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Due to the complex background of the field, it is a highly complex and flexible task to 

recognize and diagnose diseases from crop images. Image processing and machine vision 

can adapt to the complex and changing natural scenes, laying the basis for recognition and 

diagnosis of crop diseases. This paper designs and verifies an image segmentation method 

and a disease recognition method for crop disease images under complex background. The 

segmentation method was developed by improving graph-cut segmentation algorithm with 

saliency map and excess-green method, while the recognition method was designed based 

on a single hidden-layer forward neural network (NN). Experimental results show that our 

segmentation method outperformed he traditional graph-cut algorithm, and fuzzy c-means 

(FCM) clustering in segmenting the fine-grained disease images, and that our recognition 

method could accurately identify typical leaf diseases with high stability. The research 

results provide a good reference for the application of image processing and machine vision 

in disease image processing. 
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1. INTRODUCTION

Crop growth is easily affected by multiple factors, including 

environment, climate, and soil. These factors complicate the 

background of crop images. Traditionally, crop diseases are 

diagnosed and recognized manually. But the manual approach 

cannot adapt to the complex and changing natural scenes. The 

problem can be solved effectively by image processing and 

machine vision, which meet the needs of various applications. 

It is feasible to diagnose and identify crop diseases through 

image processing and machine vision. The diagnosis and 

identification help to establish a disease prediction mechanism, 

and determine the favorable time for disease prevention and 

control. 

Due to the complex background of the field, it is a highly 

complex and flexible task to recognize and diagnose diseases 

from crop images. First, the disease images collected under 

complex background have high fuzziness: some disease leaves 

are blocked, and some disease leaves are mixed with disease 

spots. A series of preprocessing operations is needed to 

highlight the key information and suppress the useless 

information in the images, making them suitable for further 

processing.  

Second, the background of crop disease images is very 

complicated: the leaves often overlap each other and suffer 

from distortion and deformation; the illumination varies from 

place to place; the distinction is poor between disease plants, 

healthy plants, and the soil. This calls for efficient 

segmentation methods that can effectively sperate the object 

from the complex background.  

Third, the crop diseases cannot be ascertained without 

sufficient knowledge in crop pathology. The diseases should 

be diagnosed and identified based on the regularity and 

stability of disease symptoms. To accurately identify crop 

diseases, it is necessary to select suitable methods for image 

segmentation, feature extraction, and feature optimization. 

This paper attempts to realize efficient and accurate disease 

identification and diagnosis, relying on image processing and 

machine vision. Focusing on crop disease images with 

complex background, an image segmentation method was 

designed based on graph-cut algorithm, saliency map, and 

excess-green method, while a disease recognition method was 

developed from a single hidden-layer forward neural network 

(NN). The two methods were verified through contrastive 

experiments on actual disease images.  

2. LITERATURE REVIEW

Under complex background, it is difficult to locate the target 

area and its boundaries by common image segmentation 

methods, not to mention achieving desired segmentation effect 

[1-4]. Based on Mercer theorem, Wang et al. [5] designed a k-

means clustering (KMC) segmentation algorithm, and applied 

the algorithm to segment the disease spots on corn leaves. 

Jiang et al. [6] successfully segmented cucumber disease 

images with the level set model under complex background. 

Cheng et al. [7] segmented rice leaf images robustly and 

accurately with edge detection algorithm. Through KMC 

recognition and watershed segmentation, Li et al. [8] 

automatically located and counted stripe rust pathogens of 

wheat. Al-Tarawneh [9] segmented the disease spots of 

rapeseed leaves through significance detection, and created a 

vegetable disease recognition system for greenhouse 

surveillance videos. 

Image segmentation based on saliency map [10, 11] has 

emerged to reduce the interference of background complexity. 

For example, Zhuo et al. [12] proposed a significance 
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detection method based on color difference, in which the 

significance of each pixel equals the mean color difference 

between the pixel and the whole image. Based on significance 

detection, Shao et al. [13] put forward a four-step image 

segmentation algorithm: the spatial distance between regions 

was defined as a weight; the weighted color difference 

between regions was calculated by the contrast of color 

histogram; the significance of each region was determined as 

the total weighted color difference between that regions and 

other regions; the image was segmented based on the 

significant regions. Zhu et al. [14] obtained the regional 

features through dictionary learning, constructed spatial 

consistency according to conditional random field, and thus 

derived the saliency map of the image. These saliency map-

based methods extract features of the disease spots, providing 

a powerful guarantee to segmentation effect. 

In the light of color features, Lv et al. [15] recognized green 

weeds in the field. With the aid of support vector machine 

(SVM), Rumpf et al. [16] identified grape leaf lesions based 

on such features as color, texture, and shape. According to the 

shape, texture, and color of disease spots, Sun et al. [17] 

trained the disease images of cucumber leaves, and achieved a 

high recognition accuracy based on the trained images. Xu et 

al. [18] classified the images on powdery mildew and rust of 

wheat, based on features like hue, saturation, value (HSV), and 

shape. Zhang et al. [19] recognized diseases on rice leaf 

images with the SVM, and proved that the SVM is superior to 

the nearest neighbor (NN) and backpropagation neural 

network (BPNN) in disease recognition rate. Relying on 

Bayesian and Fisher discriminant functions, Zhou et al. [20] 

constructed a recognition model of tomato leaf diseases, 

extracted the color, texture, and shape from tomato disease 

images with the model, and optimized these features through -

step discriminant analysis and principal component analysis 

(PCA), achieving excellent recognition results. 

 

 

3. CROP DISEASE IMAGE SEGMENTATION BASED 

ON SALIENCY MAP 

 

3.1 Graph-cut segmentation based on saliency map 

 

There is an inherent rule in the disease images collected 

under complex background: the statistical value of an area in 

the image applies to the other areas, that is, the features 

extracted from an area in the image are suitable for the other 

areas. Therefore, the global statistical properties of a disease 

image can be obtained locally. 

This paper attempts to segment disease images under 

complex background based on saliency map. The saliency 

map-based segmentation could eliminate the impact from the 

complex background, and overcome the defects of traditional 

segmentation algorithms (e.g. sensitivity to local noises), 

laying the basis for disease recognition. 

As shown in Figure 1, our saliency map-based segmentation 

algorithm covers three processes: acquiring the saliency map 

of the original disease image; segmenting the complex 

background with the saliency map as the mask; segmenting the 

disease spots. 

The saliency map was obtained from the original disease 

image by saliency map detection strategy. Taking the saliency 

map as the mask of graph-cut algorithm [21], the foreground 

and background of the disease image were separately 

accurately. 

 
 

Figure 1. The workflow of our saliency map-based 

segmentation algorithm 

 

In graph-cut algorithm, the foreground and background 

models are developed based on a k-dimensional Gaussian 

mixture model (GMM): 

 

𝐷(𝑥) = ∑ 𝜋𝑖𝑡𝑖(𝑥; 𝜏𝑖 , 𝜔𝑖)

𝐾

𝑖=1

 (1) 

 

where, ∑ 𝜋𝑖 = 1𝐾
𝑖=1 ; π and τ are the weight and mean vector of 

each Gaussian component, respectively.  

Our saliency map-based graph cut segmentation method can 

be implemented in the following steps: 

Step 1: Take saliency map as the initial mask G; initialize 

background Gb, empty foreground Gf, and complement of 

background 𝐺𝑢 = 𝐺𝑏
̅̅ ̅ (if 𝑛 ∈ 𝐺𝑏 , then βn=0; if 𝑛 ∈ 𝐺𝑢 , then 

βn=1); establish the GMM of foreground and background with 

βn=0 and βn=1. 

Step 2: 

(1) Calculate GMM parameter hn corresponding to each 

pixel in Gu: 

 

ℎ𝑛 = 𝑎𝑟𝑔 min
ℎ𝑛

𝐷𝑛(𝑎𝑛 , ℎ𝑛 , 𝜃, 𝑧𝑛) (2) 

 

(2) Learn the GMM parameter: 

 

𝜃 = arg min
𝜃

𝑈(𝑎, ℎ, 𝜃, 𝑧) (3) 

 

(3) Estimate the segmentation result: 

 

min
{𝑛∈𝐺𝑢}

min
ℎ𝑛

𝐸(𝑎, ℎ, 𝜃, 𝑧) (4) 

 

Repeat (1) to (3) until the iterative process converges. In 

each iteration, the GMM parameter and segmentation result 

are optimized. 

Step 3: Update G, and repeat (3) of Step 2. 
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Step 4: Repeat Step 2. 

After the extraction of all diseased leaves, the diseased leaf 

image was segmented. The leaves disease spots are normally 

green, while the diseased leaves are usually non-green (e.g. 

white, gray, brown, and gray black). Therefore, the disease 

spots were segmented by the excess-green method to extract 

green color and suppress non-green colors: each pixel of the 

disease image was compared with a threshold, and categorized 

to healthy leaves or disease spots. The excess-green method 

can be defined as: 

 

𝐸 = {
0      𝑅 > 𝐺 > 𝐵

2𝐺 − 𝑅 − 𝐵  𝑜𝑡ℎ𝑒𝑟
 (5) 

 

Then, the grayscale image was transformed into a binary 

image, which was then expanded based on morphology, 

making the disease spots plumper and natural. Finally, the 

mask operation was performed on the original disease image 

to identify the disease spots, and separate them from the leaves. 

 

3.2 Experimental verification 

 

To verify its effectiveness, the graph-cut segmentation 

method based on saliency map and excess-green method was 

adopted to process a disease image collected in complex 

background, where the leaves are similar in color as disease 

spots under nonuniform illumination. The original image and 

the segmentation result are given in Figure 2 below. 

Next, the proposed segmentation method was further 

compared with the traditional graph-cut algorithm on a set of 

standard images and a set of disease images. Table 1 compares 

the number of iterations and segmentation time for the two 

methods to achieve the same segmentation results.  

 
 

Figure 2. Result of disease spots segmentation 

 

As shown in Table 1, our method took 20% less time and 

9% fewer iterations than the traditional graph-cut algorithm to 

achieve the same segmentation results on the standard image 

set, and 12.5% less time and 27% fewer iterations than the 

latter to achieve the same segmentation results on the disease 

image set. 

Furthermore, our method, the traditional graph-cut 

algorithm, and the fuzzy c-means (FCM) clustering were 

separately applied to process small sets of disease-free leaf 

images, and leaf images with four types of diseases (gray spot, 

powdery mildew, gall mite, and anthrax). The mean error rates 

of the three methods are compared in Table 2. 

As shown in Table 2, the FCM clustering had a high mean 

error rate, indicating that this method failed to remove many 

background pixels. The traditional graph-cut algorithm 

achieved a smaller mean error rate than the FCM clustering, 

but the mean error rate was still above 10%. Our method 

reduced the mean error rate to below 6%. This means our 

method could eliminate the background pixels, and fully 

separate leaves from disease spots. Hence, our method offers 

the best segmentation strategy among the three contrastive 

methods. 

 

Table 1. The comparison of the number of iterations and segmentation time 

 
 Traditional graph-cut segmentation algorithm Our method 

 Number of iterations Segmentation time (s) Number of iterations Segmentation time (s) 

Standard image set 500 14.36 455 11.55 

Disease image set 418 12.43 366 9.17 

 

Table 2. The comparison between the three methods in mean error rate 

 
Disease type FCM clustering Traditional graph-cut algorithm Our method 

Disease-free 19.6 13.6 6.8 

Gray spot 42.7 37.9 7.3 

Powdery mildew types 33.9 31.4 7.7 

Gall mite 34.7 30.8 3.8 

Anthrax 28.9 26.8 2.1 

 

4. DISEASE IMAGE RECOGNITION BASED ON 

SINGLE HIDDEN-LAYER FORWARD NN 

 

Compared with traditional recognition algorithms, the 

neural network (NN) can recognize disease spots accurately 

despite complex background and massive nonlinear data, and 

clarify the complex relationship between disease image and 

disease spot. The NN is usually trained by gradient-based 

learning algorithm, and its weight is often adjusted through 

error backpropagation. If the learning rate is unreasonable, 

however, the algorithm will converge very slowly and fall into 

the local minimum trap. To solve these problems, this paper 

designs a forward NN with a single hidden layer, and applies 

it to recognize leaf diseases.  

 
 

Figure 3. The structure of single hidden-layer forward NN 
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4.1 Single hidden-layer forward NN 

 

As shown in Figure 3, the standard single hidden-layer 

forward NN consists of an input layer, a hidden layer, and an 

output layer. 

As shown in Figure 3, the training sample X enters the NN 

via the input layer. In the hidden layer, the sample X is 

multiplied with weight matrix W, and added with bias B. The 

sum is imported into the activation function. In the output layer, 

the result of the activation function is multiplied with weight 

matrix Z, yielding the output of the single hidden-layer 

forward NN. The operations in the single hidden-layer NN can 

be expressed as: 

 

𝐹(𝑋) = min
𝑊,𝐵,𝑍

‖𝑍 × 𝐻(𝑊𝑋 + 𝐵) − 𝑌‖ (6) 

 

where, X is the training sample; H(*) is the activation function; 

W is the weight matrix of the edges between input and hidden 

layers; B is the bias between input and hidden layers; Z is the 

weight matrix of the edges between hidden and output layers; 

Y is the label of the sample. 

In the single hidden-layer forward NN, the weight matrix Z 

has a unique output, as long as weight W and bias B are 

determined. The training of the NN is equivalent to solving a 

linear system. The bias B can be computed by: 

 

𝐵 = 𝐻(𝑋𝑊 + 𝐵)′ × 𝑌 (7) 

 

where, (XW+B)’ is a Penrose generalized inverse matrix. 

The common activation functions for the single hidden-

layer forward NN include Sigmoid, Hardlim, Tribas, and 

Radbas. 

(1) The limited output range of Sigmoid prevents data from 

divergence during transmission and facilitates the derivation 

operation. The Sigmoid activation function can be defined as: 

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(x) = 1 (1 + exp (−𝑥))⁄  (8) 

 

where, exp is exponential operation. 

(2) Hardlim outputs 1 if the input reaches the given 

threshold, and outputs 0 if otherwise. The Hardlim activation 

function can be defined as: 

 

Hardlim(x) = {
1,   𝑥 > 𝑇
0.  𝑜𝑡ℎ𝑒𝑟

 (9) 

 

where, T is the threshold. 

(3) Tribas is similar to Gaussian radial basis function (RBF), 

but has a simple calculation process. The Tribas activation 

function can be defined as: 

 

Tribas(x) = {
1 − 𝑎𝑏𝑠(𝑥), −1 ≤ 𝑥 ≤ 1
0,                                       𝑜𝑡ℎ𝑒𝑟

 (10) 

 

where, abs(x) is absolute value operation. 

(4) Radbas triggers node response with Euclidean distance 

between samples. The Radbas activation function can be 

defined as: 

 

Radbas(x) = exp (−γ‖𝑥 − �̅�‖2) (11) 

 

where, γ is the degree of freedom (DOF); �̅� is the mean value. 

 

Table 3. The comparison between single hidden-layer 

forward NNs with different activation functions 

 
Activation 

function 

Training 

time 

Test 

accuracy 

Test 

time 

Sigmoid 25.3 90.5% 1.07 

Hardlim 66.8 90.2% 1.15 

Tribas 33.1 45.8% 1.13 

Radbas 109.7 35.2% 1.22 

 

Table 3 compares the classification accuracy of single 

hidden-layer forward NNs with different activation functions, 

with 100 nodes on the hidden layer. 

As shown in Table 3, Sigmoid achieved basically the same 

accuracy as Hardlim, using only 62% shorter time than the 

latter. It can be seen that Sigmoid is the best choice for 

activation function of the single hidden-layer forward NN. 

The excellence of Sigmoid stems from the mapping of 

signals into the range of 0-1 smoothly, so that the signal gain 

is large for the middle value and small for polar values. Tribas 

and Radbas also map signals to 0-1, but their derivative 

functions have inconsistent value symbols. During the 

processing of our image data, the gradient direction of Tribas 

and Radbas change abruptly, making it difficult to map the 

image features. In this case, the NN is pone to non-

convergence in training, failing to achieve a good recognition 

effect. 

In practical application, it is neither stable nor robust to 

classify image datasets with the single hidden-layer forward 

NN. To recognize leaf diseases, various classifiers were 

constructed and trained by the sample data. The trained 

classifiers were fused into a strong classifier. This ensemble 

algorithm is explained in Figure 4 below. 

 

 
 

Figure 4. The workflow of ensemble algorithm 

 

In the initial phase, the same weight was assigned to each 

sample, and the single hidden-layer forward NN was adopted 

to train the samples, producing the base classifier c1(x). 

According to the preliminary training results of each c1(x) 

training sample, the weights of the samples trained by the 

classifier was assigned again, aiming to reduce the weights of 

correctly classified samples and increase the weights of 

incorrectly classified samples. In this way, classifier c2(x) and 

weight w2 were obtained. Similarly, multiple base classifiers 

and weights were generated iteratively. Then, all base 

classifiers were integrated by weights into the final strong 

classifier. 

The ensemble algorithm can be implemented in the 

following steps: 

Let T={(x1, y2),…, (xi, yi)} be the training set, where 𝑥𝑖 is 

sample and 𝑦𝑖  is class. 
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Step 1: Divide the samples into M sets, and initialize the 

weight of each sample: Wt=1/M. 

Step 2: Obtain the base classifier ct(x): X→{1, 2,…, K} 

through the learning of the preliminarily weighted dataset. 

Step 3: Calculate the classification error rate of ct(x): 

 

𝑒𝑟𝑟𝑡 = ∑ 𝑊𝑡𝑖||(𝑐𝑡(𝑥𝑖) ≠ 𝑦𝑖)

𝑀

𝑖=1

 (12) 

 

Step 4: Calculate the weight coefficient of ct(x): 

 

𝛽𝑡 =
1

2
𝑙𝑜𝑔

1 − 𝑒𝑟𝑟𝑡

𝑒𝑟𝑟𝑡

+ log (𝐾 − 1) (13) 

 

Step 5: Update the centralization value distribution of 

training data: 

 

𝑊𝑡+1,𝑖 =
𝑊𝑡𝑖

𝑍𝑡

exp (−𝛽𝑡𝑦𝑖𝑐𝑡(𝑥𝑖)) (14) 

 

where, Zt is the standardization factor. 

Step 6: Linearly combine the base classifiers into the final 

strong classifier. 

 

𝑓(𝑥) = ∑ 𝛽𝑡𝑐𝑡(𝑥)

𝑀

𝑡=1

 (15) 

 

4.2 Experimental verification 

 

In the experiment, the single hidden-layer forward NN is 

trained by continuously adjusting the weight and threshold to 

obtain the minimum performance function; the accuracy is 

measured by the variance and mean squared error (MSE) 

between the network output and the actual output. Several 

effective eigenvalues of the data were extracted and inputted 

into the NN, and the output of the network was divided into 

five classes: leaf rust, leaf defoliation, leaf round spot, mosaic, 

and powdery mildew. 

For the single hidden-layer forward NN, there is no clear 

rule about the number of nodes on the hidden layer. In general, 

if there are too few hidden layer nodes, the connection weights 

between input and output layers will be so small that the NN 

will have a poor learning ability and many errors in the face of 

complex problems; if there are too many hidden layer nodes, 

the NN will suffer from over-fitting and poor generalization. 

Currently, the number of hidden layer nodes is usually set 

empirically. Table 4 compares the performance of single 

hidden-layer forward NNs with different number of hidden 

layer nodes.  

As shown in Table 4, with the growing number of hidden 

layer nodes, the training time and test time of all NNs were on 

the rise. Meanwhile, the accuracy gain gradually declined. To 

balance accuracy and efficiency, it is advised that the single 

hidden-layer forward NN should have 550 hidden layer nodes.  

The single hidden-layer forward NNs with different number 

of hidden layer nodes were also adopted to recognize leaf 

images on five types of diseases, including leaf rust, leaf 

defoliation, leaf round spot, mosaic, and powdery mildew. The 

experimental results are shown in Table 5. 

As shown in Table 5, accuracy of disease recognition 

increased with the number of hidden layer nodes. This is 

because the number of hidden layer nodes is positively 

correlated with the number of parameters obtained by the 

single hidden-layer forward NN. The more the parameters, the 

better trained the NN, and the higher the accuracy. Among the 

five diseases, leaf defoliation and mosaic were poorly 

recognized, for leaf defoliation is similar to leaf round spot in 

the early phase. By contrast, the powdery mildew was 

recognized with the highest accuracy, thanks to its obvious 

color. 

Our method was further compared with the SVM in the 

recognition of leaf round spot, leaf rust, and mosaic. The 

recognition accuracy of the two methods is compared in Figure 

5. 

As shown in Figure 5, the leaf disease recognition algorithm 

based on single hidden-layer forward NN was more accurate 

than the SVM on diseases like leaf round spot, leaf rust, and 

mosaic, indicating that our algorithm is a desirable tool in the 

recognition of leaf diseases. 

 

 
 

Figure 5. The comparison of recognition accuracy 

 

Table 4. The comparison of training and test performance 

  
Number of hidden layer nodes Training time Test accuracy Test time 

150 5.2 93.6% 0.26 

350 11.8 94.5% 0.53 

550 15.3 95.2% 0.75 

750 23.9 96.2% 1.12 

 

Table 5. The comparison of disease recognition accuracy 

 
Number of hidden layer nodes Leaf rust Leaf defoliation Leaf round spot Mosaic Powdery mildew 

150 94.3% 92.2% 93.7% 92.9% 94.5% 

350 95.1% 93.1% 94.5% 93.8% 95.2% 

550 96.4% 94.1% 96.2% 95.1% 97.8% 

750 96.9% 94.7% 96.6% 95.7% 98.2% 
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5. CONCLUSIONS 

 

Focusing on crop disease images under complex 

background, this paper designs an image segmentation method 

by improving graph-cut segmentation algorithm with saliency 

map and excess-green method, and proposes a disease 

recognition method based on a single hidden-layer forward 

NN. Experimental results show that our image segmentation 

method is robust against interferences (e.g. image noises, 

uneven illumination, and uneven color of disease spots); our 

algorithm takes fewer iterations and shorter time to achieve the 

same segmentation effect as the traditional graph-cut 

algorithm and the FCM clustering. Similarly, the single 

hidden-layer forward NN was found to outperform the SVM 

in disease image recognition. 
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