑀1𝐿]T (1) 

 

where, 𝑆𝑀11, …, 𝑆𝑀91 represent the nine statistical attributes 

of Table 2 and L is the number of image partitions. The 

components of Eq. (1) are the statistical attributes of the bands. 

In the next stage, a PCA was applied to band attributes space 

for extracting the most useful attributes of each band. PCA is 

the linear transformation that aims to find transformation 

matrix W that transform the original features space b to the 

new uncorrelated feature space y as below: 

 

𝑦𝑖 = 𝑊𝑇𝑏𝑖 (2) 

 

Each hyperspectral band can be represented by a 9×L 

directional vector as b=[SM1, SM2,…,SM9×L]. If hyperspectral 

image contains the M bands the covariance matrix of x is 

computed as [34]: 

 

𝑐𝑜𝑣(𝑏) = 𝐸{(𝑏 − 𝐸(𝑏)(𝑏 − 𝐸(𝑏)𝑇)} (3) 

where, E is expectation operator and T is the transpose. The 

covariance matrix can be represented in eigenvalue 

decomposition as below: 
 

𝑐𝑜𝑣(𝑥) = 𝑊𝐷𝑊𝑇  (4) 
 

where, D is the diagonal matrix which consists of eigenvalues 

of cov(x) and W is the orthogonal matrix of eigenvectors of 

cov(x). Commonly, eigenvectors correspond to the k largest 

eigenvalues are used in (2) as the transformation matrix [34].  

As the same motivation which is proposed by Saqui at al. 

[32], Fuzzy c-means clustering was applied to cluster the 

bands in the principal components space for VD number of 

clusters. Fuzzy c-means clustering aims to minimize of the 

following objective function [35]: 
 

𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑗
𝑚||𝑏𝑖 − 𝑐𝑗||2     1 ≤ 𝑚 ≤ ∞𝑉𝐷

𝑗=1
𝑀
𝑖=1   (5) 

 

where, uij is the degree of membership of bi in the cluster j, cj 

center of the jth cluster. An iterative method is carried out to 

solve the above optimization problem with update of 

membership and cluster center as below [35]: 
 

𝑢𝑖,𝑗 =
1

∑ (
||𝑏𝑖−𝑐𝑗||

||𝑏𝑖−𝑐𝑘||
)

2
𝑚−1𝑉𝐷

𝑘=1

  
(6) 

 

𝑐𝑗 =
∑ 𝑢𝑖𝑗

𝑚.𝑏𝑖
𝑀
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝑀

𝑖=1

  (7) 

 

The iterative procedure will stop when the changes in the 

value of ui,j is small. It is assumed that the bands with similar 

information content would appear to have high membership 

values to common clusters. Accordingly, a band with a 

maximum degree of membership was selected as the 

representative band of each cluster and the other bands were 

removed as they were thought to be redundant.  

 

 

3. DATA SET 
 

The data set of this study is acquired by the ROSIS-3 sensor 

from Pavia University from in northern Italy on 8 July 2002 

and has a size of 610 × 340 pixels with 1.3m spatial resolution. 

Each image pixel contains 115 reflectance values from 0.43 to 

0.86 micrometers of the spectrum. 12 noisy bands were 

removed and the remaining 103 bands were used in this study. 

Pavia University's three-channel color composite and ground-

truth map are shown in Figure 3. In addition, Table 3 shown 

the total numbers of samples in each class based on ground 

truth. 
 

Table 3. Ground truth samples distribution 

 

Class No. of sample in ground truth 

asphalt 6631 

Meadows 18649 

Gravel 2099 

Trees 3064 

Painted metal sheets 1345 

Bare Soil 5029 

Bitumen 1330 

Self-Blocking Bricks 3682 

Shadows 947 

Total 42776 
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(a) Color composite image (b) Ground truth map 

 

Figure 3. Pavia University 

 

 

4. EXPERIMENTAL RESULTS 

 

The VD of Pavia University data set was estimated by HFC 

based on 10−5 as a false alarm which found to be 13 

dimensions. This VD number determines the number of 

clusters in the latter fuzzy c-means clustering. Due to the 

randomness of the fuzzy c-mean clustering initialization, 

clustering was performed ten times and the one with the lowest 

clustering objective function [35] was chosen.  The proposed 

band selection method was evaluated in terms of classification 

accuracy based on overall accuracy (OA) and kappa 

coefficient (Kappa) measures as below:  

 

OA =
𝑎

𝐴
  (8) 

 

𝑘𝑎𝑝𝑝𝑎 =
𝐴 ∑ 𝑋𝑖𝑖−∑ 𝑋𝑖+𝑋+𝑖

𝑟
𝑖=1

𝑟
𝑖=1

𝐴2−∑ 𝑋𝑖+𝑋+𝑖
𝑟
𝑖=1

  (9) 

 

where, in 8, A and a are the total number of test and correctly 

classified samples, respectively. In (9), Xii is the total number 

of samples belonging to the class i that have also been 

classified as class i (diagonal elements of the confusion 

matrix). Xi+ and X+i are the sum of all columns and all rows of 

error matrix for class i. Also, r is the total number of classes in 

ground truth. 

For the sake of the classification, selected bands (features) 

are classified based on K-nearest neighbor (K-NN) 

classification. K-nearest neighbor (K-NN) algorithm is the 

non-parametric supervised simple classification method that 

has the appropriate results in the classification of hyperspectral 

images.  In this method the label of each test sample is 

determined based on the K-nearest labeled sample. Commonly 

Euclidean metric (EM) is used to measure the distance 

between each test (x) and labeled (y) sample as below [36]: 

 

𝐸𝑀(𝑥, 𝑦) = √∑ |𝑥𝑖 − 𝑦𝑖|2𝑛
𝑖=1   (10) 

 

where, n is the number of the features. Training samples were 

randomly selected as the 10% of ground truth samples and the 

remaining ones were applied to evaluate the classification 

results. 

4.1 Effects of PCs  

 

In the first experiment, image partitioning was not 

performed and only nine statistical attributes were calculated 

for each band of hyperspectral image. PCA was applied to 

these band statistical attributes and led to new uncorrelated 

principal components (PCs). Different numbers of PCs, from 

1 to 4, were used in the proposed band selection to examine 

the effects of this parameter. Reduced data of each case was 

evaluated using overall classification accuracy (Figure 4). 

 

 
 

Figure 4. Effect of different number of PCs 

 

4.2 Effects of image partitioning 

 

The second experiment aims to evaluate the effects of image 

partitioning on the performance of the proposed method. To 

do so, different numbers of image partitions (i.e. 1 to 8) were 

evaluated. The obtained results are presented in Figure 5. 

Figure 5 suggests that image partitioning has significant 

effects on the performance of the proposed method. This 

means that statistical attributes associated to each band have 

local nature. The optimum number of image partitions is 6 in 

our case. This type of partitioning is used due to its simplicity 

and very fast nature. But more precisely, this parameter, as 

well as the proper method of image partitioning, needs to be 

the subject of more research in future.  According to Figure 5, 

even with two image partitions classification accuracy of 

selected bands exceed the minimum mapping accuracy of 85% 

which is required for most resource management applications 

[37]. 
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Figure 5. Effect of image partisioning 

 

4.3 Comparison to other methods 

 

The proposed method was compared to the studies [31] and 

[32] which are the most recent unsupervised band selection 

techniques with a similar concept to the proposed method. 

Figure 6 shows the obtained results which indicate the 

superiority of the proposed method. Both of the two opponent 

methods, as well as the proposed method, introduce their 

selected bands based on band clustering. The superiority of the 

proposed method can be traced to two factors:  

(1) The rich original statistical attributes which were 

assigned to each band (Table 2). 

(2) The strategy of image partitioning which describes the 

bands more efficiently. 

 

 
 

Figure 6. Results of different methods 

 

In comparison to classification with original spectral bands 

(overall= 86.16), only our proposed method is /superior. This 

indicates that our method can efficiently reduce the dimension 

of data to about 0.14 along with the preservation of important 

original data. Besides, although the proposed method is feature 

selection, it is still more precise than the PCA feature 

extraction method (13 first PCs) with an overall accuracy of 

86.15%. 

 

 

5. CONCLUSION 

 

In this paper, an automatic unsupervised band selection 

technique was proposed for the sake of dimensionality 

reduction of hyperspectral images. The underlying concept of 

the proposed method is assigning some statistical attributes to 

each band and then clustering them accordingly. A 

representative band in each cluster was kept and the remaining 

ones were assumed to be redundant. To examine the 

performance of the proposed method, the resultant bands were 

used in K-NN classification and the results were evaluated in 

terms of overall accuracy and kappa coefficients for the test 

samples. The accuracy results of the proposed method are 

higher than the other two recent methods of this field and the 

PCA feature extraction method when the same set of training 

and test samples is chosen which proved the efficiency of the 

proposed method.  

The band selection method of this paper applied an image 

partition that has a significant impact on its functionality. 

Determination of the proper number and strategy of this 

partitioning is proposed for further study. 
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