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This study presents a method that aims to automatically diagnose Schizophrenia (SZ) 

patients by using EEG recordings. Unlike many literature studies, the proposed method does 

not manually extract features from EEG recordings, instead it transforms the raw EEG into 

2D by using Short-time Fourier Transform (STFT) in order to have a useful representation 

of frequency-time features. This work is the first in the relevant literature in using 2D time-

frequency features for the purpose of automatic diagnosis of SZ patients. In order to extract 

most useful features out of all present in the 2D space and classify samples with high 

accuracy, a state-of-art Convolutional Neural Network architecture, namely VGG-16, is 

trained. The experimental results show that the method presented in the paper is successful 

in the task of classifying SZ patients and healthy controls with a classification accuracy of 

95% and 97% in two datasets of different age groups. With this performance, the proposed 

method outperforms most of the literature methods. The experiments of the study also reveal 

that there is a relationship between frequency components of an EEG recording and the SZ 

disease. Moreover, Grad-CAM images presented in the paper clearly show that mid-level 

frequency components matter more while discriminating a SZ patient from a healthy control. 
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1. INTRODUCTION

Schizophrenia (SZ) is a serious neuropsychiatric disease 

that is estimated to affect nearly 1% of the world population. 

Patients of this disease suffer from hallucinations and 

delusions as well as diminishment in motivation and difficulty 

in expressing emotions [1]. These symptoms generally begin 

in early ages and the damage in the brain caused by the disease 

increases in time. Early diagnosis of the disease and patient 

specific treatment may help reduce deformations in the brain, 

it is, however, difficult even for the experts to diagnose the 

disease in the early stages [2]. Therefore, development of 

computer methods to diagnose the disease in order to help 

clinicians in the decision making has been an important 

research topic in the relevant literature. Even though most 

literature methods such as [3, 4] often utilized traditional 

Machine Learning (ML) algorithms, recent developments in 

the Deep Learning (DL) make a promising newer direction for 

the researchers of the field. 

Electroencephalography (EEG) recording is an important 

tool to analyze brain activity and functions. An EEG record 

contains information obtained from electrical signals detected 

by use of electrodes placed on different areas of the patient’s 

head. These signals are often digitized and analyzed by use of 

dedicated computer programs in order to help experts evaluate 

the information which is otherwise hard to analyze specifically 

in the cases like SZ where the raw signal does not directly 

show any disease related anomaly. In the computer-aided 

diagnosis (CAD) of SZ, using EEG recordings is not the only 

way in the literature. In order to perform automatic detection 

of the disease, researchers used several different medical 

imaging techniques like magnetic resonance imaging (MRI), 

positron emission tomography (PET), functional magnetic 

resonance imaging (fMRI) and diffusion tensor magnetic 

resonance imaging (DTI). These alternative techniques, 

however, have not considered as favorable as EEG due to the 

reasons such as high cost of imaging hardware and images 

produced by these machines not always being of the desired 

quality [5]. Therefore, EEG comes into prominence as a low 

cost and reliable alternative to be used as an input to a CAD 

system designed to automatically detect many diseases such as 

SZ [6].  

Therefore, in the relevant literature, most of the CAD 

systems to detect SZ focused on using EEG signals. A great 

deal of researchers attempted to diagnose the disease by using 

traditional ML techniques over features extracted from EEG 

signals.  The key to successful diagnosis of the disease is 

extracting relevant features from the signals and therefore 

there have been various methods proposed in the literature to 

this end. In the study of Kim et al. [7], 5 frequency bands from 

21-channel EEG recordings are selected. They applied Fast

Fourier Transform (FFT) over these bands and spectral power

of these bands are calculated by using EEGLAB software [8].

They classified healthy and SZ patients with an accuracy of

62.2% by using the delta frequency. In another study, Dvey-

Aharon et al. [9] preprocessed EEG signals by using The

Stockwell transformation to extract features [10]. Their

method called “TFFO” (Time-Frequency transformation

followed by Feature-Optimization) showed a satisfactory

accuracy between 92% and 93.9%. Moreover, Johannesen et

al. [11] used Support Vector Machines (SVM) to extract most

relevant features [12] from the EEG recordings in order to

Traitement du Signal 
Vol. 37, No. 2, April, 2020, pp. 235-244 

Journal homepage: http://iieta.org/journals/ts 

235

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.370209&domain=pdf


 

predict working memory performance of healthy and SZ 

patients. Their method reached an accuracy of 87% in the 

prediction performance. Similarly, Santos-Mayo et al. [13] 

tested various ML approaches and feature selection algorithms 

including electrode grouping and filtering. As a result, they 

reported Multi-Layer Perceptron (MLP) and SVM algorithms 

have the best accuracy in classification performance with 

93.42% and 92.23%, respectively. Moreover, classification 

over features obtained from J5 feature selection algorithm [14] 

performed better. In the study of Aslan and Akın [15], features 

are extracted from the EEG signals by using Relative Wavelet 

Energy. These features are then fed to K-Nearest Neighbors 

algorithm in order to classify healthy and SZ cases. They 

reported to have reached nearly 90% accuracy performance. 

Thilakvathi et al. [16] used Support Vector Machines (SVM) 

algorithm to discriminate SZ patients. They used Hannon 

Entropy, Spectral Entropy, Information Entropy, Higuchi’s 

Fractal Dimension and Kolmogorov Complexity values as 

features used as inputs to SVM. They reported an accuracy of 

88.5%. In all these literature methods mentioned up to now, 

the EEG recordings are not used in raw, instead researchers 

crafted some features out of EEG signals and fed a ML 

algorithm of the choice with these features. This feature 

engineering approach has several advantages like good 

predictive performance but it requires experts with 

comprehensive knowledge of the target domain. Also, all these 

extracted features are ad hoc solutions specific to the data and 

they are not proven to generalize well with all cases. 

As an alternative approach, researchers have recently been 

investigating Deep Learning (DL) algorithms such as CNN to 

automatically diagnose SZ patients because DL algorithms do 

not require the practitioner extract any features manually from 

the input. The features in the given input are extracted 

automatically in layers of the network such as convolutional 

and pooling layers. There are only few literature methods that 

utilize CNNs to detect SZ in given EEG signals. In one study, 

Phang et al. [17] proposed a method that accepts brain 

functional connectivity information as features. These features 

are extracted from EEG recordings by use of vector 

autoregressive (VAR) model, partial directed coherence 

(PDC) and complex network measures of network topology. 

The obtained features are subsequently fed to two 

Convolutional Neural Network (CNN) models which in turn 

are fused into a Fully-Connected Neural Network (FCN) that 

is capable of classifying healthy controls and SZ patients. 

They reported an accuracy of 93.06% in the classification task.  

Their method is reported to reach a satisfactory accuracy but 

relies on additional data such as brain connectivity features. In 

another study, Oh et al. [6] utilized a CNN model to classify 

19-channel EEG recordings of 14 healthy controls and 14 SZ 

patients. Their CNN model had a total of 11 layers including 

regular convolutional, pooling and dense layers. No 

preprocessing is used and the raw EEG channels are fed into 

the CNN model all at once. Their method is reported to reach 

an accuracy of 81.26% for subject based testing and 98.07% 

for non-subject based testing. Both methods that utilize DL to 

diagnose SZ lack interpretability due to the use of CNNs as a 

black-box solution. This is partly because of the fact that raw 

EEG signals are not obviously correlated with possible visual 

outcomes of convolution operations. 

In this study, we propose a method that attempts to detect 

SZ patients with high accuracy, simple pipeline and as well as 

interpretable outputs. The proposed study is novel in the way 

that it hypothesizes that frequency-time features of an EEG 

recording is sufficient to automatically discriminate SZ 

patients. The frequency-time features are obtained by 

converting raw EEG signals into 2D spectrogram images by 

using Short-time Fourier Transformation (STFT). As to our 

knowledge, it is the first time in the relevant literature, 

spectrograms are used as inputs to detect SZ patients. The most 

useful features that are thought to be present in these images 

are automatically extracted by a state-of-art CNN model which 

also classifies samples into healthy or diseased in later layers 

of the network. Therefore, the proposed method is 

advantageous to many literature methods that require expert 

knowledge to extract useful features from EEG recordings 

because it extracts features automatically through layers of the 

CNN. Moreover, when it is contrasted to literature methods 

that use a CNN, it still has advantages such as interpretable 

outputs, simpler pipeline and easier to implement architecture. 

The proposed method is tested against two different datasets 

each of which contains patients and healthy controls of 

different age groups. The fact that the proposed method 

reaches high accuracy (95% and 97%) in both children and 

adult data show that it is a robust method for the task of 

automatically diagnosing the SZ disease. Moreover, the 

obtained accuracy values are better than those of most of the 

literature methods. It should also be noted that one more 

advantage of the method is that because it uses images as 

inputs, the model can output interpretable results such as Grad-

CAM images that reveal the relationship between frequency 

components and the disease. 

 

 

2. METHODS 

 

2.1 Methods 

 

2.1.1 Deep learning 

Deep Learning is a recent approach in Machine Learning 

that adopts hierarchical learning of features with deeper neural 

network architectures. Network structures in DL looks similar 

to those utilized in traditional ML, however, they differ in the 

way that DL algorithms attempt to learn features by 

themselves automatically while ML methods often require 

proper features given to the network by the practitioner. DL 

started to come forward as a successful alternative to 

traditional ML algorithms only after large-scale datasets 

become publicly available and the hardware required to 

process such kind of data become cheaper and thus more 

accessible. Therefore, recently DL has been frequently used as 

a method to process, analyze and evaluate medical images 

mostly in the form of CNNs [18]. This study also uses a CNN 

model to classify spectrogram images 

 

2.1.2 Convolutional Neural Networks 

Convolutional Neural Networks are DL networks that are 

designed to process multimedia data types (e.g., images) in a 

way that features can be automatically extracted in a 

hierarchical manner through the layers of the network [19]. At 

the core, a CNN model often consists of two modules, a) 

Feature extraction through convolutional and pooling layers b) 

Classification stage via Fully-Connected Network layers 

(FCN) which operates similarly to a traditional Multi-Layer 

Perceptron (MLP). 

In a regular CNN model, there are a number of subsequent 

convolutional and pooling layers each of which is responsible 

to extract features from the previous layer’s output. In this way, 
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early layers of the network extract simple features such as lines 

in an image and feed later layers with these features so that 

subsequent layers can process these simple features and 

extract more complex features like objects in an image. This 

kind of hierarchical learning of features is inspired from 

human cortex in which cells respond to visual elements in a 

similar hierarchical way [20]. Figure 1 depicts a block of 

convolutional layer, non-linear layer and pooling layer. 

 

 
 

Figure 1. A block of convolutional layer, non-linear layer 

and pooling layer 

 

In a convolutional layer, there are typically many filters, W 

= W1, W2...., Wk, each of which is used to convolve the input 

image with a filter to calculate a feature map Xk of the image. 

Therefore, we have as many feature maps as the number of 

filters in the convolutional layer. More formally, each feature 

map is calculated via Eq. (1) where b denotes bias and σ (·) is 

a non-linear transfer function [21]: 

 

𝑋𝑘
𝑙 = 𝜎(𝑊𝑘

𝑙−1 ∗ 𝑋𝑙−1 + 𝑏𝑘
𝑙−1) (1) 

 

A convolutional layer is generally followed by a pooling 

layer in which feature maps are downsampled in accordance 

with the selected pooling function, max, min or avg. The 

function of choice is applied to every group of pixels in the 

feature map and result of the function (e.g., maximum value in 

that group) is selected to represent the group in the new 

downsampled feature map. In an overview, a CNN model 

consists of three different layer types: (1) convolutional layers, 

(2) pooling layers and (3) a FCN [22]. 

Convolutional layer is the first layer that extracts features 

from the input image. The convolution operation uses small 

matrices (e.g., size 3x3) called filters to learn image features 

while keeping spatial information in the image. Pooling layer 

is in general used to reduce the number of parameters. Since it 

keeps the spatial information, it is often known as a 

downsampling operation. The behaviour of downsampling 

operation depends on the function selected. For instance, in 

max pooling, maximum value in the region of interest is 

selected to replace all values in that region. The other types, 

min pooling and avg pooling, do a similar job but they get the 

minimum or the average value instead. The output of pooling 

layer is connected to a FCN that does the classification [23]. 

A FCN is often a MLP with a Softmax output layer. As usual, 

it is trained with the backpropagation algorithm [24]. 

 

2.1.3 VGG-16 architecture 

VGG-16 is a state-of-art 16-layer CNN model developed by 

the Oxford University Visual Geometry Group for the 

ILSVRC-2014 competition. Its major difference is that it has 

a deeper architecture than its predecessors. In VGG-16, 

images are converted to 224x224x3 (RGB) and passed through 

5 blocks of convolutional layers each of which has a filter size 

of 3x3. Each block ends with a max pooling layer in which 

inputs are downsampled by a factor of 2. Then the acquired 

feature set is connected to a FCN that completes the 

classification task. Figure 2 depicts general overview of the 

VGG-16 architecture [25]. 

VGG-16 is an example of family of state-of-art CNN 

models that include other well-known architectures such as 

CIFAR, Google LeNet and AlexNet. Before choosing VGG-

16, we empirically tested other CNN models with other data 

and observed that with some exceptions all models performed 

comparably. VGG-16, however, outperformed the others 

slightly. Therefore, for the sake of simplicity we only show the 

results with VGG-16 in the paper. 

 

2.1.4 Generating spectrogram images from EEG signals 

Short-Time Fourier Transformation (STFT) is a general 

purpose tool that converts a signal in time domain into 

frequency domain. STFT conversion is calculated by 

multiplying the transfer function with a window function. 

Spectrogram is a visual depiction of the signal in the frequency 

domain within a time interval [26]. Therefore, it shows how 

the frequency components of the signal change in time. In this 

study, short segments of the EEG signal (e.g., 5 seconds long) 

is converted into a spectrogram in order that we can have 

frequency components of different time points in one image. 

We used MATLAB software to obtain spectrogram images of 

these short EEG segments. In the default configuration of 

MATLAB’s spectrogram function, it generates Nx=1024 

samples of a signal that consists of a sum of sinusoids. The 

normalized frequencies of the sinusoids are 2π/5 rad/sample 

and 4π/5 rad/sample. 

In the example spectrogram in Figure 3, y-axis represents 

frequency which is normalized between 0 and 1 while x-axis 

stands for time. Colors approaching red show high values in 

that frequency whereas colors close to blue are used to show 

low intensity values. Therefore, in the example spectrogram, 

it is observed that low frequency components in the signal are 

more intense than high frequency components at most of the 

time segments. High frequency components emerge at high 

values only at few time values and thus mostly depicted with 

different tones of blue color in the example spectrogram. 

 

2.1.5 General architecture of the proposed method 

As mentioned our method does not include any manual 

processing or ad hoc altering of input. Each input, i.e., a set of 

EEG channel data, is passed through a series of 

transformations (segmentation, spectrogram generation and 

CNN evaluation) and finally results in a class value, either SZ 

patient or a healthy control. Figure 4 depicts general overview 

of the process. 

 

 
 

Figure 2. VGG-16 architecture 
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Figure 3. An example spectrogram generated by Matlab software 

 

 
 

Figure 4. Flowchart of the proposed method 

 

 

3. RESULTS 

 

3.1 Material 

 

3.1.1 Dataset A 

The first dataset used in this study is the set of EEG 

recordings that belong to 39 healthy control subjects and 45 

children that have the same kind of schizophrenic disorder. All 

SZ patients in this dataset are approved by the Mental Health 

Research Center (MHRC) experts. None of the patients in this 

dataset has undergone chemical treatment. The eldest of the 

SZ patients is 14 years old and the youngest one is 10 years 

and 8 months old while the eldest and the youngest control 

subject are 13 years 9 months old and 11 years old, 

respectively. The average age in both groups is 12 years and 3 

months [27]. The data is recorded while the subjects are 

comfortable, awake, their eyes being shut and 16 electrodes 

are connected to their head. EEG is recorded in accordance 

with the international 10-20 standard with the electrode 

sequence of O1, O2, P3, P4, Pz, T5, T6, C3, C4, Cz, T3, T4, 

F3, F4, F7 and F8 (See Figure 5). Each EEG recording is 60 

seconds long and recorded with a sampling rate of 128 Hz. 

Therefore, an EEG data for each subject is represented with a 

7680 x 16 matrix. 

3.1.2 Dataset B 

The second dataset utilized in this study contains EEG 

recordings of 14 healthy controls and 14 SZ patients. This data 

is recorded by the Institute of Psychiatry and Neurology in 

Warsaw, Poland from 14 male and 14 female subjects with the 

average ages of 27.3±3.3 ve 28.3±4.1, respectively. The 

subjects keep their eyes shut during the recording that is taken 

with a sampling frequency of 250 Hz for about 12 and 15 

minutes. Each record has 19 channels with the electrode 

sequence of Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, 

T5, P3, Pz, P4, T6, O1 and O2 (See Figure 6) [28]. 

 

 
 

Figure 5. 16 channel electrode setup for Dataset A 
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Figure 6. 19 channel electrode setup for Dataset B 

 

3.2 Experiments  

 

In this study, the proposed method is evaluated against two 

datasets of samples. In the first dataset (A), there are 16-

channel EEG recordings of 39 healthy children and 45 children 

with SZ disease. Each sample is divided into 5-seconds long 

segments each of which is represented with a vector of length 

10240 (128 values per second x 16 channels x 5 seconds). 

These vectors are then converted into spectrograms of size 

224x224. Therefore, we have 1008 images for 84 individuals 

in Dataset A. Figure 7 and 8 show example spectrogram 

images for a healthy control and a SZ patient for Dataset A and 

B, respectively. 

 

 
 

Figure 7. Example spectrogram images from Dataset A for 

(a) healthy control and (b) SZ patient 

 

 
 

Figure 8. Example spectrogram images from Dataset B for 

(a) healthy control and (b) SZ patient 

 

 
(a) 

 
(b) 

 

Figure 9. Accuracy against training time in epochs for (a) 

Dataset A and (b) Dataset B 

 

The data set of spectrogram images is split into train and test 

sets with a ratio of 80% and 20%, respectively. These images 

are fed into VGG-16 CNN model in order to classify each as 

either healthy or SZ patient. The hyper parameters for the 

network are taken as follows: input image size 112x112, 

batch-size 128, 1.0e-4 learning rate and optimizer Adam [29]. 

Through the experiments we observed that 50 epochs of 

training sufficed in order to reach a convergence of the 

network. On average, the network reached an accuracy of 95% 

for the test set. 

In the second dataset, there are 19-channel EEG recordings 

of 28 adults (14 controls and 14 SZ patients). The length of the 

recordings varied between 12 and 15 minutes. Therefore, in 

healthy and SZ groups, the length of the recording is set to 

length of the shortest record in the group. Subsequently, we 

obtained 173 segments for each healthy control and 148 

segments for each SZ patient where length of each segment 

was again 5 seconds. After this point, a total of 4494 

spectrogram images are processed similarly to the ones in 

Dataset A with the same settings and hyper parameters. As a 

result, the network reached an accuracy of 97.4% at 30 epochs. 

Figure 9 shows the change in the accuracy with respect to 

training time in epochs. 

As can be seen in Figure 9, sufficient amount of training is 

important and affects the accuracy of the model significantly. 

Unfortunately, there is no predefined number for the required 

amount of training in the literature and it is in general 

determined empirically for each dataset through the 

experiments. 

 

3.3 Evaluation metrics 

 

 
 

Figure 10. The confusion matrix 
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The experiments of the study are evaluated and results are 

confirmed with a number of well-known and widely-used 

evaluated metrics. The details and interpretations of these 

metrics are explained in other papers [30, 31] and therefore we 

only include basic calculations of these metrics.  

 

3.3.1 Confusion matrix (as shown in Figure 10 above) 

 

3.3.2 Prediction error and accuracy 

 

𝐸𝑅𝑅 =
𝐹𝑃 + 𝐹𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
= 1 − 𝐴𝐶𝐶 (2) 

 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
= 1 − 𝐸𝑅𝑅 (3) 

 

3.3.3 False and true positive rates 

 

𝐹𝑃𝑅 =
𝐹𝑁

𝑁
=

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (4) 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 (5) 

 

3.3.4 Precision, recall, F1 score 

F1-Score is a more capable metric that can evaluate 

performance of a classifier in all aspects in a more balanced 

way than a single FPR or TPR metric. In order to calculate, 

F1-Score, Precision (PRE), also known as TPR or Sensitivity 

(SEN), and Recall metrics should be calculated beforehand. 

Eqns. (6)-(8) show the calculation of F1-score [31]. 

 

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

 

𝑅𝐸𝐶 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 (7) 

 

𝐹1 = 2.
𝑃𝑅𝐸. 𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
 (8) 

 

As an additional widely-used metric, the Specificity (SPC) 

measures how well is the classifier in avoiding 

misclassifications and is ideally equal to 1. 

 

𝑆𝑃𝐶 = 𝑇𝑁𝑅 =
𝑇𝑁

𝑁
=

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (9) 

 

3.3.5 Receiver operator characteristic (ROC) and AUC (area 

under the curve) 

 

 
 

Figure 11. An example ROC curve 

 

The ROC curve is a graphical common metric used in the 

ML literature. It plots TPR (y-axis) against FPR (x-axis) 

values changing with respect to different threshold values used 

by the binary-classifier while discriminating between 0 and 1 

values. The AUC (or AOC - Area of the Curve) value is the 

total area occupied under the curve. It is better when the AUC 

value is high because a high AUC tells that the classifier does 

well with most threshold values while classifying “0” s as “0” 

and “1” s as “1”. Figure 11 shows an example ROC curve. 

 

 

4. DISCUSSION 

 

An ideal classifier should detect diseased patients with a 

high rate while ruling out all healthy controls as non-diseased. 

Therefore, both Precision and Recall metrics of the classifier 

should be high at the same time which eventually results in a 

high F1-score as well. The results of the experiments shown in 

Table 1 and Table 2 show that our proposed method performs 

good at these aspects of the classification task with 95% and 

97% F1-score values for Dataset A and B, respectively. Note 

that the support value in Table 1 and 2 stands for the true 

number of samples for each row. 

The confusion matrices given in Figure 12 clearly show that 

correct classification rate for diseased and non-diseased 

samples is high (>=0.94) while misclassification is very low 

with values close to 0 (<= 0.05) for both datasets. 

 

Table 1. Performance results of the proposed method against 

Dataset A 
 

Dataset A Precision  Recall F1-score Support 

Healthy Control 0.95  0.95  0.95  94 

SZ Patient 0.95  0.95  0.95  108 

 

Accuracy   0.95  202 

Macro avg 0.95  0.95  0.95  202 

Weighted avg 0.95  0.95  0.95  202 

 

Table 2. Performance results of the proposed method against 

Dataset A 
 

Veri Seti B Precision Recall F1-score Support 

Healthy Control 0.97 0.98 0.98 484 

SZ Patient 0.98 0.96 0.97 414 

 

Accuracy  0.97 898 

Macro avg 0.97 0.97 0.97 898 

Weighted avg 0.97 0.97 0.97 898 

 

An obtained high TPR and low FPR for a specific 

configuration does not mean a binary classifier is good at all 

threshold values and therefore may suffer from poor 

performance because of close values produced for “0” s and 

“1” s. However, this is not the case for the proposed method 

since AUC values are obtained as 0.95 and 0.974 for Dataset 

A and B, respectively (see Figure 13). That is, the produced 

values to represent “0” s and “1” s are very close to “0” and 

“1” and thus most of the threshold values suffice to 

discriminate between two. That makes the proposed method a 

robust classifier for most cases. 
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(a) 

 
(b) 

 

Figure 12. The confusion matrices of the proposed method 

for (a) Dataset A and (b) Dataset B 

 

The Dataset A was previously evaluated by Phang et al. [17] 

which reported to reach a classification accuracy of 93.06%. 

Their method was a CNN model that used raw EEG signals as 

input. The method used an ensemble of 1D and 2D CNNs each 

of which classified the given signals by using different sets of 

features like brain connectivity features. The second dataset 

was also evaluated against a CNN model proposed by Oh et al. 

[6]. In their method, raw EEG signals are fed without a 

preprocessing to a CNN directly predicts the class value with 

an accuracy of 98.07%. 

In comparison to these previous literature methods related 

to our work, our method outperforms most of them and 

performs comparably with one study [6]. As to our knowledge, 

due to reasons such as the lack of abundant SZ patient data 

available publicly, most methods measured the performance 

with a single set of data whereas our method is evaluated 

against two separate sets of data (children and adult). This 

clearly proves the robustness of the proposed method for 

different cases. Secondly, our improved performance with 

respect to methods that utilize raw EEG signals may be linked 

to the use of converting EEGs into spectrogram images which 

exhibit frequency information of the signal explicitly.  

 
(a) 

 
(b) 

 

Figure 13. ROC for (a) Dataset A and (b) Dataset B 

 

Furthermore, CNNs are designed to classify images that 

have spatial relations between pixels and mostly rely upon 

these spatial features while classifying an object. In a raw EEG 

signal, only temporal relationships are explicitly available.  

A spectrogram being an image that keeps frequency and 

time information with spatial relationships is thus a more 

suitable input for a CNN model. 

Furthermore, the proposed method in this study is capable 

of producing more human-interpretable outputs. In this 

context, when the spectrogram images for a healthy control 

and a SZ patient shown in Figure 7 and 8 are inspected, it can 

be seen that these spectrograms have differences such as 

different frequency values at different times.  

However, it is hard for a human to generalize these 

differences for all samples in a dataset and formulize them 

quantitatively. In this regard, we attempt to reveal what these 

differences are by using a technique called Activation 

Maximization (AC) [32].  

An AC image is an artificial image synthesized by 

iteratively finding the values that maximize the output of the 

network for a single class. Therefore, it can be thought of an 

ideal input that represents a class. Even though there are clear 

differences in AC images presented in Figure 14 for a healthy 

control and a SZ patient, these images only show that the 

network respond to spectrograms of different classes in a very 

diverse way. 

It is because that the features seen in AC images are 

artificially generated to maximize the filter activation and 

therefore do not necessarily represent real spectrogram images.  
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Figure 14. Activization maximization images for (a) healthy control and (b) SZ patient 

 

 
 

Figure 15. Grad-CAM images obtained from a set of individuals of (a) healthy controls and (b) SZ patients 

 

Table 3. A summary of relevant literature methods that aims to automatically detect SZ patients 

 
Year 

of study 

The study Methods Data Accuracy 

2015 

 

Kim et al. [7] * Obtaining different frequency bands, *Calculation of 

spectral power, * Fast Fourier Transformation, *ROC 

analysis 

90 healthy control  

90 SZ patient 

62.2% 

2015 Dvey-Aharon et al. [9] *Stockwell transformation, * “TFFO” (Time-

Frequency transformation followed by Feature-

Optimization) 

25 healthy control 

50 SZ patient 

Between 

92% and 

93.9% 

2016 Johannesen et al. [11] *Statistical analysis over spectral power, *SVM 

classification 

12 healthy control 

40 SZ patient 

87% 

2016 Santos-Mayo et al. [13] *EEGLAB feature extraction,  *J5 feature extraction,  

*MLP and SVM classification 

31 healthy control 

16 SZ patient 

MLP: 

93.42% 

SVM: 

92.23% 

2017 Thilakvathi B et al. [17] *Hannon entropy, *Spectral entropy, *Information 

entropy  

*higuchi’s fractal dimension, *Kolmogorov complexity 

and approximate entropy, *SVM classification 

23 healthy control 

55 SZ patient 

88.5% 

2019 Aslan and Akın [15] *Wavelet, *Relative Wavelet Energy, * KNN 

classification 

39 healthy control 

45 SZ patient 

 

90% 

2019 Phang et al. [16] CNN 39 healthy control 

45 SZ patient 

 

93.06% 

2019 Shu Lih Oh et al. [6] CNN 14 healthy control 

14 SZ patient 

98.07% 
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Therefore, as a second attempt, we utilized another 

technique called Gradient Weighted Activation Maps (Grad-

CAM) [33] in order to understand what really differs for a 

healthy control and a SZ patient. In a Grad-CAM image, a 

color map is depicted on an input image where colors show the 

relevance of the region in the image with respect to the 

predicted class. Therefore, colors close to red on the image 

means that that region holds important spatial features for the 

predicted class. Figure 15 shows Grad-CAM images of 

different individuals grouped by class. The Grad-CAM images 

belong to the diseased group clearly reveal a pattern that is 

usually colors being centered in the middle of the image 

whereas in healthy control images high intensity colors either 

never appear or appear only at the top and bottom of the image. 

 Please note that the pattern shown in Figure 15 is common 

to other individuals not shown in the figure. Therefore, a few 

results can be inferred out of these images. First and foremost, 

frequency components matter in the discrimination of SZ 

patients and healthy controls. Moreover, the mid-level 

frequency components are the most important ones to 

discriminate SZ patients as almost all samples in this group 

has a similar pattern in the spectrogram region that represent 

mid-level frequency components. 

Table 3 summarizes the relevant literature methods with 

respect the methodology and the accuracy reached. As a result 

of the table, it is clear that the method proposed in this paper 

outperforms all the methods mentioned in the table except one 

study conducted by Oh et al. [6] which has a comparable 

performance with the proposed method. Beyond the improved 

performance tested on two different datasets, the proposed 

method has several advantages over literature methods. Firstly, 

unlike the literature studies that utilize ML methods, it does 

not have a preprocessing stage to manually extract features. 

Furthermore, it does not need to preprocess spectrogram 

images. Secondly, its results are interpretable and reveals 

which frequency components matter for EEG recordings of SZ 

patients. Lastly, it has a simple pipeline, raw EEG signals are 

transformed into spectrograms which are then given to the 

CNN model. 

 

 

5. CONCLUSION 

 

In this study, a method is proposed to automatically 

diagnose SZ patients. The experiments conducted by use of 

two separate datasets prove that the method is capable of 

discriminating healthy controls and SZ patients in a robust and 

accurate way. The accuracy values reached by the method are 

95% and 97% for Dataset A and B, respectively. With these 

results, the proposed method outperforms most of the methods 

in the relevant literature. 

Furthermore, the proposed method reveals that analyzing 

frequency components in an EEG recording is a robust way of 

discriminating the SZ disease described as a brain disorder. 

Particularly, Grad-CAM images show that mid-level 

frequency components of an EEG record of a SZ patient show 

a specific pattern that makes the records separable. The 

method introduced in the paper can be used as a framework for 

CAD studies that attempt to detect certain diseases that are 

considered to have some trace in the EEG recordings. 

The proposed method uses a state-of-art CNN architecture 

called VGG-16. As more CNN models are introduced 

frequently, it is obvious that new models may help improve 

the classification performance of the proposed method. Also, 

it should be noted that low complexity models with fewer 

layers/nodes/parameters with lower computational 

requirements will nonetheless be preferable even though they 

do not come with a performance advantage. 
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