
  

  

Comparison of Classification Models Using Entropy Based Features from Sub-bands of 

EEG 

 

 

Arshpreet Kaur1*, Karan Verma1, Amol P. Bhondekar2, Kumar Shashvat1 

 

 

1 National Institute of Technology, Delhi 110040, India 
2 Central Scientific Instruments Organization, Chandigarh 160030, India 

 

Corresponding Author Email: arshpreet@nitdelhi.ac.in 

 

https://doi.org/10.18280/ts.370214 

  

ABSTRACT 

   

Received: 10 September 2019 

Accepted: 26 January 2020 

 The purpose of this study is to distinguish between different epileptic states automatically 

in an EEG. The work focuses on distinguishing activity of a controlled patient from inter-

ictal and ictal activity and also from each other. Publically available Bonn database is used 

in this study. Seven such cases are considered. For this study three entropy features: 

approximate entropy, sample entropy and fuzzy approximate entropy are extracted from 

frequency sub-bands and are used with six classification algorithms which are Naive Bayes, 

LDA (Linear Discriminant Analysis), QDA(Quadratic Discriminant Analysis) from the 

generative group and RF(Random Forest), GB(Gradient Boosting) and Ada Boost from the 

ensemble group. The performance is evaluated on basis ofClassification accuracy, 

Sensitivity and Specificity.The results obtained direct that LDA as a classifier from the 

generative class and Ada boost from the ensemble group has outperformed other classifiers 

achieving the highest classification accuracies for three cases each respectively. Evaluating 

the results from sub-bands, we find out that D2 (21.7-43.4 Hz) sub-band clearly 

outperformed all the bands. Among the entropies used as features from sub bands, sample 

entropy outperforms the other entropies. From the results obtained it is established that 

frequency features from higher sub-band such as D2 (21.7-43.4 Hz) contain substantial 

information which can be used for identification of epileptic discharges which are however 

missed during visual analysis. This shows the impact automated methods can make in the 

field of identification of ictal and inter-ictal activity. 
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1. INTRODUCTION 

 

Epilepsy is a seizure disorder in which range of severity 

varies with the patient. 9.72% people of 7.2 billion people 

worldwide suffer from epilepsy; out of this 17.14% reside in 

India [1]. Approximately more than a quarter people with this 

disease fall into the category where medication has no effect. 

Epileptic patients are also prone to SUDEP, which is sudden 

unexpected death during epilepsy. The death can occur during 

or post a seizure without any anatomical cause. Thus, making 

timely diagnose of epilepsy is of utmost importance. The time 

a patient spends having a seizure is fringe and is known as the 

ictal interval. This period is usually marked by sensory 

disturbances, loss of consciousness, convulsions, associated 

with abnormal electrical activity in the brain [1]. Patients 

usually get examined in their inter-ictal interval. Epileptiform 

activity present in patients EEG (Electroencephalography) 

post the seizures is referred to as inter-ictal activity. It is the 

time period where there is no clinical sign of epilepsy. 

However, it is not important for the inter-ictal activity to be 

always present and detailed study of patient history is always 

required for neurologist to make diagnosis. EEG is a safe 

technique used for diagnoses and monitoring for the presence 

of epileptiform discharges. The visual interpretation of EEG 

data for identification of epileptiform activity is a difficult task 

and needs a high level of expertise. With an enormous number 

of cases, the time for evaluation by neurologist/epileptologist 

also increases. To identify inter-ictal and ictal activity in EEG 

of a patient through automation has been a topic of interest for 

more than a decade. The goal of current work is to automate 

the process of EEG interpretation and facilitate in labeling of 

inter-ictal and ictal activity in EEG amid of various artifacts. 

The brain waves captured through EEG can be divided into 

five types’ Delta (0-4 Hz), Theta (4-8 Hz), and Alpha (8-13 

Hz), Beta (13-30Hz) and Gamma range (30-60 Hz). The beta 

waves and gamma waves are difficult to interpret visually and 

hence are overlooked by neurologist during visual analysis. 

This works contributes by considering the frequency band of 

higher frequency range and analyzing their contribution. 

Figure 1 shows the dissimilarity between electrical activities 

of controlled, inter- ictal and ictal states of patients taken from 

Bonn database. 

To identify inter-ictal and ictal activity different linear and 

nonlinear parameters have been used along with different 

classifiers [2]. Entropy based parameters are popular among 

researchers as a feature and have been used for this problem 

over time such as in the researches [3-9]. Discriminative 

classifiers too have been the popular choice of researchers 

among which SVM (Support Vector Machine), ANN 

(Artificial Neural network) and ELM (Extreme Learning 

Machine) have been used most commonly with linear as well 

as nonlinear methods such as in the researches [10-13]. 

Chandaka et al. [10] used correlation a non-linear technique as 

a feature with MLPNN (Multilayer perceptron neural network)  
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Figure 1. EEG of all groups 

 

and SVM as classifier. They reported classification accuracy 

of 93.2% and 95.96% of for case A-E respectively. Rivero et 

al. [11] used relative wavelet energy from the five sub-bands 

decomposed using DWT (Discrete Wavelet Transform), and 

using ANN as a classifier. The classification accuracy of 

95.52% was achieved for case A-E. Song et al. [12] explored 

Sample entropy as a feature changing the value of parameter 

‘m’ (embedding dimension) from one to three; and value of ‘r’ 

(tolerance window) from 10%- 50% of standard deviation of 

data with increase of 10% at each step which is vector 

comparison distance. The value of N (Data Points) were also 

varied for which the chosen were 256, 512, 1024, 2048 and 

4097. Extreme learning machines and BPNN were used as 

classifiers. Average learning accuracy of 95.67% with average 

learning time of only 0.25seconds was achieved using ELM 

(Extreme Learning Machines) with parameters m=3, r=0.1 

times standard deviation and N=1024. The paper compared 

between the sets A, D and E (A-D-E). 

In the study [13], Multilayer perceptron neural network 

based classification model was used to classify between five 

different cases. The cases considered were ABCD-E, A-E, 

AB-CDE, AB-CD-E and A-D-E. Discrete Wavelet Transform 

(DWT) was used to decompose the signal into five respective 

sub bands. By implementation of k means wavelet coefficients 

were clustered for each frequency sub-band and probability 

distributions were computed. The classification accuracies of 

99.6%, 100%, 98.8%, 95.6% and 96.67% respectively were 

achieved for the cases specified above in order.  

Chen et al. [14] compared ELM and SVM using three 

nonlinear features approximate entropy, Sample Entropy and 

RQA. These were extracted from the wavelet decomposed 

sub-bands. The preeminent performance was achieved using 

Sample entropy and ELM achieving utmost accuracy of 92.6%. 

The study by Kumar et al. [15] depicts the potential of sub-

bands extracted using wavelet transform, (A1-A5) and (D1-

D5). The study used approximate entropy with values of 

parameters r and m being 0.2 times standard deviation and 0.2 

respectively. Performance of Artificial neural network and 

support vector machine was compared when fed with each sub 

band as a feature. A total of six cases were considered in this 

work; which were case 1(A-E), case 2(B-E), case 3(C-E), case 

4(D-E), case 5 (ACD-E) and case 6 (BCD-E). The highest 

classification accuracy of 100% was achieved using 

approximate entropy as a feature from sub band D1 (43.4-86.8 

Hz) and FBNN for the case (A-E) and case(C-E) respectively. 

Kaya et al. (2014) [16] implemented different classifiers such 

as SVM, ANN, Naive Bayes and others were used with the 

1D-LBP approach for six cases. For case (A-E) and case (A-

D) it achieved highest accuracy of 99.50% with FT and Naïve 

Bayes respectively. For all other cases which were D-E, E-CD, 

ABCD-E and A-D-E it achieved top classification accuracy of 

95.5%, 97%, 93% and 95.67% respectively with Bayes 

Classifier. The results showed that Bayes classifier had the 

potential for classifying between different groups. 

The proposed method by Xiang et al. [17] used fuzzy 

approximate entropy with dimension of phase space as two, i.e. 

(m=2) and similarity tolerance (r=0.25 times standard 

deviation). This is calculated from sub-bands using discrete 

wavelet transform and classified using SVM-RBF has shown 

100% accuracy. Tawfik et al. [18] used weighted Per- 

mutation Entropy (WPE) from different sub bands of EEG 

signal extracted using DWT were fed into SVM for 

classification. For the two cases considered, A-B-C-D-E and 

A-D-E the author reported highest accuracies of 97.5% and 

93.75% respectively. Supriya et al. [19] edge weight method 

using visibility graph in the complex network was 

implemented. Features including the average weighted degree 

of the complex network were inspected and fed into support 

vector machine (SVM). For the considered case (A-E), 100% 

of classification accuracy was achieved. 

The aim of the work is to find the combination of entropy 

based feature and classifier which has the potential to 

distinguish between various considerations of inter ictal and 

ictal activity as well as inter-ictal and controlled activity. The 

group division and cases considered for this work are 

described in Table 2. For this work firstly, three entropies 

(approximate entropy, sample entropy and fuzzy approximate 

entropy) used in this work, which are explained in section 2.2 

are extracted from five sub-bands specified in discussed in 

section 2.2. The work consists of two scenarios, for the first 

we take each entropy feature extracted from all five sub-bands 

considered as a feature set and feed into all six classifiers. For 

second scenario we used all three entropies extracted from five 

sub-bands; but each sub-band was used individually as a 

feature set for all six classifiers. This was done to find out if 

entropy extracted feature extracted from a single sub-band has 

potential to distinguish between different groups. The results 

obtained by first scenario are shown in Table 3-7 and for 

second scenario are shown in Table 8-10. Also, this work 

focuses to find if it is possible to successfully classify between 

different cases using a single sub band; considering this each 

entropy based feature which is extracted out of five sub-bands 
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is used as only feature for all six classifiers. With the proposed 

method the D2 sub-band achieved highest classification 

accuracy of 100% for case 4(C-E). Also this sub band showed 

potential as important frequency range for feature extraction. 

The results obtained by using entropy extracted from each sub-

band as only feature are discussed in Table 8-10. Comparison 

with existing methods is also established in Table 12. 

 

 

2. CLINICAL DATA AND METHODOLOGY 
 

2.1 EEG database and group division 

 

Table 1. Details of data used 

 
Total Data Folders 5 

Controlled Group 2(A,B) 

Inter-Ictal 2(C,D) 

Ictal 1(E) 

Time period of Signals 23.6 seconds 

Sampling Frequency of Signal 173.6 Hz 

Total no. of Data Points in each Signal 4097 

 

Table 2. Division of groups for classification 

 
Group 1: Healthy- Ictal 

Case 1 A-E 

Case 2 B-E 

Case 3 AB-E 

Group 2: Inter- Ictal and Ictal 

Case 4 C-E 

Case 5 D-E 

Case 6 CD- E 

Group 3: Healthy and Inter- Ictal 

Case 7 AB-CD 

 

 
 

Figure 2. Methodology 

 

Data is taken from the online source, University of Bonn 

[20]. The data available is already divided into five folders and 

three basic groups i.e. Controlled, Epileptic in ictal period and 

Epileptic in inter-ictal period. Each folder has 100 files, taken 

from 5 healthy and 5 epileptic subjects. Folder A and B contain 

data from healthy patients collected using surface electrodes. 

C and D have inter-ictal data and folder E has ictal data 

collected using the intracranial method. Table 1 hold detail 

about the data. 

Figure 2 depicts the work flow for the current work. 

The first step is to divide the data into groups as per the aim 

of the work. Table 2 holds the summary of the division. 

 

2.2 Feature extraction 

 

The brain waves are divided into five waves which are Delta 

(0-4 Hz), Theta (4-8 Hz), and Alpha (8-13 Hz), Beta (13-

30Hz) and Gamma range (30-60 Hz). Different features linear 

and non-linear are extracted from these waves and are most 

generally used for seizure classification [21, 22]. In this work 

to understand the contribution of different frequency sub-

bands and apprehend the role of higher frequency sub-bands 

in differentiating epileptiform discharges discrete wavelet 

transform was applied to the signal. The sampling frequency 

of the data is 173.6 Hz. DWT divides the complete frequency 

into different levels where each level of discrete wavelet 

transform corresponds to a specific sub-band. For this work 

level five decomposition is implemented using db4 wavelet. 

The level 5 was chosen as this decomposition allows to divide 

the sub-bands in frequency ranges closest to the required 

ranges of delta, theta, alpha, beta and gamma. Moreover, after 

the selected frequency range there is more possible of 

occurrence of the artefacts such as 50Hz (power line artefact). 

The decomposition divides the data into following 

frequency: A5 (0-2.7125), D5 (2.71-5.4), D4 (5.4-10.8), D3 

(10.85-21.7) and D2 (21.7-43.4). Figure 3 diagrammatically 

shows the process.  

 

 
 

Figure 3. Level 5 decomposition using DWT 

 

From these sub-bands three nonlinear entropy based 

features approximate entropy [23], sample entropy [24] and 

fuzzy approximate entropy [25] were extracted. Since the data 

is of 23.6seconds, we extract the features using complete data 

length. The entropy based features are Here N is the number 

of data points which is 4097 for all the three entropy 

parameters. In this work for all entropy features the value of m 

(embedding dimensions) is taken as 2 is and r (vector 

comparison distance) is 0.3 times the standard deviation of the 

signal. 
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DWT formula: 

 

𝑓(𝑥)

=
1

√𝑀
∑ 𝑊𝜙(𝑗0, 𝑘)𝜙𝑗0,𝑘(𝑥)

𝑘

+
1

√𝑀
∑ ∑ 𝑊𝜑(𝑗, 𝑘)𝜑𝑗,𝑘

𝑘

∞

𝑗−𝑗0

(𝑥)                       

(1) 

 

where, j0 is an arbitrary starting scale  

 

𝑊𝜙(𝑗0, 𝑘) =
1

√𝑀
∑ 𝑓(𝑥)

𝑀−1

𝑥=0

�̈�𝑗0,𝑘
(𝑥) (2) 

 

𝑊𝜙(𝑗0, 𝑘)  is called the approximation or scaling 

coefficients  

 

𝑊𝜓 =
1

√𝑀
∑ 𝑓(𝑥)

𝑀−1

𝑥=0

𝜓𝑗,�̆�(𝑥) (3) 

 

𝑊𝜓 is called the detail or wavelet coefficients  

 

2.2.1 Approximate entropy 

It is the likelihood that runs of patterns that are close remain 

close on next incremental comparisons. It is a measure of 

complexity that is applicable to noisy, medium-sized datasets. 

A high value of Approximate Entropy indicates random and 

unpredictable variation, whereas a low value of Approximate 

Entropy indicates regularity and predictability in a time series.  

 

𝐴𝐸(𝑚, 𝑟, 𝑁) =
1

𝑁 − 𝑚
∑ 𝑙𝑛

𝑁−𝑚

𝑖=1

𝑛𝑖
𝑚

𝑛𝑖
𝑚+1 (4) 

 

2.2.2 Sample entropy 

Sample Entropy does not amount a self-match, thus 

eradicating the prejudice in the direction of regularity. Sample 

Entropy has been suggested to be independent of data length 

and demonstrates relative consistency. It is less sensitive to 

noise. 

 

𝑆𝐸(𝑚, 𝑟, 𝑁) = 𝑙𝑛
∑ 𝑛𝑖

𝑚𝑁−𝑚
𝑖=1

∑ 𝑛𝑖
𝑚+1𝑁−𝑚

𝑖=1

 (5) 

 

2.2.3 Fuzzy approximate entropy 

In a real world scenario it is difficult to categorize an input 

to a specific class. Fuzzy approximate entropy works on this 

concept. With the concept of Lotfi, Zahed theory membership 

degree is introduced by fuzzy function u_z (x) having a real 

value between the range [0, 1]. 

 

For N data points u (i) =u (1), u (2), u (3)…..u (N) for 

finding the fuzzy approximate entropy 

 

𝑋𝑖
𝑚 = {𝑢(𝑖), 𝑢(𝑖 + 1), … … 𝑢(𝑖 + 𝑚 − 1} − 𝑢0(𝑖) 

for i=1,2,3…N-m+1 
(6) 

 

𝑢0(𝑖)is baseline value: 

𝑢0(𝑖) =
1

𝑚
∑ 𝑢(𝑖 + 𝑗)

𝑚−1

𝑗=0

 (7) 

 

Distance 𝑑𝑖𝑗
𝑚 between two vectors 𝑋𝑖

𝑚and𝑋𝑗
𝑚 is defined as: 

 

𝑑𝑖𝑗
𝑚 = 𝑑[𝑋𝑖

𝑚, 𝑋𝑗
𝑚]=𝑚𝑎𝑥𝑘€(0,𝑚−1)|u(i+k)-𝑢0(𝑖) −

(𝑢(𝑗 + 𝑘) − 𝑢0(𝑗)|, j≠I 
(8) 

 

For a given r, the similarity degree 𝐷𝑖𝑗
𝑚  between 

𝑋𝑖
𝑚 𝑎𝑛𝑑 𝑋𝑗

𝑚 is determined by a fuzzy membership function u 

(𝑑𝑖𝑗
𝑚, 𝑟). 

 

𝐷𝑖𝑗
𝑚 = u(𝑑𝑖𝑗

𝑚, 𝑟) (9) 

 

u(𝑑𝑖𝑗
𝑚, 𝑟) =  exp (

−𝑑𝑖𝑗
2

𝑟⁄ ) (10) 

 

𝐶𝑟
𝑚(𝑖) =

1

𝑁 − 𝑚 + 1
∑ 𝐷𝑖𝑗

𝑚

𝑁−𝑚+1

𝑗=1,𝑗≠𝑖

 (11) 

 

ᵩ𝑚(𝑟) =
1

𝑁 − 𝑚 + 1
∑ ln [𝐶𝑟

𝑚(𝑖)]

𝑁−𝑚+1

𝑖=1

 (12) 

 

FAE (m,r,N) =ᵩ𝑚(𝑟) − ᵩ𝑚+1(r) (13) 

 

2.3 Classification 

 

Two different categories of classifiers have been used in this 

work, generative class and ensemble class. The models are 

LDA, QDA, Naive byes, Random Forest, Ada boost and 

Gradient Boosting. For random forest, Ada boost and gradient 

boosting; 10 trees are used for this work. For gradient boosting 

algorithm the value of alpha which is the regularization 

coefficient is set to 1. 

 

2.4 Data division 

 

The data is divided into training (70%) and testing (30%). 

Performance parameters of the testing data are used for the 

comparison and evaluation.  

 

2.5 Performance evaluation 

 

Parameters which will evaluate the performance such as 

Accuracy, Sensitivity, Specificity, and Recall are calculated. 

 

2.5.1 Accuracy 

Proportion of people correctly identified into their actual 

groups i.e. in case1 (A-E) the accuracy will be high if all 

samples are allocated to their actual group. 

 

2.5.2 Specificity 

It is the measures the percentage of genuine positive cases 

that are suitably recognized as such. For example in case1 A-

E, specificity will be high if number of signals correctly 

identified as ictal; i.e. correctly classified in group E will be 

high.  

 

2.5.3 Sensitivity 

Specificity events the percentage of actual negatives that are 

fittingly recognized as such for example in the case of B- E; 

the sensitivity will be high if the proportion of people 

identified as a controlled group i.e. with no epileptic discharge 

will be high. 
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3. RESULTS 

 

EEG signals from different sets were decomposed into sub-

bands A5 (0-2.71 Hz), D5 (2.71-5.4 Hz), D4 (5.4-10.8 Hz), D3 

(10.85-21.7 Hz) and D2 (21.7-43.4 Hz). From these 

decomposed sub-bands approximate entropy, Sample entropy 

and fuzzy approximate entropy were computed. Six different 

classifiers LDA, QDA, Naive Bayes, Random Forest, Ada 

Boost, and Gradient Boosting are used in this study. The 

following table summarizes the results obtained when each 

type of entropy was extracted from five specified sub bands 

and used as set of features for a classifier; Table 3-7 hold the 

results for this scenario. 

For Case 1 (A-E) the highest classification accuracy of 

96.67% has been achieved by using a combination of Fuzzy 

Approximate Entropy and Naive Bayes as well as with Sample 

Entropy and Random Forest. In Case 2 the highest accuracy of 

96.67% is achieved by using LDA as classifier and sample 

entropy or approximate Entropy as a feature. Also, for case 2 

the ensemble models achieved the same result with respect to 

classification accuracy; when Random forest and Adaboost are 

used as classifiers with the combination of approximate 

entropy or sample Entropy as feature from all sub-bands.  

 

Table 3. Results by generative models on case 1, case2, case 4 and case 5 

 
 A-E 

 LDA QDA Naive Bayes 

 SE AE FAE SE AE FAE SE AE FAE 

AC (%) 90 90 85 95 91.66 95 93.33 93.33 96.67 

SP (%) 96.15 92.05 95.65 96.55 96.29 100 96.42 100 100 

SN (%) 85.29 87.5 78.37 93.54 87.87 90.90 90.62 88.23 93.75 

 B-E 

 LDA QDA Naïve Bayes 

 SE AE FAE SE AE FAE SE AE FAE 

AC (%) 96.66 96.67 91.66 88.33 93.33 91.66 90 91.67 81.66 

SP (%) 100 100 93.10 87.09 100 93.10 96.15 100 73.17 

SN (%) 93.75 93.75 90.32 89.65 88.23 90.32 85.29 85.71 100 

 C-E 

 LDA QDA Naïve Bayes 

 SE AE FAE SE AE FAE SE AE FAE 

AC (%) 96.66 96.67 88.33 98.33 100 91.67 98.33 95 91.67 

SP (%) 100 100 100 96.77 100 100 96.77 100 100 

SN (%) 93.75 93.75 81.05 100 100 85.71 100 90.90 85.71 

 D-E 

 LDA QDA Naïve Bayes 

 SE AE FAE SE AE FAE SE AE FAE 

AC (%) 80 83.33 73.3 86.66 81.66 86.67 73.33 71.66 68.33 

SP (%) 84.61 85.71 93.75 92.30 85.18 92.30 81.81 84.21 64.86 

SN (%) 76.47 81.25 65.90 82.35 78.78 82.35 68.42 65.85 73.91 

 

Table 4. Results by ensemble models on case 1, case2, case 4 and case 5 

 
 A-E 

 Random Forest Gradient Boosting Ada Boost 

 SE AE FAE SE AE FAE SE AE FAE 

AC (%) 96.6 95 95 95 95 95 91.679 95 93.33 

SP (%) 93.75 93.54 93.54 96.55 93.54 96.55 87.87 96.5 96.42 

SN (%) 100 93.54 96.52 93.54 96.55 93.54 96.29 93.54 90.62 

 B-E 

 Random Forest Gradient Boosting Ada Boost 

 SE AE FAE SE AE FAE SE AE FAE 

AC (%) 96.67 91.66 88.33 86.66 93.33 83.33 95 96.66 95 

SP (%) 100 100 87.09 95.83 100 88.46 96.55 100 93.54 

SN (%) 93.75 85.71 89.65 80.55 88.23 79.41 93.54 93.75 96.55 

 C-E 

 Random Forest Gradient Boosting Ada Boost 

 SE AE FAE SE AE FAE SE AE FAE 

AC (%) 98.33 95 88.33 96.66 100 85 100 98.33 90 

SP (%) 100 100 96 100 100 88.88 100 100 96.154 

SN (%) 96.77 90.90 82.57 93.75 100 81.81 100 96.77 85.29 

  D-E 

 Random Forest Gradient Boosting Ada Boost 

 SE AE FAE SE AE FAE SE AE FAE 

AC (%) 86.66 83.33 81.66 86.66 76.66 83.33 86.66 85 81.66 

SP (%) 86.66 83.33 77.30 95.83 80.76 85.71 82.35 83.87 85.18 

SN (%) 86.66 83.33 75.67 80.55 73.52 81.25 92.30 86.20 78.75 
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In Case 4, 100% accuracy, specificity and sensitivity were 

achieved through classification with approximate entropy (AE) 

and two classifiers (Naive Bayes and QDA). In Case 5, 86.67% 

accuracy was achieved through sample entropy (SE), 

AdaBoost, and QDA. In Case 3, the highest accuracy (93.3%) 

was achieved through the combination of fuzzy approximate 

entropy (FAE) and Naive Bayes. In Case 6, the highest 

accuracy (83.3%) was achieved through the combination of 

approximate entropy and linear discriminant analysis (LDA), 

and that of with sample approximate entropy (SAE) and LDA. 

In Case 7, the highest accuracy (80 %) was achieved using 

FAE+LDA. Furthermore, different types of entropies from 

each sub-band were taken as a singular feature of the six 

classifiers. Tables 8-10 list the results of the sub-bands with 

substantial performance. In Case 1 (A-E), the highest accuracy 

(91.66%) was achieved using FAE and random forest (RF) for 

D2, followed by 85% with AdaBoost+AE for D3, and 80% 

with SE+LDA for D4. In Case 2, the highest accuracy (93.33%) 

was achieved by AdaBoost+SAE and AE+RF for D2, 

followed by 73.3% with RF+AE for A5.  

Cases 4 and 5 achieved similar accuracy in all sub-bands. In 

Case 4, 100% accuracy, specificity and sensitivity were 

achieved with RF+SE or RF+AE for D2; 85% accuracy was 

achieved with SE+LDA, SE+QDA, and SE+ Naïve Bayes for 

D3. In Case 5, 86.67% accuracy was achieved with 

AdaBoost+SE and with AdaBoost+AE for D2.

 

Table 5. Results by all models on case 3 

 
Case 3 (AB-E) 

 Approximate Entropy Sample Entropy Fuzzy Approximate Entropy 

 AC (%) SN (%) SP (%) AC (%) SN (%) SP (%) AC (%) SN (%) SP (%) 

LDA 93.33 90.91 100 92.22 89.55 100 88.89 85.71 100 

QDA 93.33 93.55 92.86 93.33 93.55 92.86 93.33 93.55 92.86 

Naive Bayes 90 91.80 86.21 90 91.80 86.21 96.67 96.72 96.55 

Adaboost 91.11 91.94 89.29 92.22 94.92 87.10 90 89.23 92 

RF  82.22 69.44 90.74 93.33 92.86 93.55 76.67 59.57 95.35 

Gradient Boosting 83.33 92.45 70.27 93.33 93.55 92.86 77.78 93.48 61.36 

 

Table 6. Results by all models on case 6 

 
Case 6 (CD-E) 

 Approximate Entropy Sample Entropy Fuzzy Approximate Entropy 

 AC (%) SN (%) SP (%) AC (%) SN (%) SP (%) AC (%) SN (%) SP (%) 

LDA 83.33 86.89 75.86 83.33 86.89 75.86 75.56 77.941 68.18 

QDA 81.11 89.09 68.57 81.11 89.09 68.57 81.11 89.091 68.57 

Naive Bayes 75.56 82.76 62.5 75.56 82.76 62.5 70 77.966 54.84 

Adaboost 78.89 100 61.22 78.89 81.54 72 78.89 81.538 72 

RF  78.89 61.70 97.67 80 63.04 97.73 80 66.667 88.89 

Gradient Boosting 82.22 89.29 70.59 82.22 89.29 70.59 78.89 85.97 66.67 

 

Table 7. Results by all models on case 7 

 
Case 7 (AB-CD) 

 Apen Sample Entropy Fuzzy Approximate Entropy 

 AC (%) SN (%) SP (%) AC (%) SN (%) SP (%) AC (%) SN (%) SP (%) 

LDA 55 54.69 55.36 60 58.82 61.54 80 92.86 73.08 

QDA 69.17 64.94 76.74 73.33 70.59 76.92 64.17 70.73 60.76 

Naive Bayes 55 53.26 60.71 55.83 54.12 60 70.83 73.59 68.66 

Adaboost 69.17 69.49 68.85 70.83 70.49 71.19 60.83 65.85 58.23 

RF  79.17 73.97 87.23 75 72.06 78.85 66.67 61.91 77.78 

Gradient  67.5 69.09 66.15 76.67 79.63 74.24 64.17 68.09 61.64 

 

Table 8. Results of generative models with sub bands by sample entropy and approximate entropy or case 1, 2, 4 and 5 

 
 A-E 

 LDA QDA Naive Bayes 

 Sample 

Entropy 

Approximate  

Entropy 

Sample  

Entropy 

Approximate 

Entropy 

Sample  

Entropy 

Approximate  

Entropy 

 CA SN SP CA SN SP CA SN SP CA SN SP CA SN SP CA SN SP 

D3 85 76.92 100 83.3 75 100 83.33 76.32 95.46 83.33 76.32 95.46 83.33 76.32 95.46 83.33 76.32 95.46 
D4 80 75 87.5 73.3 69.4 79.1 80 76.5 84.6 70 66.7 75 80 76.5 84.6 70 66.7 75 

 C-E 

 LDA QDA Naive Bayes 

 Sample 

Entropy 

Approximate  

Entropy 

Sample  

Entropy 

Approximate 

Entropy 

Sample  

Entropy 

Approximate  

Entropy 

 CA SN SP CA SN SP CA SN SP CA SN SP CA SN SP CA SN SP 

D3 85 76.9 100 81.7 73.2 100 85 76.9 100 83.3 75 100 85 76.9 100 83.3 75 100 

A5 81.7 77.1 88 66.7 66.7 66.7 76.7 71.1 86.4 66.7 61.9 77.8 76.7 71.1 86.4 66.7 61.9 77.8 
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Table 9. Results of ensemble models with sub bands by sample entropy and approximate entropy or case 1, 2, 4 and 5 

 
 Random Forest 

 A-E 

 Approximate Sample Fuzzy 

 CA SN SP CA SN SP CA SN SP 

D2 85 78.38 95.65 85 76.92 100 91.66 93.10 90.32 

 Adaboost 

D2 85 100 76.92 86.67 95.83 80.56 85 76.92 100 

D3 85 76.92 100 85 76.92 100 61.67 56.60 100 

 B-E 

 Random Forest 

D2 93.33 88.23 100 86.66 82.35 92.30 81.66 75.67 91.30 

Adaboost 

D2 93.33 88.24 100 93.33 88.24 100 86.67 78.95 100 

A5 73.33 70.59 76.92 66.67 63.16 72.73 68.33 64.10 76.19 

 C-E 

 Random Forest 

D2 100 100 100 100 100 100 85 83.87 86.20 

Adaboost 

D-E 

D2 86.67 100 78.95 86.67 100 78.95 73.33 93.75 65.91 

 

Table 10. Results of ensemble models with sub bands by fuzzy approximate entropy or case 1, 2, 4 and 5 

 
 Fuzzy Approximate Entropy 

 D-E 

 LDA QDA Naive Bayes 

 CA SN SP CA SN SP CA SN SP 

A5 73.33 69.44 79.17 61.67 57.78 73.33 61.67 57.78 73.33 

 

 

4. DISCUSSION 

 

EEG sub bands, A5 (0-2.7 Hz), D5 (2.71-5.4 Hz), D4 (5.4-

10.8 Hz), D3 (10.85-21.7 Hz) and D2 (21.7-43.4 Hz) were 

considered for this work. The data was divided into three 

groups and seven cases. Three entropy features which are 

approximate entropy, sample entropy and Fuzzy approximate 

entropy were calculated for all five sub-bands for each set for 

each sample. From analysis it has been observed that subband 

D2 plays important part in identification of inter-ictal and ictal 

discharges. Each set had a total of a hundred samples. The 

below given line plots with depict how approximate entropy 

and sample entropy for various samples of set C and set D vary 

for sub band D2.  

In Figure 4, Figure 5, Figure 6 and Figure 7 the x-axis 

denotes the sample number and y-axis denotes the value of 

corresponding approximate entropy or sample entropy of the 

sub band D2 of specified set. From Figure 4 and Figure 5 it is 

evident that for sub-band D2 of set C has an evidently higher 

approximate entropy and sample entropy of sub-band E. Both 

the entropy features show a very similar trend when compared 

for set C and set D. In Figure 6 comparison of approximate 

entropy of sub-band D2 for set D and Set E is done while 

Figure 7 compares both the sets on sample entropy of samples 

obtained from sub band D2 .From these it is evaluated that 

both parameters i.e. approximate entropy and sample entropy 

of sub band set D lie in the lower spectrum compared from set 

E. 

 

 
 

Figure 4. Line plots of Approximate entropy for case 4 

 

 
 

Figure 5. Line plots of Sample Entropy for case 4 
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Figure 6. Line plots of Approximate Entropy for case 5 

 

 
 

Figure 7. Line plots of sample entropy for case 5 

 

The results obtained established that D2 sub-band has 

outperformed other bands as a singular feature with different 

classifiers. Table 11 summarizes the result obtained by D2 

sub-band. 

 

Table 11. Performance analysis of D2 sub band 

 
D2 sub band 

Case CA (%) Feature Classifier 

A-E 91.66 FAE RF 

B-E 93.3 AE RF 

B-E 93.3 AE ADABOOST 

B-E 93.3 SE ADABOOST 

C-E 100 AE RF 

C-E 100 SE RF 

D-E 86.67 AE ADABOOST 

D-E 86.67 SE ADABOOST 

 

To establish a fair comparison this work is compared with 

other works done on similar lines. Table 12 holds comparison 

of current work with the previous work done by researchers. 

Kumar et al. [15] used approximate Entropy with artificial 

neural network and support vector machine; both of which are 

discriminative classifiers. For the work case 1, case 2, case 4 

and case 5 considered in this study, were also evaluated along 

with some others. Comparing the results, we find that for case 

2 using approximate entropy with LDA and Ada boost 

algorithm we achieved highest accuracy of 96.67% which is 

an improvement from 92.5% by the previous research. Xiang 

et al. [17] fuzzy approximate entropy and sample entropy were 

used with support vector machine for case 4 and case 5 

considered in this study. Though, with Fuzzy approximate 

entropy and SVM 100% classification accuracy was achieved 

in both the cases; but with Sample entropy the accuracy 

yielded were 88.6% and 88.5%. In this study improvement 

with use of sample entropy has been achieved by its 

combination with all the other classifiers, where with Ada 

boost it achieved 100% accuracy and with LDA and Gradient 

Boosting it achieved 96.6% and with QDA and NB it achieved 

98.33%. The improvement was also seen in parameters of 

specificity and sensitivity where the highest of 100% for both 

parameters was reached by the combination of this parameter 

with Ada Boost. Conventional features such a mean absolute 

value, standard deviation and others [26] were extracted from 

sub bands D3-D5 and A5 and classifiers SVM and Naïve 

Bayes was used in this work for classification. Case 4 used in 

this study was also considered by them; the researchers 

achieved 99.5% classification accuracy with 12 features; while, 

Kumar et al. [25] achieved highest accuracy of 99.6% for the 

same case with fuzzy entropy using all five sub bands. 

However, this study achieved 100% in all three statistical 

parameters with single sub band D2 with approximate entropy 

and random forest as well as with sample entropy and random 

forest. 

 

Table 12. Comparison with existing work  

 
Researcher 

and Year 

Signal 

Used 

Features 

Extracted 

Classification Data     Cases Considered          CA% 

Kannathal et 

al. 

2005 [7] 

- Entropy measures Neuro-fuzzy inference 

system 

Bonn 

Data 

  A-E   92.25  

Umut Orhan 

et al. 

2011 [13] 

DWT Clustered K means 

Coefficients of all sub 

bands 

MLPNN Bonn 

Data 

ABCD-E 99.6 

A-E 100 

AB-CDE 98.8 

AB-CD-E 95.6 

A-D-E 96.67 
 

Yatindra 

Kumar et al. 

10 August 

2014 

Discrete 

wavelet 

transforms 

(DWT) 

Approximate entropy 

(ApEn)· 

Artificial neural network 

(ANN)·Support vector 

machine (SVM) 

Bonn 

Data 

 

5-fold scheme 
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[15]  holdout method 

 

A–E 100% 

B–E 92.5 

C–E 100 

D–E 95 

BCD–E 94 

ABCD–E 94 

Yatindra 

Kumar et al. 

20 January 

2014 

[25] 

Discrete 

wavelet 

transforms 

(DWT) 

Fuzzy approximate 

entropy 

Support vector machine 

(SVM) 

Bonn 

Data 

A–E 100 

B–E 100 

C–E 99.6 

D–E 95.85 

 

ACD–E 98.15 

BCD–E 98.15 

ABCD–E 97.38 
 

Jie Xiang et 

al. 

10 January 

2015 

[17] 

Complete 

Signal 

Fuzzy approximate 

entropy 

Sample approximate 

entropy 

SVM Bonn 

Data 

 

CHB-

MIT 

D-E 

 Fuzzy_E Sample_E 

CA 100 87.6 

SP 100 90.79 

SN 100 87.5 

 

C-E 

 Fuzzy_E Sampke_E 

CA 100 88.5 

SP 100 90.36 

SN 100 87.63 
 

Current 

Work 

DWT Sample Entropy, Fuzzy 

Approximate Entropy, 

Sample Entropy 

Naïve Bayes, LDA, QDA, 

Ada Boost, Gradient 

Boost, Random Forest 

Bonn 

Data 

 

Case CA(%) Technique 

A-E 96.67 FAE+NB,S

E +RF 

B-E 96.67 Apen+ 

LDA,Adab

oost, 

Sample+L

DA,RF 

C-E 100 Apen+QD

A,GB 

D-E 86.66 Sampen+A

daBoos, 

QDA 

AB-E 93.33 Apen+LD

A,QDA 

CD-E 96.66 FAE+NB 

AB-CD 80 FAE+LDA 
 

 

 

5. CONCLUSION 

 

Among the entropies used as features from sub bands, 

sample entropy outperforms the other entropies. It achieved 

highest accuracy with combination with Random forest for 

case 1. With LDA and Random forest for case 2. For case 4 

and case 5 with Ada boost as well as Gradient Boosting; and 

only with LDA for case 6. LDA has outperformed all the 

classifiers achieving the highest accuracy for five out of seven 

cases which are case 2, case 3, case 4, case 6 and case 7. For 

case 2, case 3 and case 6 it provided the highest accuracy with 

approximate entropy while for case 4 and case 7 it was the 

combination of sample and fuzzy approximate entropy. Naive 

Bayes achieved the highest accuracy in consideration for case1 

with fuzzy approximate entropy. Among the ensemble 

methods Ada boost has achieved the highest accuracy for case 

2 with approximate entropy and case 4, case 5 with Sample 

Entropy. Gradient boosting achieved the highest accuracy for 

case 4 with Approximate Entropy. The D2 sub band has 

outperformed all the other sub band; it achieved accuracy as 

high as achieved using all the sub bands together for case 3 

and case 4 which was 86.66% and 100% respectively. Ada 

boost has achieved the highest accuracy for case 2 and case 5 

with sample and approximate entropy. While Random forest 

has achieved with case 4 and case 2 with sample and 

approximate entropy. 
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NOMENCLATURE 

 

SE Sample Entropy 

AE Approximate Entropy 

FAE Fuzzy Approximate Entropy 

LDA Linear Discriminant Analysis 
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RF Random forest 

QDA Quadratic Discriminant Analysis 

NB Naive Bayes 

SVM Support vector Machine 

ELM Extreme Learning Machine 

SP Specificity 

SN Sensitivity 

AC Accuracy 
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