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Traditional semantic segmentation methods cannot accurately classify high-resolution remote 

sensing images, due to the difficulty in acquiring the correlations between geophysical objects in 

these images. To solve the problem, this paper proposes an improved semantic segmentation 

method for remote sensing images based on neural network. Based on residual network, the 

proposed algorithm changes the dilated convolution kernels in the dilated spatial pyramid pooling 

(SPP) module before extracting the correlations between geophysical objects, thus improving the 

accuracy of segmentation. Next, the high resolution of the input image was maintained through 

deconvolution, and the semantic segmentation was realized by the pixel-level method. To 

enhance the robustness of our algorithm, the dataset was expanded through random cropping and 

stitching of images. Finally, our algorithm was trained and tested on the Potsdam dataset provided 

by the International Society for Photogrammetry and Remote Sensing (ISPRS). The results show 

that our algorithm was 1.4% more accurate than the DeepLab v3 Plus. The research results shed 

new light on the semantic segmentation of high-resolution remote sensing images.  
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1. INTRODUCTION

With the rapid development of satellite sensors, the 

resolution of remote sensing images has been improved 

continuously. High-resolution remote sensing images provide 

the refined information that is applicable to various tasks of 

earth observation, which benefit many aspects of society and 

economy. Meanwhile, the refined information also poses new 

challenges to the intelligent interpretation of high-resolution 

remote sensing images. 

The key to interpreting high-resolution remote sensing 

images lies in semantic segmentation. However, the 

interpretation requires the processing of massive information 

on geophysical observations. Due to the sheer amount of data, 

manual classification would be inaccurate, time-consuming, 

and labor-intensive. Similarly, traditional image segmentation 

methods cannot effectively handle the big data of remote 

sensing images. Based on the underlying features, the 

traditional methods have poor robustness and low recognition 

accuracy.  

Against this backdrop, automatic semantic segmentation 

methods, namely, deep convolutional neural network (D-

CNN), has attracted widespread attention. Many typical CNNs 

have been successfully designed to semantically segment 

multiple objects, namely, fully-connected network (FCN) [1], 

SegNet [2], pyramid scene parsing network (PSPNet) [3], 

DeepLab [4], and deconvolution network. In general, CNN-

based semantic segmentation methods can be divided into 

block-level methods and pixel-level methods. The block-level 

methods classify each pixel in the input image by sliding every 

small image block. Such methods take a long time to classify 

the entire image, and have strict requirements on the block size 

of the input image. The pixel-level methods provide an end-

to-end architecture, capable of maintaining the global content 

structure of the input image. For example, the FCN can 

effectively classify input images of any size.  

Because geophysical features vary greatly in size, the 

segmentation method for high-resolution remote sensing 

images should recognize the features of small geophysical 

objects, as well as the global features of large geophysical 

background. In recent years, deep learning (DL) has become a 

hot topic among researchers engaging in semantic 

segmentation [5-9]. For example, the FCN and its improved 

versions have optimized the semantic segmentation of 

multiple datasets, such as Pascal VOC [10] and Cityscapes 

[11]. However, there are two problems in the application of 

deep neural networks (DNNs) in the segmentation of high-

resolution remote sensing images. On the one hand, the DNNs 

may suffer from over-fitting facing the imbalance of different 

geophysical features, which arises from the diversity of 

geophysical information and the imbalance between 

information classes. On the other hand, the loss of local 

informaiton may occur due to the up-sampling after DNN 

feature extraction. 

To solve the two problems, this paper proposes an improved 

semantic segmentation algorithm for remote sensing images 

based on neural network (NN). The proposed algorithm, as a 

pixel-level method extended from ResNet101, extracts the 

correlations between geophysical objects by changing the 

dilated convolution kernels in the dilated spatial pyramid 

pooling (SPP) module. On this basis, the high-resolution 

remote sensing image was segmented into multiple 

geophysical objects at a reasonable precision. The 

segmentation effect of our algorithm was verified on the 

Potsdam dataset provided by International Society for 

Photogrammetry and Remote Sensing (ISPRS) [12]. 
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The remainder of this paper is organized as follows: Section 

2 compares the relevant semantic segmentation methods; 

Section 3 details the proposed algorithm, namely, the 

improved semantic segmentation algorithm for remote sensing 

images; Section 4 experimentally verifies the proposed 

algorithm; Section 5 analyzes the experimental results; Section 

6 puts forward the conclusions. 

 

 

2. LITERATURE REVIEW 

 

2.1 Semantic segmentation of high-resolution remote 

sensing images 

 

Remote sensing images of contain numerous complex 

objects in various sizes. It is immensely difficult to segment 

all these objects at the same time. Improving the resolution 

clarifies the details of redundant objects, but adds to the 

difficulty in image segmentation. 

In semantic segmentation, high-level and abstract features 

are suitable for large and easily-confused objects, while low-

level and original features benefit small objects. The 

integration between features on different levels provides rich 

informaiton for semantic segmentation. Therefore, the features 

on different levels should be combined to extract the complex 

objects from remote sensing images. 

In recent years, the DNNs [13] achieve excellent 

performance in semantic segmentation, through the 

combination of representation learning and classifier training. 

For instance, the FCN achieves end-to-end training through 

up-sampling and resolution matching between output feature 

map and input image. However, it is difficult for the FCN to 

acquire low-level features for accurate edge prediction, under 

the requirements of dense prediction. 

The FCN is modified and extended into SegNet [7] and U-

Net [14], using jump connections. The input image can be 

classified accurately at the pixel level, for the cascade structure 

allows the decoding layer to reuse low-level feature maps, 

which contain more details. Compared with U-Net, SegNet 

records the pool index in the encoder and reuses it in the 

decoder, making segmentation even more accurate. When the 

feature maps are of the same size, the encoder layer and the 

decoder layer are connected explicitly. However, some useful 

details about geophysical objects and image scenes are deleted, 

with the increase in the receptive field. 

Dilated convolution widens the receptive field by 

expanding the convolution, without changing the number of 

additional parameters or the size of feature map. Thanks to 

dilated convolution, DeepLab and PSPNet are now widely 

adopted for semantic segmentation. 

 

2.2 Residual network (ResNet) 

 

With the growth in depth, DNNs can learn more features at 

the cost of longer training and slower convergence. The depth 

growth is impeded by vanishing gradient. If the depth 

continues to grow after reaching a threshold, the learning rate 

and accuracy will start to decline. To prevent network 

degradation, He et al. [6] put forward the concept of residual 

unit and ResNet. In the residual unit, the input and output are 

simply superimposed in the short-circuit connection. The 

simple operation suppresses network degradation, and 

improves the speed and effect of network training, without 

adding additional parameters or calculations to the network. 

Multiple residual units are stacked into a DNN called ResNet. 

Not every layer of the ResNet requires additional pooling 

operation. 

The most representative ResNets include ResNet56, 

ResNet101 and ResNet152. The figures stand for the number 

of layers in the ResNets. The ResNets have four typical 

features: (1) The small size of the network controls the number 

of parameters; (2) The number of feature maps increases layer 

by layer, ensuring the expression of output features; (3) The 

propagation efficiency is improved by adopting many down-

sampling operations and a few pooling layers; (4) The dropout 

[15] is replaced by batch normalization (BN) [16] and global 

average pooling for regularization, resulting in fast training. 

With the above advantages, the ResNet has been widely 

adopted for semantic segmentation of high-resolution remote 

sensing images. 

 

2.3 Dilated SPP 

 

In the CNN, the convolutional layers can handle inputs of 

any scale. The input image is convoluted and pooled 

repeatedly until reaching the fully-connected layer. Without 

needing cropping or scaling, SPP can convert feature maps of 

any size into fixed-size eigenvectors, providing fixed-size 

inputs required by the classifier. During semantic 

segmentation, SPP mainly acquires the context of the scenes 

and the contextual connections. 

If the objects of semantic segmentation are on varied scales, 

the segmentation results depend heavily on long-distance 

contextual informaiton and informaiton of different scales. To 

enlarge the receptive field, a common practice is to perform 

SPP on the extracted feature maps, and fuse multi-scale 

information by jump connections. Nevertheless, the spatial 

resolution is reduced after each pooling, and might get lost 

after multiple pooling operations, which undermines the 

segmentation effect. Dilated convolution can enlarge the 

receptive field without losing information. It is possible to 

obtain multi-scale informaiton gain by parallel or cascade 

stacking dilated convolutions with different dilation rates. 

 

2.4 Up-sampling based on sub-pixel convolution  

 

The DNNs achieve in-depth learning of image features 

through multiple convolutions. During the convolution, the 

spatial resolution of feature maps decreases due to the repeated 

pooling operations. In pixel-based semantic segmentation, 

each pixel in the input image is given a label based on its class. 

For example, the images from the ISPRS Potsdam dataset and 

the segmentation results are shown in Figure 1. The pixels in 

the high-resolution remote sensing images are divided into six 

classes, namely, impervious layer, buildings, shrubs, trees, 

vehicles, and background. The six classes are respectively 

colored in white, blue, bluish green, green, yellow, and red. 

After multiple convolutions, the size of feature map 

becomes smaller. The feature map should be restored to the 

original size for pixel-level comparison with label data. For 

this purpose, the sub-pixel convolution can expand the low-

resolution feature map to high-resolution output. The sub-

pixel convolutional layer does not use any artificially designed 

expansion filters, such as bilinear samplers or dual trilinear 

samplers. Instead, this layer learns complex expansion 

operations through training. In this way, the overall computing 

time is reduced, and the image can be reconstructed with a high 

accuracy. 
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Figure 1. The ISPRS Potsdam dataset and the segmentation results 
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Figure 2. The overall framework of semantic segmentation of remote sensing images 

 

 

3. METHODOLOGY 

 

3.1 Overview 

 

In some application fields of remote sensing, the region of 

interest (ROI) may account for a small portion of the set of 

remote sensing images. In other words, the valuable image 

subset in the application field might be small, despite the large 

size of the overall set of remote sensing images. 

Data enhancement is an effective way to solve the relative 

lack of remote sensing data. Through data enhancement, 

different classes of geophysical objects could be balanced, and 

an abundance of accurate information could be learned by 

expanding the dataset through DNN-based semantic 

segmentation (pixel labeling). Data enhancement also 

effectively suppresses over-fitting. 

Inspired by the semantic segmentation by DeepLab, this 

paper adopts ResNet-based method to extract various types of 

geophysical features. Besides, the dilated SPP was employed 

to recognize geophysical details, focusing on local or global 

information. This is because both geophysical details and local 

information (i.e. geophysical features of different sizes) must 

be considered in the semantic segmentation of high-resolution 

remote sensing images. 

After acquiring rich geophysical features, up-sampling 

should be performed to restore the feature map to the size of 

the input image, laying the basis for class labeling of each 

geophysical pixel. This paper proposes an up-sampling 

method for high-resolution remote sensing images based on 

sub-pixel convolution. In this way, high-quality up-sampling 

is realized at a high computing efficiency. 

As shown in Figure 2, the high-resolution remote sensing 

data are mainly processed through four steps: data 

preprocessing, feature extraction (down-sampling), up-

sampling, and pixel labeling. The first step (data preprocessing) 

generates and enhances the dataset. The second step (feature 

extraction) consists of two networks: the ResNet-based CNN, 

and the dilated SPP module. The third step (up-sampling) 

restores the resolution and size of the image through sub-pixel 

convolution. The fourth step (pixel labeling) outputs the 

segmentation results. 

(http://www2.isprs.org/commissions/comm2/wg4/potsdam-

2d-semantic-labeling.html) 

 

3.2 Data enhancement through random cropping and 

stitching  

 

The set of high-resolution remote sensing images contains 

a large amount of data, existing as a dense cluster of various 

geophysical information. For a specific application, however, 

relatively few information and unobvious features are relevant 

to the accurate recognition of a type of geophysical objects. 

This paper enhances the limited data by randomly cropping 

and stitching high-resolution remote sensing images [4]. The 

images were randomly selected from the ISPRS Potsdam 

dataset [12], which offers 38 remote sensing orthoimages 

(resolution: 5cm; size: 6,000×6,000). Each image contains 

four spectra: infrared, red, green, and blue. Six types of 
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geophysical objects are involved in the dataset, including the 

impervious layer (white), buildings (blue), shrubs (bluish 

green), trees (green), vehicles (yellow), and background (red). 

The high-resolution remote sensing data were enhanced in 

the following steps: 

Step 1. Because the graphics processing unit (GPU) has a 

limited memory, it is impossible to input the entire image into 

the network. Thus, each original RGB orthoimage 

(6,000×6,000) was split into 169 images (512×512) by a 

sliding window. The 38 original images were split into a total 

of 6,422 images (512×512). Let D be the dataset of the 6,422 

images, and L be the set of labels corresponding to these 

images. 

Step 2. Four images were randomly selected for 

enhancement from the 6,422 images. The four candidate 

images are denoted as 𝐼𝑘 ∈ 𝐷, 𝑘 ∈ {1,2, 3,4}, and the set of 

labels corresponding to the four images are denoted as Lk, 

𝑘 ∈{1, 2, 3, 4}. 

Step 3. Each candidate image was cropped as shown in 

Figure 3, where Ix=512 and Iy=512 are the width and height of 

the 6,422 cropped images. The four candidate images in the 

lower part of Figure 3 were randomly chosen from the 6,422 

images. For each candidate image, a random cropping point 

(w, h) was generated based on beta (β) distribution, and used 

to determine the cutting lines (yellow dashed box). The 

cropped areas of the four images were stitched into a new 

image, which is of the same size as the four images. 

Mathematically, four images Ik were randomly chosen from 

dataset D. During each training, a cropping point (w, h) was 

selected from each image by random. The randomly selected 

cropping points obey β-distribution: 
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( )
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w C I h C I

C Beta

C Beta

 

 

 = =    

 (1) 

 

where, β is a hyperparameter in training. Here, the β value is 

set to 0.3, which minimizes the test error [4]. 

Once the cropping points (w, h) were determined, the 

cropped areas of the four candidate images Ik were calculated, 

and added up to obtain the size (wk, hk) of the stitched image: 
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Figure 3. The cropping of candidate images 

Step 4. The cropped areas were stitched into a new image 

Inew, which is of the same size (512×512) as the four candidate 

images Ik: 

 

1,2,3,4
=new k kk

L R L
=  (3) 

 

where, Rk is the size ratio of the cropped area to the candidate 

image: 

 

= k k
k

x y

w h
R

I I
 (4) 

 

Through cropping and stitching of random images, a new 

training set of 6,422 images were generated based on the set 

of 6,422 images, which were obtained through sliding window 

operation over the 38 images (6,000×6,000) in the Potsdam 

dataset. The original dataset D and the new dataset Dm were 

mixed as the training set D
~

: 

 

mD D D= +  (5) 

 

3.3 Feature extraction based on ResNet and SPP 

 

There are two core issues in the extraction of geophysical 

features from high-resolution remote sensing images: 

(1) The local features: The details of geophysical objects in 

high-resolution remote sensing images; 

(2) The global features: The correlations between 

geophysical objects in high-resolution remote sensing images, 

i.e. the global features in the surroundings of geophysical 

objects on different scales. 

The two issues were dealt with by a DNN based on ResNet 

and SPP. 

 

3.3.1 ResNet 

Thanks to the development of the DL, typical classification 

networks, namely, Visual Geometry Group (VGG) and 

ResNet, have been increasingly popular. These networks work 

excellently on largescale dataset like ImageNet, and support 

task-oriented finetuning based on training data. This paper 

adopts ResNet101, a typical ResNet, to extract the local 

features of geophysical objects: 

 

 
 

Figure 4. The residual unit 
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First, an identity mapping was superimposed on a stacked 

structure, forming a residual unit. The structure of the residual 

unit is illustrated in Figure 4, where x is the identity mapping 

inputted to the stacked structure. The identity mapping can be 

understood as a short-circuit connection. 

Let w1, w2 and w3 be the weights of the three convolutional 

layers, and σ1, σ2 and σ3 be the three activation functions, 

respectively, in the residual unit. Then, the output F(x) of the 

convolutional layers can be described as: 

 

( ) ( )( )3 2 2 1 1
=F x w w w x   (6) 

 

Then, the output of the residual unit can be obtained by 

adding up F(x) and the identity mapping x: 

 

( ) ( )H x F x x= +  (7) 

 

The final output is a function of the identity mapping and 

the weights of convolutional layers: 

 

( ) ( )=
i

H x F x w x+,  (8) 

 

Let xl and wl be the input and weight of the l-th layer, 

respectively. Then, the input of the l+1-th layer (i.e. the input 

of the l-th layer) can be expressed as: 

 

( )1 ,l l l lX x F x w+ = +  (9) 

 

Through recursion, the feature map of the L-th layer in 

residual unit of any depth can be obtained as: 

 

( )
1

,
L

L l l ll
X x F x w

−
= +  (10) 

 

The gradient of the reverse process can be derived by the 

chain rule: 
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where, l is the short-circuit mechanism of the identity mapping, 

which can transmit the gradient without loss. This is how 

ResNet suppresses the vanishing gradient. 

 

3.3.2 Dilated SPP 

This paper relies on dilated SPP to extract the correlations 

between geophysical features. The dilated SPP is a parallel 

process. Each image is convoluted by multiple dilated kernels 

in different sizes. The multiple results are fused into an output. 

Dilated convolution [17, 18] increases the gap between two 

adjacent pixels in a kernel, without increasing the number of 

pixels of the kernel. Therefore, the dilated kernel is larger than 

the original kernel, but has the same computing cost.   

In an existing dilated SPP module [19, 20], dilated kernels 

with four dilation rates (6, 12, 18 and 24) were used to 

convolute the input image, respectively, aiming to obtain the 

correlations between geophysical objects in difference 

distances to the center point. Dilated convolution enables the 

later convolutional layers to maintain a large feature map, 

without changing the number of ResNet parameters and 

receptive field of convolutional layer in each step. Hence, 

dilated convolution benefits the detection of small objects, 

thus improving the overall performance of the model. 

As shown in Figure 5, our dilated SPP module involves four 

parallel dilated kernels, whose dilation rates are 1, 6, 12 and 

18, respectively. 

 

r=1

r=6

r=12

r=18

 
 

Figure 5. Our dilated SPP module 

 

3.4 Up-sampling based on sub-pixel convolution 

 

Each original high-resolution remote sensing image is of the 

size Ix×Iy×C, where C is the number of channels. The features 

of the original image were extracted through ResNet and 

dilated SPP module, yielding a feature map of the size 

Ix/r×Iy/r×Ck, where r is the reduction ratio, and Ck is the 

number of channels in the feature map. 

To restore its size to the original map, the feature map was 

subjected to sub-pixel convolution. After convolution, the 

number of channels became: 

 
2

s kC r C=   (12) 

 

Based on the Cs output images from the sub-pixel 

convolution layer, the pixels at the same coordinates were 

stitched into r×r regions. All these regions were merged in the 

order of pixels into an image of the width Ix/r×r=Ix and the 

height Iy/r×r=Iy. 

 

 

4. EXPERIMENT 

 

4.1 Experimental setting 

 

To verify its effectiveness, the proposed method was 

verified through experiments on the Potsdam dataset, a 2D 

dataset provided by the ISPRS the Potsdam dataset, and 

compared with other labeling methods for remote sensing 

images. Under the TensorFlow framework, the experiments 

were carried out on a hardware-accelerated GPU (Nvidia 

GeForce GTX 1080 Ti, 11GB). 

By the data enhancement method in Subsection 3.1, a total 

of 12,844 images (512×512×3; RGB3 channel) were obtained. 

The image set was divided into a training set (7,700), a 

verification set (2,572), and a test set (2,572) at the ratio of 

6:2:2. The contrastive methods include FCN-32S, FCN-8S, U-

Net, SegNet, and DeepLab v3 Plus. The effectiveness of each 

method was evaluated against three metrics: F1 score, average 

recall, and overall accuracy. 
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4.2 Training 

 

During the training, the ResNet was trained based on the 

parameters of ResNet101. Overall, ResNet101 consists of five 

parts. The number of convolutions in the five parts is 2, 3×3, 

3×4, 3×23, and 3×3, respectively. The parameters of 

ResNet101 were finetuned for the training set. The stochastic 

gradient descent (SGD) was adopted for the training, with 

cross entropy as the loss function. The maximum number of 

iterations was set to 30,000. Ten samples were considered as a 

batch. Under the polynomial decay strategy, the initial and 

final learning rates were set to 0.007 and 0.000001, 

respectively. The weight attenuation and momentum were set 

to 0.0002 and 0.9, respectively. 

 

4.3 Experimental results 

 

The F1 score, average recall, and overall accuracy of each 

method in the classification of the six types of geophysical 

objects are listed in Table 1 below. 

As shown in Table 1, our method achieved much better 

results in four of the six types of geophysical objects. Our 

method (data enhancement only) was clearly more accurate 

than Deep Lab v3 plus in five types of geophysical objects, 

especially in terms of vehicles; Our method (sub-pixel up-

sampling only) was clearly more accurate than Deep Lab v3 

Plus in three types of geophysical objects, especially in terms 

of background; Our method (data enhancement + sub-pixel 

up-sampling) was 1.2%, 0.5%, 1.4%, and 4.2% more accurate 

than Deep Lab v3 Plus in terms of impervious bed, buildings, 

shrubs, and trees, respectively. 

Next, six original images were selected, and segmented by 

our method. The original images, labels, and segmentation 

results are presented in Figure 6 below. It can be seen that our 

method achieved good semantic segmentation effects, with 

virtually no segmentation mistake. 

In Figures 6(a) and 6(c), the building edges segmented by our 

method differed slightly from the labeled data in the black boxes. 

Through comparison with the original images, it is confirmed 

that the building edges recognized by our method are closer to 

the reality. In Figures 6(d) and 6(e), the vehicles recognized by 

our method in the black boxes are more accurate than the labeled 

data. In Figure 6(e), the two vehicles in the black boxes are very 

close to each other; the labeled data treated them as the same 

object, while our method treated them as separate objects. In 

Figures 6(d) and 6(f), the edges of trees identified by our method 

were close to those in the original image, but some details of the 

trees were lost in the labeled data. 

 

Table 1. The experimental results 

 

Model 
Impervious 

layer 
Buildings Shrubs Trees Vehicles Background 

F1 

score 

Average 

recall 

Overall 

accuracy 

FCN-32S 0.782 0.836 0.712 0.661 0.740 0.175 0.651 0.716 0.759 

FCN-8S 0.801 0.852 0.728 0.681 0.827 0.232 0.685 0.751 0.778 

U-Net 0.790 0.848 0.788 0.749 0.875 0.260 0.719 0.784 0.798 

SegNet 0.811 0.864 0.780 0.738 0.857 0.236 0.714 0.773 0.803 

Deep Lab v3 Plus 0.892 0.928 0.833 0.784 0.882 0.316 0.772 0.820 0.860 

Our method (data 

enhancement only) 
0.897 0.935 0.844 0.822 0.902 0.283 0.785 0.817 0.871 

Our method (sub-pixel 

up-sampling only) 
0.902 0.930 0.837 0.816 0.883 0.338 0.784 0.814 0.873 

Our method (data 

enhancement + sub-pixel 

up-sampling) 

0.904 0.933 0.847 0.826 0.898 0.297 0.786 0.824 0.874 

 

 
 

Figure 6. The segmentation results of our methods on six images 
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5. DISCUSSION 

 

The experimental results show that the edges of trees 

recognized by our method differed from the edges in the 

labeled data, as shown in the black boxes of Figures 6(d) and 

6(f). Comparing with the original image, it is found that the 

trees are mostly crowns in the remote sensing images, for the 

high-resolution satellite shots images from the top. The crowns 

vary greatly with seasons, geographic locations, and tree 

species. The variation is further enhanced by the lighting, 

weather, and other conditions at the time of image acquisition. 

In the original image of Figure 6(e), the leaves are so scarce 

that the branches are very prominent. Even the thin branches 

at the ends are highly legible. However, the branches cannot 

be easily recognized by the naked eye, due to the small contrast 

between branches and the background. That is why these 

geophysical objects are not accurately labeled. This is a typical 

problem in the object recognition of high-resolution remote 

sensing images. Probing into this problem helps to improve the 

accuracy of semantic segmentation of high-resolution remote 

sensing images. 

Moreover, our method was more accurate than the labeled 

data in recognizing the details of vehicles in all images that 

contain vehicle(s). Take Figure 6(e) for example. Our method 

clearly distinguished between the small vehicles that are close 

to each other. For objects like vehicles, planes, and ships, 

geometric details are critical to their classification and model 

identification. However, the labels of the vehicles in Figure 6(e) 

are basically straight lines, failing to reflect the local details of 

the vehicles. Of course, this is not the labeler’s fault. Even if 

the naked eye can recognize the shape changes of the vehicles, 

it is too costly to label all these details manually. 

Currently, semantic segmentation algorithms are being 

improved constantly. The details of geophysical objects can be 

recognized more and more accurately. Many scholars have 

recognized the importance of machine learning in improving 

the quality of data labeling. With technical advancement, the 

resolution of remote sensing images will continue to grow. The 

ISPRS Potsdam data adopted in our research has a resolution 

of 10cm. If the resolution is increased to 1cm, the details of 

vehicles will be very prominent, and greatly facilitate object 

classification. More attention must be paid to the accurate 

labeling of the details of clear geophysical objects. 

 

 

6. CONCLUSIONS 

 

This paper proposes a sematic segmentation method for 

high-resolution remote sensing images. Based on ResNet and 

dilated SPP, our method ensures the segmentation accuracy 

through data enhancement and sub-pixel up-sampling. On the 

one hand, the original data were enhanced by cropping and 

stitching random images. Thus, the training set was effectively 

expanded, allowing the network to learn more features. On the 

other hand, the dual bilinear interpolation was replaced with 

the up-sampling based on sub-pixel convolution. In this way, 

the noise level in up-sampling was suppressed, without 

increasing the computing cost. Experimental results show that, 

under the same conditions, our method outperformed Deep 

Lab v3 Plus on ISPRS Potsdam dataset, as measured by F1 

score and overall accuracy. The research results shed new light 

on the semantic segmentation of high-resolution remote 

sensing images. 
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