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Vehicle detection and tracking are key aspects of intelligent transportation. However, the 

accuracy of traditional methods for vehicle detection and tracking is severely suppressed by 

the complexity of road conditions, occlusion, and illumination changes. To solve the 

problem, this paper initializes the background model based on multiple frames with a fixed 

interval, and then establishes a moving vehicle detection algorithm based on trust interval. 

The established algorithm can easily evaluate the background complexity based on regional 

information. After that, the authors pointed out that the correlation filtering, a classical 

vehicle tracking algorithm, cannot adapt to the scale changes of vehicles, due to the weak 

dependence of background information. Hence, a tracking algorithm that adapts to vehicle 

scale was designed based on background information. Finally, the proposed algorithms were 

proved feasible for detection and tracking moving vehicles in complex environments. The 

research provides a good reference for the application of computer vision in moving target 

detection. 
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1. INTRODUCTION

Intelligent transportation [1] improves the information 

sharing among drivers, vehicles, and roads through the 

integration of various techniques, ranging from sensing, 

information storage, data transmission, to computer control. 

Intelligent transportation systems fully utilize traffic 

infrastructure to monitor road conditions and identify traffic 

events, making traffic management more intelligent. 

Vehicle detection and tracking are key aspects of intelligent 

transportation. The vehicles could be detected and tracked by 

sensors and video monitors. Compared with sensors, video 

monitors are simple and easy to update, and capable of 

capturing complete information [2-4]. The traffic videos can 

be processed by computer vision and pattern recognition, 

providing effective solutions for traffic control and planning.  

The detection and tracking of vehicles are critical to various 

traffic scenarios. In road management, the foreground objects 

are detected to judge whether the vehicles run the red light or 

enter the forbidden area. In intersection monitoring, vehicle 

trajectories are used to determine if the derivers violate the 

safety regulations. In safety management, the vehicle positions 

are monitored automatically in real time, reducing the hidden 

hazards of traffic safety. In rush hours, traffic videos help to 

analyze the laws of traffic flow, laying the basis for reasonable 

route planning. 

The accuracy of vehicle detection and tracking is severely 

suppressed by the complexity of road conditions, occlusion, 

and illumination changes. It is necessary to improve the 

detection and tracking of vehicles based on traffic videos. 

Therefore, this paper fully reviews the relevant studies on 

moving vehicle detection and tracking. On this basis, a moving 

vehicle detection algorithm was developed based on trust 

interval, and a moving vehicle tracking algorithm was 

designed based on correlation filtering. The effectiveness of 

the algorithms was confirmed through contrastive experiments. 

2. LITERATURE REVIEW

2.1 Moving vehicle detection methods 

Moving vehicle detection aims to extract the complete 

contours of the moving vehicle by distinguishing between the 

static background and moving foreground on the road and 

removing the information irrelevant to the moving vehicle (i.e. 

noises). Currently, the common methods for vehicle detection 

are generally based on video sequence [5] or feature learning 

[6]. 

The video sequence-based methods can be divided into 

optical flow method [7], frame difference method [8], and 

background subtraction method [9]. The optical flow method 

detects moving vehicles based on the optimal flow in the video 

sequence. Yuan et al. [10] combined sparse optical flow and 

local maximum into a vehicle detection method. The frame 

difference method constructs the vehicle based on the pixels 

whose inter-frame difference surpasses the threshold. The 

background subtraction method detects vehicles by the 

difference between the current frame and the background 

model. The key to background subtraction lies in the 

background model. Wang et al. [11] proposed the Gaussian 

scale mixture (GSM) model based on Gaussian distribution 

probability. Huang et al. [12] designed the vibe model under 

the random strategy.  

The feature learning-based methods acquires the position 

and contours of the vehicle in three steps: training the vehicle 

features in whole or in part, sliding over each frame with a 

fixed size window, and judging whether a part is the vehicle 

or background. Shiue et al. [13] described vehicles with fixed 

features, and developed a detection model with invariant 
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features. Baek et al. [14] trained the detection model with 

adaptive boosting (AdaBoost) algorithm, and detected moving 

vehicles in the binary graph. 

 

2.2 Vehicle tracking methods 

 

In general, vehicle tracking algorithms predict the vehicle 

position in the next frames according to the position in the 

previous frames. The bases of the existing vehicle tracking 

algorithms include Kalman filter [15], mean shift [16], particle 

filter [17], and tracking learning detection (TLD) [18].  

With the aid of Kalman filter, Choi et al. [19] predicted the 

driving state of vehicles, and matched and tracked vehicles by 

edge features. Li et al. [20] tracked vehicles through feature 

fusion and mean shift, and introduced scale-invariant feature 

transform (SIFT) to enhance the robustness of the tracking 

method. Li’s method cannot determine vehicle positions 

accurately, when the vehicles are blocked or cornered (i.e. the 

number of feature points are severely limited). Wu et al. [21] 

tracked vehicles based on particle filter algorithm, resampled 

particles with mean shift, and achieved fast convergence in 

local areas. Kalal et al. [22] presented a single-tracking long-

term TLD algorithm, which combines tracking and detection 

to overcome deformation, partial occlusion, and other 

problems in the tracking process. 

 

2.3 Traffic safety strategies 

 

Vehicle detection and tracking have given rise to a series of 

strategies for traffic safety [23-25]. For example, Chaudhary 

et al. [26] counted the number of vehicles based on inter-frame 

difference, computed the number of moving pixels along the 

road in the difference binary image, and derived the traffic 

flow from the number and ratio of moving pixels. Ramya and 

Rajeswari [27] relied on frame difference and background 

subtraction to detect moving vehicles, tracked vehicles in 

virtual coils, and counted the number of vehicles. Peng et al. 

[28] put forward a statistical method of traffic flow, which 

counts the number of times that vehicles are overlapped in a 

fixed window based on the binary image. Zhu et al. [29] 

extended the support vector machine (SVM) into a detection 

method for abnormal vehicle behaviors: the vehicle trajectory 

was mapped to the vector of high-dimensional space, the 

sample trajectory was learned by the SVM, and then a 

detection model was established to detect the abnormal 

trajectories. 

 

 

3. MOVING VEHICLE DETECTION BASED ON 

TRUST INTERVAL 

 

3.1 Traditional moving vehicle detection algorithms 

 

3.1.1 Frame difference method 

The grayscale of pixels is an intuitive information of videos. 

For two consecutive frames, the grayscale difference between 

pixels at the same position is positively correlated with the 

information change between the two frames. This correlation 

is adopted by the frame difference method to distinguish 

between two or more frames by the time axis, remove static or 

slowly-moving vehicles, and segment the fast-moving 

vehicles from the background. 

If there is no moving target in the video, the grayscale of 

frames will remain constant, and the inter-frame difference 

will be zero. If there is any moving target in the video, the 

grayscale of the frames will change, and the inter-frame 

difference will be nonzero. The area of the moving target can 

be obtained through thresholding and morphological 

processing. 

Let Ij(x,y) and Ij-1(x,y) be the j-th and j-1-th frames of the 

video sequence, respectively. The difference D(x,y) between 

the two adjacent frames can be defined as: 

 

𝐷(𝑥, 𝑦) = {
1,   |𝐼𝑗(𝑥, 𝑦) − 𝐼𝑗−1(𝑥, 𝑦)| > 𝑇

0,   other
 (1) 

 

where, T is a fixed threshold used to judge if pixel (x,y) belongs 

to the foreground. If the grayscale of the pixel is below the 

threshold, the pixel is a background point; otherwise, the pixel 

is a foreground point. 

The frame difference method is a simple way to detect 

moving vehicles. The time interval is small between adjacent 

frames, and the detection is not greatly affected by 

illumination changes. However, this method also faces some 

defects, as the pixels in some areas of adjacent frames have 

similar grayscales. Differential processing might create holes 

in the adjacent frames. If the vehicle moves slowly, the target 

areas will overlap through differential processing. In this case, 

the moving vehicle will be mistaken as part of the background. 

If the vehicle moves rapidly, no overlap will occur after 

differential processing, making it impossible to separate the 

target region. 

 

3.1.2 Background subtraction method 

Background subtraction method, a special version of frame 

difference method, consists of the following steps: creating a 

background model based on the pixels of N consecutive 

frames in the video sequence; performing a differential 

operation between the current frame and the background; 

segmenting and extracting moving vehicles through 

thresholding and morphological operation on the processed 

frames. Mathematically, this method can be defined as: 

 

𝐷(𝑥, 𝑦) = {
1,   |𝐼𝑗(𝑥, 𝑦) − 𝐵𝑗−1(𝑥, 𝑦)| > 𝑇

0,   other
 (2) 

 

where, D(x,y) and B(x,y) are the j-th frame and background, 

respectively; T is the same as that in formula (1). 

In real-world scenarios, the background changes 

dynamically with the surroundings. To improve the detection 

effect, the background must be updated constantly by: 

 

𝐵𝑗+1(𝑥, 𝑦) = (1 − 𝛽)𝐵𝑗(𝑥, 𝑦) + 𝛽𝐼𝑗(𝑥, 𝑦) (3) 

 

where, Bj(x,y) is the background; Ij(x,y) is the current frame; β 

is the background update rate. 

 

3.2 Vehicle detection based on multi-frame interval 

 

The traditional vehicle detection methods perform poorly in 

detecting moving vehicles in complex environments. To 

improve the performance, this paper models the initial 

background based on multi-frame interval, and uses to model 

to acquire the background samples of slowly-moving vehicles 

or those remaining in the scene for a short period only. 

The background complexity is usually measured by how 

complex are the structure and color in the background. The 

update rate needs to be calculated constantly, and the threshold 

326



 

always change. In the actual scene, the threshold changes very 

quickly. Moreover, it is very time-consuming and compute-

intensive to update the threshold and background learning rate 

for each frame. 

To solve the above problems, a trust interval was set to 

judge if the current background model is suitable to update 

under the current traffic conditions. The interval was generated 

by the pixel-based adaptive segmentation algorithm [30], 

which automatically updates threshold R(x,y) and learning rate 

T(x,y) with the dynamic changes of the background. The 

background model B(x,y) can be defined as: 

 

𝐵(𝑥, 𝑦) = {𝑏1(𝑥, 𝑦),⋯ , 𝑏𝑖(𝑥, 𝑦),⋯ , 𝑏𝑀(𝑥, 𝑦)} (4) 

 

In the above model, the background sample is matched, if 

the Euclidean distance between the value I(x,y) of pixel (x,y) 

in the current frame and the background sample is below the 

threshold R(x,y). If the number of matched samples surpasses 

the minimum threshold Tmin, the pixel must belong to the 

background. 

The judgement rule for foreground pixel can be defined as: 

 

𝐷(𝑥, 𝑦)

= {
1
0
    
 𝑛𝑢𝑚{𝑑𝑖𝑠𝑡(𝐼(𝑥, 𝑦), 𝐵(𝑥, 𝑦)) < 𝑅(𝑥, 𝑦)} < 𝑇𝑚𝑖𝑛

𝑒𝑙𝑠𝑒
 

(5) 

 

where, dist() is the Euclidean distance between the pixel value 

the current position and the background sample; num() is the 

number of background samples whose Euclidean distance is 

below the threshold; 𝑇𝑚𝑖𝑛 is a fixed global parameter, i.e. the 

minimum number of matched samples. If D(x,y)=1, then pixel 

(x,y) belongs to  the foreground. 

The background of pixel (x,y) was updated as follows: If the 

pixel is identified as a background pixel of the current frame, 

then several samples were randomly selected from the 

background model B(x,y), and the pixel value I(x,y) was 

replaced with the probability of p=1/T(x,y), where T(x,y) is the 

learning rate. 

The background of the neighbors of pixel (x,y) was updated 

as follows: First, a pixel (x’, y’) was selected from the 

neighborhood ((x,y)N(x,y)) of pixel (x,y); Then, any sample 

in the background model B(x’, y’) of (x’, y’) was replaced by 

the value of pixel (x’, y’) at the probability of p=1/T(xi). 

The background complexity was measured by the mean 

minimum distance between pixels (x,y) in the latest M frames 

and the background samples: 

 

�̅�𝑚𝑖𝑛(𝑥, 𝑦) = 1/𝑀∑𝐿𝑗(𝑥, 𝑦)

𝑗

 (6) 

 

where, Lj(x,y) is the minimum distance between the current 

pixel Ij(x,y) and the background sample B(x,y). If the 

background is very complex, the threshold R(x,y) should be 

large, so that background pixels will not be attributed to the 

foreground; if the background is not complex, the 

R(x,y) should be small, so that foreground pixels will not be 

recognized as background ones. 

In addition, the learning rate T(x,y) was adaptively 

controlled to prevent the background model from fast 

integration into the background in the update process. If the 

current pixel belongs to the background, the learning rate will 

be increased; if the current pixel belongs to the foreground, the 

learning rate will be decreased. The adaptive control of T(x,y) 

can be explained as: 

 

𝑇(𝑥, 𝑦)

{
 
 

 
 𝑇(𝑥𝑖) +

𝑇𝑖

�̅�𝑚𝑖𝑛(𝑥, 𝑦)
    𝐷(𝑥𝑖) = 1

𝑇(𝑥, 𝑦) −
𝑇𝑑

�̅�𝑚𝑖𝑛(𝑥, 𝑦)
    𝐷(𝑥, 𝑦) = 0

 (7) 

 

where, Ti and Td are fixed increase and decrease parameters, 

respectively. The two parameters set the upper and lower 

limits for T(xi) (Tlower<T<Tupper), such that the learning rate will 

not exceed a certain range. 

The pixel-based adaptive segmentation algorithm is a 

background modeler that update background models 

probabilistically with an adaptive threshold R(x,y) and a 

learning rate T(x,y). The algorithm can effectively detect 

moving targets in complex scenes. However, the real-time 

performance of the algorithm is poor, due to its heavy 

computing load and long computing time. 

In pixel-based adaptive segmentation algorithm, the 

background model is initialized based on multiple continuous 

frames. The initialization strategy alleviates distortion, which 

is common in non-parametric background models based on 

sample points. However, the initial background model will 

also be distorted, if the vehicle moves slowly or remains in the 

scene for a short while. To optimize the background sample, 

multiple discontinuous images have been used to initialize the 

background model. The parameters should be calculated and 

updated in real time, and the threshold R(x,y) may increase or 

decrease. In the actual scene, R(x,y) is relatively stable in a 

short period. Based on recent traffic conditions, this paper sets 

a self-adjusting trust interval for the background model of each 

pixel. The trust interval was quantified as a value. The greater 

the value, the more relaxed the update requirement. Whether a 

background model should be updated depends on the trust 

interval and the recent traffic conditions.  

Furthermore, the pixel-based adaptive segmentation 

algorithm evaluates the background complexity, without 

considering regional complexity. If the background is complex 

and the background and foreground alternate too fast, the 

threshold and learning rate cannot be updated in a timely and 

effective manner. To solve the problem, this paper evaluates 

background complexity based on how complex are the 

structure and color in the background. The evaluation result 

was relied on to decide whether to update the threshold and the 

learning rate.  

Our moving target detection algorithm based on trust 

interval involves the following steps: 

 

Step 1. Initialization of background model 

Since the vehicle may move slowly or remain in the scene 

for a short period only, the background model was initialized 

based on multiple discontinuous frames. For pixel (x,y), the 

background model B’(x,y) can be initialized based on multiple 

frames with a fixed time interval j: 

 

𝐵′(𝑥, 𝑦)
= {𝑏1(𝑥, 𝑦), 𝑏2(𝑥, 𝑦),⋯ , 𝑏𝑖(𝑥, 𝑦),⋯ , 𝑏𝑀(𝑥, 𝑦)}

= {
𝐼1(𝑥, 𝑦), 𝐼1+𝑗(𝑥, 𝑦),⋯ , 𝐼1+(𝑖−1)×𝑗(𝑥, 𝑦),

⋯ , 𝐼1+(𝑖−1)×𝑗(𝑥, 𝑦)
} 

(8) 

 

where, I1 is the pixel value of the first frame; I1+(M-1)j is the 

pixel value of frame 1+(M-1)j. The pixel value of the first 

frame was initialized as the first sample of the background 
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model, while the pixel value of the frame 1+(M-1)j was 

initialized to sample N of the background model. 

 

Step 2. Traffic assessment and trust update 

After initializing the ideal background model, the trust time 

period c(x,y) was set for any pixel (x,y), and referred to as the 

trust interval of this pixel. During this interval, the pixel is 

stable, and its background model needs no update. The 

stability and reliability of the background model are negatively 

correlated with the value of parameter h(x,y), i.e. the number 

of alternations between the foreground and background in the 

trust interval. If the parameter is large, the background is very 

unstable, calling for the update of the background model. 

Similarly, the traffic state was evaluated by the trust interval. 

The current traffic state was divided into five levels based on 

the detection ratio [e(x,y)/n(x,y)][0,1]: strongly smooth, 

slightly smooth, slightly blocked, moderately blocked, and 

strongly blocked. Note that e(x,y) is the number of times that 

pixels are detected as foreground in the trust interval until the 

end of detection, and n(x,y) is the number of frames failing in 

the trust interval. The state r(x,y) of the current traffic scene 

can be classified by: 

 

𝑟(𝑥, 𝑦) = 

{
 
 
 

 
 
 
0  𝑖𝑓(𝑒(𝑥, 𝑦)/𝑛(𝑥, 𝑦) ≤ 0.2)  strongly smooth

1  𝑖𝑓 (0.2 ≤
𝑒(𝑥, 𝑦)

𝑛(𝑥, 𝑦)
≤ 0.4)   slightly smooth

2  𝑖𝑓(0.4 ≤ 𝑒(𝑥, 𝑦)/𝑛(𝑥, 𝑦) ≤ 0.6)  slightly blocked

3  𝑖𝑓 (0.6 ≤
𝑒(𝑥, 𝑦)

𝑛(𝑥, 𝑦)
≤ 0.8)   moderately blocked

4  𝑖𝑓(0.8 ≤ 𝑒(𝑥, 𝑦)/𝑛(𝑥, 𝑦) ≤ 1)  strongly blocked

 
(9) 

 

At the end of each trust interval, the value of c(x,y) was 

updated according to the current traffic state and pixel stability. 

If e(x,y)/n(x,y)<td (td is the threshold), then the background 

model is stable, and the background model of the current frame 

should be retained. In this case, the trust interval should be 

updated by: 

 

𝑐(𝑥, 𝑦) =

{
  
 

  
 
min(𝑐(𝑥, 𝑦) + 10,max c(𝑥, 𝑦))

 𝑖𝑓(𝑟(𝑥, 𝑦) = 0)

min(𝑐(𝑥, 𝑦) + 0,max c(𝑥, 𝑦))

𝑖𝑓(𝑟(𝑥, 𝑦) = 1 𝑜𝑟 𝑟(𝑥, 𝑦) = 2)

min(𝑐(𝑥, 𝑦) − 1,max c(𝑥, 𝑦))

𝑖𝑓(𝑟(𝑥, 𝑦) = 3 𝑜𝑟 𝑟(𝑥, 𝑦) = 4)

 (10) 

 

On the contrary, if e(x,y)/n(x,y)≥td, the background model 

may be unstable, and the current background model should be 

updated to suit the dynamic conditions. In this case, the trust 

interval should be updated by: 

 

𝑐(𝑥, 𝑦) =

{
 
 

 
 max(𝑐(𝑥, 𝑦) − 10,𝑚𝑖𝑛 𝑐(𝑥, 𝑦))

𝑖𝑓(𝑟(𝑥, 𝑦) = 0 𝑜𝑟 4)

max(𝑐(𝑥, 𝑦) − 5,𝑚𝑖𝑛 𝑐(𝑥, 𝑦))

𝑖𝑓(𝑟(𝑥, 𝑦) = 1 𝑜𝑟 2 𝑜𝑟 3)

 (11) 

 

After classifying the input pixels, the background model 

was updated, in view of the changes in the background (e.g. 

illumination, and shadow) and moving objects (e.g. trees, 

slowly moving vehicles, and temporarily parked vehicles).   

If the trust interval is minimized, the traffic flow at the pixel 

position is suitable, and the background model should be 

updated with the value of the potentially foreground pixel; 

otherwise, the model should not be updated. The selection of 

update method varies in different cases: 

If n(x,y)<c(x,y), the background model should be updated 

when the following conditions are met at the same time: the 

current pixel is in the trust interval, the background model only 

suits the current traffic state r(x,y)=0, the update cycle is 

completed, and the current pixel I(x,y) is detected in the 

background. The update cycle is a fixed repetitive period for 

the model. Suppose the update cycle lasts 9 frames. It is judged 

at the 9-th frame whether the current traffic state is suitable for 

the update. The background model should be updated, if the 

said conditions are satisfied simultaneously. 

If n(x,y)=c(x,y), the pixel of the current frame is at the end 

of the trust interval. However, the background model should 

still be updated, if h(x,y)/n(x,y)<td, and if the current traffic 

state r(x,y)=0, 1 or 2. Note that h(x,y) stores the number of 

alternations between foreground and background of the pixel 

in the trust interval. 

If h(x,y)/n(x,y)<td, the traffic state is r(x,y)=0, and the pixel 

is stable. In this case, it is highly necessary to update the 

background model with the current traffic state. If 

h(x,y)/n(x,y)<td, the traffic state is r(x,y)=1 or 2. Since the 

current background is relatively stable, the background model 

is unlikely to be contaminated. If h(x,y)/n(x,y)≥td, the pixel is 

unstable, and the traffic assessment is not reliable. Thus, the 

background model should be updated only when the traffic 

state r(x,y)=0. If r(x,y)>2, it is unwise to update the 

background model, regardless of the value of h(x,y)/n(x,y). 

Otherwise, there will be a high risk of distortion. 

 

 

4. MOVING VEHICLE TRACKING BASED ON 

CORRELATION FILTERING 

 

Vehicle tracking is a basic technique in computer vision. It 

is the basis of advanced visual analyses, such as vehicle 

recognition and driving behavior analysis. The basic idea of 

vehicle tracking is to search the target vehicle in the 

neighborhood, where the target vehicle appears the previous 

frame. The stability of the extracted vehicle is matched with 

the features of the surroundings. Then, the vehicle position in 

the frame is detected. However, the tracking accuracy is 

greatly reduced by interferences, namely, occlusion, scale 

changes, and attitude changes during movement. 

For the accuracy of vehicle tracking, this paper introduces 

correlation filtering to the tracking process. Correlation 

measures the similarity between two digital signals p and q: 

 

(𝑝⨂𝑞)(𝜏) =  ∫ 𝑝∗(𝑡)𝑞(𝑡 + 𝜏)
+∞

−∞

𝑑𝑡 (12) 

 

where, ⨂  is the convolution operation; p* is the complex 

conjugate transform of p. The correlation is positively 

corelated with the similarity between the two signals. Then, a 

filter template h was formulated. When the template convolves 

with the tracking object, the output response q is the largest: 

 

𝑞 = 𝑝⨂ℎ (13) 

 

Kernelized correlation filter (KCF) is a highly accurate 

target tracking algorithm [31], which works as fast as 

correlation filtering in tracking moving targets. The excellence 

of the KCF stems from three aspects: the introduction of kernel 
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functions into the classifier, the numerous positive and 

negative training samples obtained through the cyclic shift of 

the pixel matrix of the base image, and the training of the 

classifier with these samples. According to the features of the 

cyclic matrix, moving vehicle tracking problem is transformed 

into the frequency domain by Fourier transform, eliminating 

the need to invert the image matrix. The transform reduces the 

time complexity while retaining the tracking speed. 

In the KCF algorithm, a classifier is trained with thousands 

of negative samples in each frame to improve the tracking 

accuracy. Meanwhile, the image block is obtained as a 

negative sample through cyclic shift of the base image. Then, 

the positive sample and the negative sample constitute a cyclic 

matrix for training, which ensures the real-time performance 

of the algorithm. 

Let x=[x1, x2,…, xn]T be an n1 vector representing the 

appearance of the target image block. The vector is known as 

the base sample (positive sample). The base sample and its 

various transformed versions (negative samples) are used to 

train the classifier. The base sample can be transformed 

through 1D transform of the permutation matrix vector: 

 

A =

[
 
 
 
 
0 0 0 ⋯ 1
1 0 0 … 0
0
⋮
0

1
⋮
0

0 … 0
⋮ ⋱ ⋮
⋯ 1 0]

 
 
 
 

 (14) 

 

The matrix Ax=[xn, x1, x2,…, xn-1]τ makes the vector x shift 

downward by one element, mimicking a vector transform. Let 

Pnx be the indicator that vector x has moved u times. If u is 

negative, the vector is shifted in the opposite direction. 

Drawing on the features of cyclic shift, signal x will be 

transformed into the same signal every n shifts. The complete 

set of shifted signals can be described as: 

 

{𝐴𝑢𝑥|𝑢 = 0,… , 𝑛 − 1} (15) 

 

Taking formula (15) as a row, the regression value of the 

offset sample can be computed as: 

 

𝑋 = 𝐶(𝑥) =

[
 
 
 
 
𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝑛
𝑥𝑛 𝑥1 𝑥2 … 𝑥𝑛−1
𝑥𝑛−1
⋮
𝑥2

𝑥𝑛
⋮
𝑥3

𝑥1 … 𝑥𝑛−2
⋮ ⋱ ⋮

𝑥4 … 𝑥1 ]
 
 
 
 

 (16) 

 

The resulting matrix X is a cyclic matrix, which depends on 

element x of the first row. The elements in the other rows are 

all cyclic offsets of element x. Each cyclic matrix can be 

described as a diagonal matrix composed of the first row of 

base samples x through discrete Fourier transform (DFT): 

 

𝑋 = 𝑇𝑑𝑖𝑎𝑔(�̂�)𝑇𝐻 (17) 

 

where, T is the constant matrix of the DFT; �̂� is the vector 𝑥 

for the DFT transformation. In this paper,  �̂� = ℱ(𝑥) 
represents the DFT of variables. 

To detect the tracking target, the regression values of r(z) on 

several image blocks, which were obtained through cyclic shift, 

were calculated. Let Kz be the kernel correlation matrix 

between training samples and predicted image blocks. The 

samples are derived from the base sample x through cyclic 

shift, while the blocks are derived from image block z through 

cyclic shift. Therefore, any element in Kz can be obtained from 

κ(Pi-1z, Pj-1x). The kernel correlation matrix Kz can be 

expressed as: 

 

𝐾𝑧 = 𝐶(𝐾𝑥𝑧) (18) 

 

where, Kxz is the kernel correlation between vectors x and z. 

The regression function of all estimated image blocks z can 

be defined as: 

 

𝑟(𝑧) = (𝐾𝑧)𝑇𝛼 (19) 

 

where, r(z) is the detection response to the image block. Each 

value indicates the probability that the corresponding area is 

the local area of the target. The maximum response 

corresponds to the exact position of the target. To speed up the 

computing, formula (19) was diagonalized by 𝐾𝑧 =

𝑇𝑔𝑖𝑎𝑔(�̂�𝑥𝑧)𝑇𝐻:  

 

𝑟(�̂�)�̂�𝑥𝑧⊙ �̂� (20) 

 

Formula (29) shows that the tracking algorithm is updated 

in two parts: coefficient α and the target appearance model x. 

The update strategies of x and α are as follows: 

 

𝛼𝑡 = (1 − 𝛽)𝛼𝑡−1 + 𝛽𝛼
′
𝑡 (21) 

 

𝑥𝑡 = (1 − 𝛽)𝑥𝑡−1 + 𝛽𝑥
′
𝑡 (22) 

 

where, β is the learning rate; αt and αt-1 are the update 

coefficients of the current frame classifier and the previous 

frame classifier, respectively; α’t is the update coefficients of 

the current frame; xt and xt-1 are the update coefficients of the 

target appearance model of the current frame and the previous 

frame, respectively; x’t is the appearance model of the target 

in the current frame. 

 

 

5. EXPERIMENTS AND RESULTS ANALYSIS 

 

To evaluate its performance, the proposed algorithms were 

tested on several traffic video sequences under different 

environments. The histogram of oriented gradients (HOG) was 

adopted, with the cell size of 4, and the number of statistical 

gradient directions of 9. The target position of the initial frame 

was manually selected. Our algorithms were compared with 

popular vehicle tracking methods, namely, the KCF, circulant 

structure kernel (CSK), and compressive tracking (CT). 

Three representative video sequences were selected from 

experimental video sequences to demonstrate the results of our 

algorithms and those of the three contrastive methods. These 

sequences contain challenging factors like illumination 

changes, motion blur, scale changes, and occlusion. The 

tracking results of the contrastive methods are compared in 

Figure 1, where the results of our algorithms are in green boxes, 

those of the KCF in red boxes, those of the CSK in blue boxes, 

and those of the CT in black boxes. 
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Figure 1. The tracking results of different algorithms 

 

From frame 38 to frame 252, the vehicle motion was 

basically stable. All algorithms successfully positioned and 

tracked the vehicle. From frame 253 to frame 698, the vehicle 

sped up and the illumination changed greatly. In this case, the 

CSK and CT could not predict vehicle position accurately. 

Their predicted positions gradually deviated from the actual 

position, and eventually led to tacking failure. From frame 699 

to frame 899, the vehicle scale changed constantly, while the 

illumination grew weaker. The vehicle motion became 

increasingly blurry. The KCF failed to keep track of the 

vehicle. Despite the changes in illumination and scale, our 

algorithms predicted the vehicle position accurately based on 

the relationship between the target and the background. This 

is because our position classifier grounded on the images of 

the vehicle and the background. The above results show that 

our algorithms outshine the other popular methods in 

robustness and accuracy, while meeting the requirement on 

frame rate. 

 

 

6. CONCLUSIONS 

 

This paper fully analyzes the traditional methods for 

moving vehicle detection, and proposes a moving vehicle 

detection algorithm based on trust interval. Firstly, the ideal 

background model was initialized based on multiple frames 

with a fixed interval. The background complexity was 

evaluated based on the complexity of structure and color. Next, 

a tracking algorithm that adapts to vehicle scale was extended 

from the KCF algorithm based on background information, 

aiming to enhance the dependence of correlation filtering on 

background information. Experimental results show that our 

methods can track vehicle positions accurately, and adapt to 

the changing scale of vehicles in complex environment. 
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