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Bilateral filtering is a well-known tool to denoise or smooth one-dimensional (1D) signals, 

two-dimensional (2D) images, and three-dimensional (3D) models. The bilateral weights 

help preserve the edges or features more effectively than unilateral weights. However, it is 

immensely difficult to configure the scale parameters of the convolutional kernel functions. 

To overcome the difficulty, this paper proposes adaptive, feature-preserving bilateral filters 

for 3D models by introducing automatic, adaptive scale parameters. Firstly, the feature scale 

was defined on 3D models, bridging up the gap between feature scale and scale parameter 

of the Gaussian functions. Next, the scale descriptor was proposed to adaptively configure 

the scale parameter for each face of the target 3D model, changing the traditional approach 

of adopting the same scale parameter for all faces. On this basis, a feature-preserving local 

filter was designed by introducing the adaptive scale parameters to the iterative local 

scheme, and a modified global filter, which is robust to irregular sampling during denoising, 

was designed based on the adaptive scale parameters. The excellence of our filters was 

proved through experiments on multiple synthetic and real-world noisy models, in 

comparison to the state-of-the-art filters. The research results lay a solid basis for feature 

preservation and noise removal of 3D models. 
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1. INTRODUCTION

Digital scanners have been widely adopted to collect three-

dimensional (3D) points on curved surfaces. During the data 

collection, various noises are inevitably introduced. As a result, 

mesh denoising becomes a research hotspot in geometric 

processing. Mesh denoising aims to remove noises without 

sacrificing the features that are useful in fields like rendering, 

scientific analysis, and medical visualization. 

Bilateral filtering is a basic yet important tool for denoising 

3D mesh models. In traditional bilateral filters, however, it is 

difficult to configure the scale parameters of convolutional 

functions. The difficulty arises from the local average nature 

of bilateral filtering. Improper scale parameters will either 

remove the model features or fail to eliminate the noises. Thus, 

the key to mesh denoising is to remove the noises while 

preserving or recovering model features. In this paper, an 

adaptive method is proposed to configure the scale parameters, 

and used to design two adaptive, feature-preserving bilateral 

filters.  

So far, many bilateral filtering methods have been designed 

for mesh denoising. The most common ones are local methods 

[1-3]. In local methods, the model is denoised iteratively by 

weighting and averaging local geometric elements. The 

number of iterations must be selected manually. If it is too 

small, the noises cannot be fully removed; if it is too large, the 

model features will get lost along with the noises. To solve the 

problems in local methods, global methods have been 

developed [4, 5], which maintain the overall structure of model 

by considering the global features. However, the global 

methods cannot preserve the local details or reduce heavy 

noises. 

Recent methods tend to add one or more pre- or post-

processing steps to local or global methods, such as pre-

filtering and feature detection. Despite their good results, these 

multi-step methods consume lots of time, calling for frequent 

parameter adjustments and manual interventions. Deep 

learning (DL) [6, 7] have also been successfully applied to 

mesh denoising. However, DL methods require prolonged 

trainings, and their generalization ability varies with the 

networks. Only models included in the training set could be 

preserved well by DL methods. Hence, it is an urgent problem 

to find a simple way to denoise mesh models. 

Guidance filtering [8] provides a way to improve bilateral 

filtering: the guidance signal is extracted from the original 

model, and used to modify the bilateral weights for feature 

preservation. There are also strategies [9] that analyze the 

scale space of Gaussian functions. Drawing on these works, 

this paper attempts to modify bilateral filtering on mesh 

models from the perspective of scale space, and preserve the 

features of different scales based on the features of Gaussian 

scale space. 

In this paper, two adaptive, feature-preserving bilateral 

filters are developed for 3D mesh models, based on the 

automatic and adaptive settings of the scale parameters. Firstly, 

the scale of 3D model features was defined, bridging the gap 

between feature scales and scale parameters of bilateral 

filtering. Next, the scale descriptor was introduced to enable 

the adaptive setting of scale parameters. The adaptive scale 

parameters were incorporated into local and global methods, 

improving their feature preserving ability. The primary 

contributions of this paper are as follows: 

(1) The traditional bilateral filters were improved through

automatic and adaptive configuration of scale parameters, 
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solving the scale-sensitive problem. 

(2) Feature scales and scale descriptors were defined for the 

construction of adaptive scale parameters. 

(3) Adaptative local and global bilateral filters were 

designed, both of which are feature-preserving, and robust to 

extremely noisy models and irregular mesh sampling. 

 

 

2. LITERATURE REVIEW 

 

The existing mesh denoising methods fall into four 

categories: local methods, global methods, multi-step methods, 

and DL methods. 

 

2.1 Local methods 

 

Local methods are classical algorithms in the field of 

denoising. In essence, local methods remove noises based on 

the weighted average of triangular neighborhoods. The 

effectiveness of local methods is commonly improved by 

optimizing the convolution kernel.  

To improve the bilateral filtering of images, Fleishman et al. 

[1] optimized the kernel function based on the differences of 

vertex positions and face normal. Zheng et al. [2] achieved 

more detailed results by improving the kernel, in the light of 

centroid distance and normal difference. Liu et al. [10] 

improved the kernel according to the normal difference of 

geodesic distances. To prevent the diffusion of sharp edge, 

Yadav et al. [11] optimized the Gaussian kernel function by 

the Tukey’s bi-weight function. Zhang et al. [8] extracted the 

guidance signal from the original model, and replaced the 

original signal with the extracted signal, thereby improving the 

kernel function.  

Centin and Signoroni [3] updated the normal direction 

based on the local and global curvature changes of the model, 

and thus maintained and enhanced the model features. Wang 

et al. [12] extended the method of Zheng et al. [2] into rolling 

guidance filtering [13], in which the original normal direction 

serves as the guide in each iteration to preserve the features of 

the original model. Through feature detection, Liu et al. [14] 

identified feature surfaces and non-feature surfaces, and 

proposed neighborhood selection metrics to enhance features; 

their method achieved better results than guided filtering. 

The bilateral filtering effect can also be improved by 

selecting triangular neighborhoods for the mesh model. For 

example, Sun et al. [15] selected neighborhoods based on the 

normal angles of triangle patches and neighborhood patches. 

Li et al. [16] preserved sharp features through edge-based 

neighborhood processing. Hurtado et al. [17] considered 

gradient, point, and normal information to select and process 

neighborhoods. Overall, local methods can recover model 

features iteratively. But the setting of the number of iterations 

remains a difficulty. 

 

2.2 Global methods 

 

In recent years, global methods have attracted much interest 

from the academia. For instance, Zheng et al. [2] designed an 

isotropic denoising method based on bilateral weighted 

Laplacian operator. However, the Laplacian operation cannot 

distinguish weak features from noises, nor effectively handle 

models with heavy noises. To overcome the defects, He and 

Schaefer [4] proposed a minimal mesh denoising algorithm 

based on edge operators, while Zhang et al. [18] created the 

total variation (TV) normal filter. But the two methods, 

especially the former, both suffer from undesired staircase 

effect in gently curved regions. Later, Zhao et al. [19] 

optimized the nonconvex solution process, and proposed an 

upgraded alternating strategy to solve minimal mesh denoising. 

Inspired by the theory of compressed perception, Wang et al. 

[20] recovered model features from the residuals of Laplacian 

factorization.  

Recently, the second-order normalization has been widely 

adopted in global methods. For example, Liu et al. [5] 

combined the second-order normalization with normal fidelity 

terms. On this basis, Zhong et al. [21] preserved the details of 

the original model well, in view of the overall variational 

differences and the fidelity of the normal. To sum up, global 

methods are good at retaining the overall structure of the 

model, but poor in maintaining the details on local geometry. 

 

2.3 Multi-step methods 

 

Feature detection is often conducted first to preserve the 

model features in the course of denoising, which gives rise to 

multi-step methods. One of the most popular ways to identify 

noises and features of mesh models is feature detection based 

on tensor voting. Wei et al. [22] processed noises and features 

differently by voting on the types of points based on multi-

scale normal tensor. Yadav et al. [23] introduced the concept 

of local binary neighborhood to realize binary optimization of 

the tensor equation, and successfully maintained the model 

features.  

The existing multi-step methods have been optimized by 

various methods, namely, global filtering [24-26], local 

filtering [27], median filtering [28], feature detection [24, 29, 

30], and neighborhood searching [29]. Typical multi-step 

methods [24, 29, 30] added feature detection to the filtering 

process or the point updating process. Wei et al. [27] improved 

the denoising effect by combining the merits of point normal 

field and surface normal field, which are consistent in local 

areas. Lu et al. [25] integrated the global method with L1-

median filtering to remove noise. In summary, multi-step 

methods offer meticulous means to preserve model features. 

However, the feature preservation comes at the cost of high 

computing complexity and frequent parameter adjustments. 

 

2.4 DL methods 

 

DL methods have also been successfully applied to mesh 

denoising.  

For instance, Wang et al. [6] proposed a mesh filter with 

one-step learning: the filter learns cascaded non-linear 

regression functions from a set of noisy meshes and their 

ground-truth counterparts.  

Wang et al. [7] designed a two-step learning mechanism for 

the mesh filter: in the first step, the neural network learns the 

mapping function from a set of noisy models and their ground-

truth counterparts; in the second step, the ground-truth of 

filtered models are learned to recover the geometric loss in the 

first step.  

Despite their good performance, DL methods face several 

problems in feature preservation: the training is very time-

consuming, and the training results are greatly affected by the 

training set (i.e. the features not included in the training set 

cannot be recovered). 
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3. BILATERAL FILTER AND SCALE PARAMETERS 

 

3.1 Original bilateral filter on two-dimensional (2D) 

images 

 

Tomasi and Manduchi [31] were to first to propose bilateral 

filtering for image processing. The filtering was performed 

based on the spatial positions and pixel values of the target 

image. For the target image I, the bilateral filtering at the pixel 

p=(x, y) can be defined as: 
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where, N(p) is the neighborhood of pixel p; 𝜔𝑐
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where, 𝜎𝑐
𝐼  and 𝜎𝑠

𝐼  are the scale parameters of the Gaussian 

functions on spatial positions and pixel values; the 

multiplication operators are all numerical multiplications. 

 

3.2 Bilateral filter on 3D mesh models 

 

Most mesh denoising methods target triangular mesh 

models. Let fi(i=1, 2, ..., M) be the face i of the target 3D model, 

and M be the number of faces on the model. Then, the normal 

ni of face fi can be defined on the centroid ci of the face. Based 

on face normals, the classical filtering algorithm proposed 

Zhang et al. [2] converts the original bilateral filter on 2D 

images into a bilateral filter for 3D mesh models: 
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where, 𝑛𝑖
𝑡 is face normal i obtained in the t-th iteration; ξij is a 

parameter related to sampling rate; ωc(x) and ωs(x) are the 

Gaussian kernel functions based on spatial distance and 

normal difference, respectively: 
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where, σc and σs are the scale parameters of the corresponding 

Gaussian kernel functions. 

 

3.3 Scale-based feature analysis 

 

The above analysis demonstrates the importance of scale 

parameters to bilateral filters. Any change to the scale 

parameters will affect how an element (pixel or vertex) is 

influenced by its neighbors. Here, the scale parameter in the 

spatial domain is named the spatial scale parameter, and that 

in the value domain (pixel value or face normal value) is 

named as the value scale parameter. The former is more stable 

than the latter in most problems. Thus, bilateral filtering tasks 

usually focus on the configuration of the value scale parameter. 

In this paper, the spatial scale parameter is empirically set as 

the mean distance between the centroid of each face and the 

centroids of its neighbors. Therefore, the value scale parameter 

is referred to as the scale parameter for short.  

The scale parameter directly bears on the filtered values in 

different tasks. Thus, this paper proposes the concept of multi-

scale features on the mesh model. The filtering process on the 

3D model with Gaussian function ωs(x) of variance σs was 

denoted as Ls(n), i.e. the filtering process in equation (3), 

where 𝜔𝑠 = 𝑒𝑥𝑝( −
𝑥2

2𝜎𝑠
2), 𝐿𝑠is the filtering result on the scale 

σs, and n=(n1,n2,…,nM) is the face normals of the entire model. 

The authors considered this feature on scale σs, such that the 

corresponding structures disappear when the Gaussian 

function of variance σs is applied to the model. 

Figure 1 shows the results of bilateral filtering on a one-

dimensional (1D) signal, a 2D image, and a 3D model at 

different values of the scale parameter. Obviously, the features 

on different scales were gradually removed, with the growth 

in the scale parameter. As shown in the sub-graphs, features 

on different scales were removed at different scale parameters. 

For the bunny model, the muscle textures belong to scale 

σs=0.3, the eye belongs to scale σs=0.5, and the paw belongs 

to scale σs=1. 

 

 
 

Figure 1. The bilateral filtering results in 1D, 2D and 3D cases at different scale parameters σs 
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Figure 2. The proposed scale descriptors at different scale parameters σd 

 

 

4. ADAPTIVE LOCAL FILTER 

 

4.1 Construction of scale descriptor 

 

The previous section shows that the convolution kernel of 

the bilateral filter on 3D model consists of Gaussian functions 

based on face normals and spatial positions. In essence, 

bilateral filtering is a local averaging process in the 

neighborhood of the target vertex. If the scale parameter not 

configured properly, there will be severe loss of feature 

information. Traditionally, bilateral filtering adopts a fixed 

scale parameter, that is, the face normal of the entire 3D model 

are filtered with the same scale parameter. However, the model 

features on different scales should be treated differently based 

on their locations. 

Therefore, this paper designs a way to configure the scale 

parameter adaptively. The scale descriptor was defined as: 
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where, Ai is the area of triangular face i; 𝐾𝑖 =
1

∑ 𝜔𝑖𝑗𝑗∈𝑁(𝑖)
 is the 

normalization operator; ωij=ωcωdAi (ωd is defined with the 

scale parameter σd); the Gaussian functions are as defined in 

the above section. 

Figure 2 illustrates the proposed scale descriptors at 

different scale parameters σd. When the value of σd was small, 

the scale descriptor helped to highlight the noises on the 

surface of the cube model. With the gradual growth in σd, the 

scale descriptor facilitated the detection of features on larger 

scales. Since the scale descriptor can describe different scales 

of features, the noises were highlighted at a small σd (Figure 

2(a)). 

 

4.2 Local filter based on adaptive scale parameters 

 

Based on the features of the scale descriptor, the scale 

parameter σs was configured adaptively for bilateral filtering, 

i.e. different σs values were set for different faces in the light 

of the scale descriptor of the target face.  

As mentioned above, the scale descriptor helps to identify 

the noises of the model at a small σd. This means the scale 

descriptor increases with the level of noise. Thus, the scale 

parameter σs should be increased to realize harder smoothing 

at a high level of noise. Hence, the adaptive scale parameter 

was defined as: 
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where, α is an empirical parameter in (1, 2). The value of α is 

positively correlated with the noise level of the model.  

The above formulas demonstrate that the scale parameter 𝜎𝑠

~
 

is a vector, whose values correspond to the scale parameters of 

individual faces. In this way, the difference between faces 

could be considered in bilateral filtering. Moreover, the scale 

parameter was linked up with the scale descriptor D(ni), 

eliminating the need to manually adjust this sensitive 

parameter. 

Based on the adaptive scale parameter, the bilateral filter 

can be modified as: 
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where, 𝜔𝑖𝑗

~
= 𝜔𝑠
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𝐴𝑖 ; 𝜔𝑠
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is the Gaussian function with 

element i of 𝜎𝑠

~
 as its scale parameter; 𝐾𝑖

~

 is the normalization 

factor. 

 

4.3 Termination criterion 

 

To avoid the manual termination of the iterative process, an 

automatic termination was designed based on the 

minimization of the following objective function: 
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where, β is the balance parameter between the first term (sum 

of differences) and the second term (smooth measurement); L 

is the Laplacian operator on face normals, similar to the 

operator on vertices [32] with bilateral weights.  
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Figure 3. The effectiveness of the objective function in measuring the denoising results 

 

Figure 3(a) shows the convergence of our iterative scheme 

measured by mean squared error (MSE) and Figure 3(b) shows 

the variation of the objective function with the number of 

iterations. Under different values of β, the objective function 

was minimized in four or five iterations, showing visually 

ideal denoising results. The results show that the objective 

function is effective in measuring the denoising results. 

 

4.4 Updates of vertex positions 

 

After the face normals are filtered, Sun et al. [33] method 

was employed to update the vertex positions according to the 

face centroids and face normals: 
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where, vi and 𝑣𝑖

~
 are the original and updated vertex positions, 

respectively; Pv(i) is the neighbors of vertex i; |Pv(i)| is the 

number of the neighbors of vertex i.  

Then, the algorithm of our adaptive local filter for bilateral 

filtering was detailed in Algorithm 1. 

  

Algorithm 1: Adaptive local filter for bilateral filtering 

Input: A noisy model 

Output: A denoised model 

Step 1. Find the face normal {ni} of the noisy model. 

Step 2. Pre-filter the noisy model by any denoising 

method to preliminarily estimate the face normals 𝑛0
𝑖 . 

Step 3. for t= 0 → ts do  

(ts is set based on the termination criterion.) 

(1) Calculate the scale descriptor by formula (5) based on 

𝑛𝑖
𝑡 (with a fixed σd); 

(2) Calculate the adaptive scale parameter by formula (6); 

(3) Update the face normals by formula (8) 

end for 

Step 4. Update the vertex positions by formula (10) based 

on the final 𝑛𝑖
𝑡. 

 

 

5. ADAPTIVE GLOBAL BILATERAL FILTER 

 

Global methods are generally more stable than local 

methods, thanks to their non-iterative nature. Zheng et al. [2] 

designed a well-known global method based on the following 

global optimization model: 
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where, Ai is the area of face i. It is widely agreed that geometric 

details (e.g. high-frequency information like noises, tiny 

features, and weak features) can be smoothed effectively by 

minimizing the Laplacian operator. The minimization of the 

Laplacian operator can smooth the model surfaces without 

considering the features and noises. Thus, the loss of features 

depends on the scale parameter in the Laplacian operator. 

Zheng et al. [2] configured the Laplacian operator non-

homogenously, but the faces of the model are smoothed in the 

same intensity. However, the normals on the noisy areas 

should be smoothed more intense than those in feature areas, 

owing to the regional difference in feature scale. To solve the 

problem, our global method was designed as follows:  
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where, 𝜔𝑖𝑗

~
= 𝜔𝑐𝜔𝑠

~
𝐴𝑖 . Similar to the local filter, the scale 

parameter 𝜎𝑠

~
 was calculated based on the scale descriptor. The 

scale parameter is still a vector, whose values correspond to 

the scale parameters of individual faces. Note that the scale 

descriptor in the global method was computed solely based on 

the model prefiltered by any simple method. This helps to 

estimate the general structure of the noisy model. 

 

 

6. EXPERIMENTS AND RESULTS ANALYSIS 

 

To verify its effectiveness, our filters were applied to 

experiments on real-world and synthetic models. Some models 

have holes (e.g. bunny) and some have different sampling rates 
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(e.g. pyramid). The models were added different levels of 

noises: 0.5 Gaussian noise to the pyramid model; 0.1, 0.3 and 

0.5 Gaussian noises to the cube model; 0.3 Gaussian noise to 

fandisk, bunny, skull, and angel models, respectively. The 

synthetic noise was generated from a zero-mean Gaussian with 

standard deviations proportional to the main edge length of the 

mesh.  

All experiments were conducted on a computer (Intel® 

Core™ i7-7500U Processor (3.5GHz); 16GB memory). The 

pseudocode was implemented on the MATLAB. The runtimes 

of our filters and other local and global filters on the models 

are compared in Table 1. The comparison shows that our local 

and global filters are both efficient.  

 

Table 1. The runtimes of different local and global filters 

 

Models (#V, #F) 

Time (s) 

Zheng [2] 

(Local) 

Zhang [8] Our filter 

(Local) 

Zheng [2] 

(Global) 

He [13] Our filter 

(Global) 

Cube (1538,3072) 0.354 0.631 0.457 0.308 0.825 0.386 

Fandisk (6475,12946) 0.578 0.836 0.315 1.235 3.330 1.319 

Bunny (34834,69451) 2.904 4.194 1.469 11.452 22.653 12.195 

 

6.1 Properties of our filters 

 

6.1.1 Robustness to different noise levels 

To verify its robustness to heavy noises, our filters were 

adopted to denoise the cube models added 0.1, 0.3 and 0.5 

Gaussian noises, respectively. The original model is shown in 

Figure 4(a); the three noisy models are presented in Figures 

4(b)-(d), respectively; the results of our local filter and our 

global filter are displayed in the green box and red box of 

Figure 4, respectively. 

As shown in Figure 4, both our filters removed the noises 

and preserved the model features, even if the model was 

contaminated with heavy noises. The good performance is 

attributable to the adoption of the adaptive scale parameters, 

which help to recover the geometric details in both local and 

global algorithms. 

 

6.1.2 Robustness to irregular sampling 

Next, our filters were adopted to denoise the pyramid 

models with different sampling rates. The original models and 

filtered results are shown in the upper row Figure 5. The 

experiment shows that both filters output visually correct 

results at different sampling rates. Our local filter did better in 

preserving geometric features, and obtained uniform filtering 

results. The excellence of our filters comes from the 

consideration of the area of faces. 

 

6.1.3 Robustness to defects 

In addition, our filters were employed to denoise the bunny 

models contaminated with different types of defects, including 

holes and open boundaries. The original models and filtered 

results are shown in the lower row Figure 5. It is learned that 

our filters smoothened the defects and preserved all the 

boundaries, an evidence of their robustness to defects. 

 

 
 

Figure 4. The experiments on the robustness to different 

noise levels 

 

 
 

Figure 5. The experiments on the robustness to irregular sampling and defects 
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6.2 Qualitative and quantitative comparisons 

 

Our filters were compared with the state-of-the-arts. For 

fairness, the parameters of each method were finetuned 

carefully. The contrastive methods and their parameters are as 

follows: 

The bilateral filter proposed by Fleishman et al. [1] (n1), the 

robust statistics proposed by Jones et al. [34] (σr, σg), the 

unilateral filtering algorithm proposed by Sun et al. [15] (T, n1, 

n2), the normal filter proposed by Zhang et al. [8] (r, σr, Kiter, 

Viter), the L0 minimization proposed by He and Schaefer [4] (λ1, 

α0, β0, uα, βmax), the global (λ2, σs1, n1) and local (σs2, n1, n2) 

filters proposed by Zheng et al. [2], and the robust feature-

preserving denoising method proposed by Yadav et al. [11] (σs, 

σc, Viter).  

Among the above methods, He and Yadav’s strategies are 

global methods, while the other strategies are local methods. 

Our local and global filters each contain four parameters: σd, 

n1, n2 and α1 for our local filter, and σd, λ, n2 and α for our 

global filter. Specifically, σd is the scale parameter depending 

on the noise level of the mesh model; n1 is the number of 

iterations to update the normal; n2 is the number of iterations 

to update vertex positions; λ is the balance parameter for our 

global filter; α is the scale factor. In our experiments, σd was 

empirically set to the range of [0.2, 1]; the greater the value of 

σd, the higher the noise level.  

 

6.2.1 Quantitative comparisons 

The parameters of the above methods were configured as 

shown in Table 2.  

 

Table 2. The filtering results of multiple methods 

 

Models Methods Parameter settings MSAEs 

 Fleishman [1] (12) 0.29323 

  Jones [34] (1.2,1.4) 0.26490 

  Sun [15] (0.35,5,20) 0.09926 

 Zheng [2] Local (0.35,50,20) 0.17793 

Pyramid Zheng [2] Global (0.001,0.5,20) 0.16299 

V=3455 He [4] (0.001,0.002,0.001,0.5,1.414,1000) 0.03773 

 Zhang [8] (2,0.45,50,20) 0.09872 

 Yadav [11] (0.55,0.2,100) 0.16425 

 Our Local (2,100,20,2) 0.08129 

 Our Global (0.6,0.01,20,2) 0.06183 

 Fleishman [1] (12) 0.16431 

  Jones [34] (1.8,1.5) 0.17749 

  Sun [15] (0.55,20,40) 0.03542 

 Zheng [2] Local (0.45,12,30) 0.05133 

Cube Zheng [2] Global (0.005,0.5,20) 0.09198 

V=1538 He [4] (0.01,0.00346,0.001,0.5,1.414,1000) 0.08169 

 Zhang [8] (2,0.25,25,20) 0.03077 

 Yadav [11] (0.55,0.2,100) 0.05133 

 Our Local (0.4,20,20,1.5) 0.01535 

 Our Global (0.4,0.01,20,1) 0.01560 

 Fleishman [1] (10) 0.12111 

  Jones [34] (1.3,1.4) 0.16946 

  Sun [15] (0.55,20,40) 0.07141 

 Zheng [2] Local (0.4,15,20) 0.06150 

Fandisk Zheng [2] Global (0.35,0.0001,20) 0.11638 

V=6475 He [4] (0.01,0.00346,0.001,0.5,1.414,1000) 0.09986 

 Zhang [8] (2,0.25,25,20) 0.05201 

 Yadav [11] (0.35,0.2,100) 0.06591 

 Our Local (0.4,10,20,2) 0.06048 

 Our Global (0.35,0.01,20,1) 0.05875 

 Fleishman [1] (12) 0.12094 

  Jones [34] (1.2,1.6) 0.10144 

  Sun [15] (0.5,6,20) 0.10279 

 Zheng [2] Local (0.5,6,10) 0.14032 

Skull Zheng [2] Global (0.5,0.01,10) 0.14491 

V=20002 He [4] (0.000004,1,0.001,0.9,1.414,1000) 0.12591 

 Zhang [8] (0.35,0.2,100) 0.09384 

 Yadav [11] (0.55,0.2) 0.12467 

 Our Local (0.3,3,20,1.5) 0.15255 

 Our Global (0.5,0.01,20,1) 0.15655 

 Fleishman [1] (5) 0.17071 

  Jones [34] (1.2,1.5) 0.18260 

  Sun [15] (0.5,5,20) 0.17818 

 Zheng [2] Local (0.5,4,20) 0.09209 

iH-bunny Zheng [2] Global (0.5,0.01,20) 0.09723 

V=34834 He [4] (0.000004,1,0.001,0.5,1.414,1000) 0.18032 

 Zhang [8] (2.7,0.55,4,15) 0.19706 

 Yadav [11] (0.55,0.2) 0.20332 

 Our Local (0.3,2,20,1) 0.09435 

 Our Global (0.3,0.05,20,1) 0.09300 
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The filtering results of each method were evaluated by mean 

square angular error (MSAE): 

 

[( , )]GT

i iMSAE n n= E  (14) 

 

where, 𝑛𝑖
𝐺𝑇 and �̃�𝑖 are the ground truth and filtered face 

normals, respectively; E[] is the expectation. Table 2 shows 

that our local and global filters both obtained low MSAEs on 

different models. 

 

6.2.2 Qualitative comparisons 

Our filters were compared with the state-of-the-arts on two 

kinds of models: real-world models and synthetic models.  

(1) Synthetic models 

The synthetic models include fandisk, skull and bunny. 

Each model was added different levels of Gaussian noises. 

The fandisk model (Figure 6) contains both strong and weak 

features, which are the focal points of denoising algorithms. 

The features on the models filtered by different methods were 

detected by the same method, i.e. the method proposed by 

Wang et al. [35]. Hence, the detection accuracy is positively 

related with the effectiveness of feature-preserving denoising. 

It can be seen that our local and global filters preserved the 

strong and weak features well, laying the basis for restoration 

of the original model. 

The filtering results on skull model and bunny model 

(Figures 7 and 8) demonstrate that our filters output better 

feature-preserving results than the other methods, as 

evidenced by the zoom-in subgraphs. The other methods 

removed the curve and teeth of the skull model to different 

degrees, although all of them could remove the noises. By 

contrast, our filters discriminated between features and noises, 

thus preserved the geometric details well. 

Our filters were compared with the said methods on the 

pyramid model with irregular sampling rates and the cube 

model with 0.5 Gaussian noise. The results in Figures 9 and 10 

show that, whether it is cube model or pyramid model, our 

filters outperformed the other methods.  

According to the MSAEs in Table 2, our local and global 

filters had much smaller MSAEs than the other methods, 

regardless of cube model, pyramid model, and fandisk model. 

On complex models like bunny and skull, our MSAEs were 

smaller than or equal to those of other methods. To sum up, 

both visual analysis and numerical analysis confirm the 

robustness of our filters. 

 

 
 

Figure 6. The denoising effects of different methods on fandisk model 
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Figure 7. The denoising effects of different methods on skull model 

 

 
 

Figure 8. The denoising effects of different methods on bunny model 
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Figure 9. The denoising effects of different methods on pyramid model 

 

 
 

Figure 10. The denoising effects of different methods on cube model 

 

(2) Real-world models 

Furthermore, our filters were compared with other methods 

on real-world models, namely, angel, rabbit, and Wilhelm. The 

original models contain little noises. Before the experiments, 

each model was added different kinds of defects, such as open 

boundaries and holes.  

The filtering results on angel, rabbit, and Wilhelm models 

are displayed in Figures 11-13, respectively. It can be seen that 

our filters removed the noises and preserved the geometric 

details, especially the eyes, better than the contrastive methods 

in the angel model; our filters maintained the muscle features 

of the rabbit model more accurately than the other methods; 

our filters also preserved the eyes and hair of the Wilhelm 

model better than the other methods. In summary, our filters 

achieved desirable effects in noise removal and feature 

preservation. 

 

 
 

Figure 11. The denoising effects of different methods on angel model 
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Figure 12. The denoising effects of different methods on rabbit model 

 

  
 

Figure 13. The denoising effects of different methods on Wilhelm model 

 

 

7. CONCLUSIONS 

 

This paper introduces the adaptive scale parameters to 

modify the classical bilateral filtering method. The adaptive 

scale parameters were constructed based on the analysis on 

Gaussian scale space. Besides, the authors defined feature 

scales and scale descriptors on 3D models, bridging the gap 

between scale space analysis and feature scales on these 

models. On this basis, adaptive 3D local and global filters were 

designed, which configure the scale parameter for each face 

normal in an adaptive manner. Quantitative and qualitative 

analyses show that our filters are equivalent to or superior than 

the state-of-the-arts in noise removal and feature preservation. 
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