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 The purpose of this paper is to investigate a steady-state method enabling the measurement of 

the thermal conductivity of an electric conducting wire. Instead of varying the pulsation of a 

periodic current as done in the 3ω method, the proposed method is based on steady-state 

measurements realized for different lengths of the same wire. The model developed takes into 

account an external heat transfer coefficient (conduction + radiation) often neglected in 

previous works. A sensitivity analysis shows the possibility of estimating simultaneously the 

wire thermal conductivity and the external heat transfer coefficient. The experimental results 

obtained with Chromel and Copper wires are in good agreement with references values (less 

than 5% deviation). 
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1. INTRODUCTION 

 

The measurement of thermal properties of wires (or fibers) 

is essential when there are used in temperature sensors (as 

thermocouples for example), superconducting materials [1] 

or microelectronic devices.   

 

 
 

Figure 1. Schema of the method used for thermal 

conductivity measurement of an electric conducting wire 

 
Most of the methods used for the estimation of the thermal 

conductivity of electric conducting wires are based on the 

typical experimental device represented in Figure 1: The two 

extremities of a wire of length 𝐿  are kept at a constant 

temperature 𝑇𝑎  and they are connected to an electrical 

generator. An electric current 𝐼  gets through the wire, 

producing by Joule effect.  

The mean temperature rise in the wire is deduced from the 

variation of its electrical resistance 𝑅  measured by a four 

probe method. It is assumed that the wire electrical resistance 

varies linearly with its mean temperature as follows: 

 

𝑅 = 𝑅0 [1 + 𝛼(�̅� − 𝑇𝑎)]              (1) 

 

where �̅� is the wire mean temperature defined as: 

 

�̅� =
1

𝐿
 ∫ 𝑇(𝑥)

𝐿

0
𝑑𝑥              (2) 

𝛼 is the temperature coefficient of the electrical resistance 

and 𝑅0  is the electrical resistance of the wire at the 

temperature 𝑇𝑎 . The heat produced inside the wire is 

transferred to its environment by two ways: 

- Heat conduction from the wire to the extremities 

maintained at ambient temperature 𝑇𝑎. 

- Combined convection-radiation heat transfer with a 

global coefficient ℎ to the surrounding environment. Thus 

the mean temperature rise �̅�  depends on the following 

parameters:  

- Time 𝑡 (or pulsation 𝜔 in case of a periodic heat flux) 

- Thermal conductivity 𝜆 (W m-1 K-1) and volumetric heat 

capacity 𝜌𝑐 (J m-3 K-1) of the wire 

- External (convection+radiation) heat transfer coefficient 

ℎ (W m-2 K-1) 

- Dimensions of the wire: diameter 𝐷 and length 𝐿 

The methods based on the previously described device 

may be classified in two types: 

- Steady-state [2]: in this case the electrical current 

intensity in the wire is constant: 𝐼 = 𝐼0  and the steady 

state value �̅� of the mean temperature rise only depends 

on the wire thermal conductivity 𝜆  and on the external 

heat transfer coefficient ℎ. Thus,  𝜆 can be deduced from a 

the steady-state measurement only if ℎ  is known. Most 

often the experiment is carried out under vacuum and ℎ is 

considered to be null. 

- Periodic [3] to [9]: in this case 𝐼 = 𝐼0 𝑐𝑜𝑠(𝜔𝑡)  and the 

measurement is repeated for several values of the 

electrical current pulsation . The third harmonic 𝑈3𝜔 of 

electric potential difference 𝑈𝐿  is measured when the 

steady-state periodic regime is reached. A theoretical 

relation 𝑈3𝜔 = 𝑓(𝜔, 𝜆, 𝜌𝑐, ℎ)  may be established from 

heat transfer modeling in the wire. The thermal 

conductivity 𝜆 may then be estimated from measurements 

corresponding to different values of 𝜔 if the sensitivities 

of 𝑈3𝜔 to 𝜆, 𝜌𝑐 and ℎ are not correlated. 

The proposed method intends to conserve the simplicity of 
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the stationary method but without being forced to neglect the 

external heat transfer. This is made possible by realizing 

several steady-state measurements for different lengths of the 

same wire. The idea has already been used by Volkein and 

Kessler [10] for thin films thermal conductivity 

measurements but the applicability was not fully 

demonstrated. This paper will to demonstrate that thermal 

conductivity of wires may be estimated with a good precision 

using the proposed method.   

The remainder of this paper is organized as follows: 

Section 2 describes the experimental device and the 

measurement method. Section 3 presents the modeling of the 

wire mean temperature rise 𝜃 by heat transfer analysis, both 

with a sensitivity study of this temperature rise 𝜃  to the 

length 𝐿 of the wire, to its thermal conductivity 𝜆 and to the 

heat transfer coefficient ℎ . Section 4 presents the 

experimental results obtained with Copper and Chromel 

wires, confirming the feasibility of thermal conductivity 

estimation by the proposed method.  

 

 

2. MATERIALS AND METHOD 

 

The experimental device is represented in Figure 2. 

 

 
 

Figure 2. Schema of the experimental device 

 

Both extremities of the wire that must be characterized are 

sandwiched and pressed between two brass blocks: their high 

thermal conductivity ensures a uniform temperature in the 

blocks and their high thermal capacity ensures a constant 

temperature (equal to the environment temperature 𝑇𝑎 ) 

during the experiment. The distance 𝐿 between the two brass 

blocks is measured by a caliper with a 0.02 mm precision.  

The wire extremities are connected to a Tektronik PWS2185 

Power Supply that produces (and measures) a constant 

intensity current 𝐼0  through the wire. The electric potential 

difference between the two brass blocks (adding no electric 

resistance since the electrical conductivity of brass is high) is 

measured by a Tektronik DMM4040 Multimeter. To reduce 

the convective part in the external heat transfer, the device is 

set in a vacuum chamber where the pressure may be lowered 

to 310-2 mbar. 

The wire means temperature rise �̅� =  �̅� − 𝑇𝑎 is related to 

the stationary value 𝑈𝐿  of the electrical potential difference 

by Eq. (1). Thus, the measurement of 𝑈𝐿 and of 𝐼0 enable to 

estimate the wire mean temperature rise by: 

 

�̅� = �̅� − 𝑇𝑎 =
1

𝛼
(

𝑈𝐿

𝑅0 𝐼0
− 1)            (3) 

 

where: 

- 𝑅0  is the electrical resistance of the wire at the 

ambient temperature 𝑇𝑎. The value of 𝑅0 is measured 

just before heating by a four probes method using a 

Tektronik DMM4040 Multimeter.  

- 𝛼 is the temperature coefficient of the wire resistance 

obtained by the following measurement process: for 

each studied material, the electric resistance 𝑅  of a 

wire with a length 𝐿 has been measured as a function 

of the temperature by the multimeter. The wire was 

set in a temperature controlled enclosure Binder 

KB115 which temperature has been varied from 20°C 

to 60°C with a step of 10°C. During this process, the 

current intensity crossing the wire for the 

measurement of its electrical resistance is very low 

and does not produce a significant temperature rise. 

Two type K thermocouples were set on the junctions 

of the wire with the probe to verify that the wire 

temperature is identical to the enclosure one. 

Considering Eq. (1), the temperature coefficient 𝛼 is 

deduced from the slope 𝑘 of the curve 𝑅 = 𝑓(�̅� − 𝑇𝑎) 

by: 

 

𝛼 =
𝑘

𝑅20°𝐶
              (4) 

 

The expression of �̅� as a function of 𝜆, ℎ and 𝐿 will now 

be developed and it will be shown that the measurement of 

𝑈𝐿  for several values of the wire length 𝐿  enables the 

estimation of the thermal conductivity 𝜆 of the wire. 

 

 

3. MODEL 
 

The following hypotheses have been assessed: 

- The temperatures of the brass blocks are constant and 

equal to the surrounding temperature 𝑇𝑎.  

- The radial thermal gradient inside the wire is negligible. 

Considering the following limit values of the parameters: 

ℎ < 10 W m−2K−1 , 𝐷 < 1 𝑚𝑚  and 𝜆 > 1 W m−1 K−1 , 

the Biot number 𝐵𝑖 =
ℎ𝐷

𝜆
 is lower than 0.01. This value 

justifies the hypothesis that the temperature radial 

gradient is negligible inside the wire. 

 

 
 

 

Figure 3. Schema of the thermal balance on an infinitesimal 

part 𝑑𝑥 of the wire 

 

For modeling the temperature 𝑇(𝑥) of the wire, where 𝑥 is 

the distance from the middle of the wire, a thermal balance 

has been realized on the wire part between 𝑥 and 𝑥 + 𝑑𝑥 as 
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represented on figure 3, it may be written: 

 

𝜙𝑐𝑜𝑛𝑑𝑥
+ 𝜙𝑔𝑒𝑛 = 𝜙𝑐𝑜𝑛𝑑𝑥+𝑑𝑥

+ 𝜙𝑐𝑜𝑛𝑣            (5) 

 

where: 

 

𝜙𝑐𝑜𝑛𝑑𝑥
= −𝜆𝑆 (

𝑑𝑇

𝑑𝑥
)

𝑥
             (6) 

 

𝜙𝑔𝑒𝑛 = 𝜙0𝑆𝑑𝑥              (7) 

 

𝜙𝑐𝑜𝑛𝑑𝑥
= −𝜆𝑆 (

𝑑𝑇

𝑑𝑥
)

𝑥+𝑑𝑥
             (8) 

 

𝜙𝑐𝑜𝑛𝑣 = ℎ𝑃𝑑𝑥 [𝑇(𝑥) − 𝑇𝑎]            (9) 

 

and: 

𝑃 is the wire perimeter: 𝑃 =  𝜋𝐷 (𝐷 is the wire diameter) 

𝑆 is the wire cross section: 𝑆 =  
𝜋𝐷2

4
  

𝜙0(𝑥) is the heat flux per volume unit produced by Joule 

effect in the wire, given by: 

 

𝜙0(𝑥)  =  
16 𝜌0  𝐼0

2

𝜋2𝐷4  {1 + 𝛼[𝑇(𝑥) − 𝑇𝑎]}  (W m-3)        (10) 

 

where 𝜌0 is the electrical resistivity of the wire ( Ω 𝑚). 

Setting 𝜃(𝑥)  =  𝑇(𝑥) − 𝑇𝑎 , this system of equations leads 

to: 

 
𝑑2𝜃

𝑑𝑥2 −
ℎ 𝑃

𝜆𝑆
 𝜃 +

𝜙0

𝜆
= 0  0 ≤ 𝑥 ≤ 𝐿/2        (11) 

 

The boundary conditions are: 

 
𝑑𝜃

𝑑𝑥
= 0  (null flux for symmetry reason) at 𝑥 = 0         (12) 

 

θ =  0 at  x = L/2                                                           (13) 

 

Eq. (11) can also be written: 

 
𝑑2𝜃

𝑑𝑥2 − (
4ℎ

𝜆𝐷
− 

16 𝜌0 𝛼 𝐼0
2

𝜆𝜋2𝐷4 ) 𝜃 +
16 𝜌0  𝐼0

2

𝜆𝜋2𝐷4 = 0         (14) 

 

If: 
4ℎ

𝜆𝐷
−  

16 𝜌0 𝛼 𝐼0
2

𝜆𝜋2𝐷4 > 0, let us consider: 

 

𝐾 =
16 𝜌0  𝐼0

2

𝜆𝜋2𝐷4               (15) 

 

And: 𝛽1
2 =

1

𝜆
 (

4ℎ

𝐷
−  

16 𝛼 𝜌0  𝐼0
2

𝜋2𝐷4 )                   (16) 

        (16) 

Taking into account the boundary conditions Eq. (12) and 

Eq. (13) the resolution of Eq. (14) leads to:  

 

𝜃(𝑥) =
𝐾

𝛽1
2  [1 −

𝑐𝑜𝑠ℎ(𝛽1𝑥)

𝑐𝑜𝑠ℎ(𝛽1𝐿/2)
] (17) 

 

The mean temperature rise can be calculated by: 

 

�̅�(𝑥) =
2

𝐿
∫ 𝜃(𝑥) 𝑑𝑥

𝐿/2

0
           (18) 

 

And finally: �̅� = �̅� − 𝑇𝑎 =
𝐾

𝛽1
2  [1 −

2 𝑡𝑎𝑛ℎ(𝛽1𝐿/2)

𝛽1𝐿
]        (19) 

 

If 
4ℎ

𝜆𝐷
− 

16 𝜌0  𝛼 𝐼0
2

𝜆𝜋2𝐷4 < 0,  

let us consider: 𝛽2
2 =

1

𝜆
 (

16 𝛼 𝜌0  𝐼0
2

𝜋2𝐷4 −
4ℎ

𝐷
  )         (20) 

 

Taking into account the boundary conditions Eq. (12) and 

Eq. (13) the resolution of Eq. (14) leads to:  

 

𝜃(𝑥) =
𝐾

𝛽2
2  [

𝑐𝑜𝑠(𝛽2𝑥)

𝑐𝑜𝑠(𝛽2𝐿/2)
− 1]          (21) 

 

Eq. (18) and Eq. (21) lead to:  

 

 �̅� = �̅� − 𝑇𝑎 =
𝐾

𝛽2
2  [

2 𝑡𝑎𝑛(𝛽2𝐿/2)

𝛽2𝐿
− 1]         (22) 

 

With the hypotheses that ℎ = 0 and that the heat flux 𝜙0 

dissipated in the wire by Joule effect is constant and equal to:  

 

𝜙0  =  
4𝑈 𝐼0

2

𝜋𝐷2 𝐿
              (23) 

  

Eq. (14) becomes:  

 
𝑑2𝜃

𝑑𝑥2 +
𝜙0  

𝜆
= 0            (24) 

 

Let us consider: 𝐾1 =
𝜙0  

𝜆
           (25) 

 

The resolution of Eq. (24) taking into account the 

boundary conditions Eq. (12) and Eq. (13) lead to:  

 

𝜃(𝑥) = 𝐾1  (
𝐿2

4
−

𝑥2

2
)           (26) 

 

And finally: �̅� = �̅� − 𝑇𝑎 =
1

3
 

 𝑈 𝐼0 𝐿

𝜆𝜋𝐷2 
          (27) 

 

Then the thermal conductivity 𝜆  of the wire can be 

deduced by: 

 

𝜆 =
1

3
 
 𝑈 𝐼0 𝐿

𝜋𝐷2 �̅�
            (28) 

 

Several authors such as Moon [2] estimate the thermal 

conductivity  by using Eq. (28). It will be further shown 

than in some cases using Eq. (28) may lead to an estimation 

error up to several percents so that it is always better to use 

Eq. (19) or Eq. (22). 

 

 

4. SENSITIVITY ANALYSIS  

 

The reduced sensitivities of the temperature �̅�(𝐿)  to the 

parameters 𝜆  and ℎ  are defined as 𝜆
𝜕�̅�

𝜕𝜆
(𝐿)  and ℎ

𝜕�̅�

𝜕ℎ
(𝐿) . If 

they are not proportional on a wire length interval [𝐿1; 𝐿2] 
then it will be possible to estimate separately 𝜆 and ℎ from 

several mean temperature measurements realized for 

different wire lengths in this interval [11].  

The values of 𝜆
𝜕�̅�

𝜕𝜆
(𝐿)  and ℎ

𝜕�̅�

𝜕ℎ
(𝐿)  have been calculated 

numerically by Eq. (19) or Eq. (22), for example: 

 

𝜆
𝜕�̅�

𝜕𝜆
(𝐿) = 𝜆

�̅�(1.001𝜆,ℎ,𝐿)−�̅�(𝜆,ℎ,𝐿)

0.001 𝜆
          (29) 

 

The three following practical cases (corresponding to 
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further experiments) have been analyzed:  

- A Chromel wire with a diameter 𝐷 = 0.254 mm  

- A Chromel wire with a diameter 𝐷 = 0.127 mm  

- A Copper wire with a diameter 𝐷 = 0.0254 mm. 

The following thermal properties have been considered in 

the simulations: 

- Copper: 𝜆 = 386 W m−1 K−1 , 𝜌0 = 1.4 × 10−8 Ω m , 

𝛼 = 4.0 × 10−3 K−1.  

- Chromel: 𝜆 = 17.4 W m−1 K−1 , 𝜌0 = 7.06 × 10−7 Ω m , 

𝛼 = 3.3 × 10−3 K−1. 

The calculations have been done with an external heat 

transfer coefficient ℎ = 2 W m−2K−1  corresponding to an 

experiment under vacuum where convection may be 

neglected and with a wire emissivity around 0.3. 

Figures 4 to 6 represent for each material the following 

parameters as a function of the wire length 𝐿:  

- The mean temperature rise �̅� calculated on one hand by 

Eq. (19) or Eq. (22) and on the other hand by Eq. (28). 

- The reduced sensitivities of the mean temperature �̅� to the 

thermal conductivity 𝜆  and to the external heat transfer 

coefficient ℎ. 

- The ratio of these two reduced sensitivities. 

Figures 4 to 6 show that the precision of Eq. (28) (in which 

the external heat transfer is neglected) decreases when the 

wire length or its diameter increases. One can also see on 

figure 6 that for a Copper wire with a length lower than 2 cm 

the sensitivity of the mean temperature to the thermal 

conductivity 𝜆  is at least thirty times greater than its 

sensitivity to the external heat transfer coefficient ℎ. It is thus 

possible to fix ℎ to an approximate value and then to deduce 

 solving Eq. (19) or Eq. (22) from a single temperature 

measurement realized with a wire length lower than 2 cm. 

Concerning the thinner Chromel wire, the length should be 

lower than 1 cm to obtain a ratio of the sensitivities to 𝜆 and 

to ℎ to greater than 30. The uncertainty measurement on a 

wire with a length lower than 1 cm may become significant 

so that in this case it is better to realize several measurements 

with different wire lengths 𝐿𝑖  to estimate separately the 

thermal conductivity 𝜆 and the external heat transfer ℎ. This 

separate estimation is possible because the ratio of the 

sensitivities represented in Figure 4 and 5 is not constant 

when the wire length varies. The estimation will be realized 

by minimizing the sum of the quadratic difference defined as: 

 

𝑆 = ∑ [�̅�𝑒𝑥𝑝(𝐿𝑖) − �̅�𝑚𝑜𝑑(𝐿𝑖)]
2𝑛

𝑖=1  (30) 

 

where 𝑛  is the number of wire lengths 𝐿𝑖  tested, using the 

Levenberg-Marquart algorithm [12]. 

 

 
 

Figure 4. Mean temperature rise and reduced sensitivities of 

T̅ for a Chromel wire with a diameter D = 0.254 mm, (I0 =
0.06 A) 

 
 

Figure 5. Mean temperature rise and reduced sensitivities of 

T̅ for a Chromel wire with a diameter D = 0.127 mm  

(I0 = 0.015 A) 

 

 
 

 

Figure 6. Mean temperature rise and reduced sensitivities of 

T̅ for a Copper wire with a diameter D = 0.0254 mm (I0 =
0.02 A) 

 

 

5. EXPERIMENTAL RESULTS 

 

First, the temperature coefficients for the electrical 

resistance of each wire were measured. The experimental 

results are: 𝛼𝐶𝑜𝑝𝑝𝑒𝑟 = 3.88 × 10−3 K−1  and 𝛼𝐶ℎ𝑟𝑜𝑚𝑒𝑙 =

3.26 × 10−3 K−1. The first value is very close to the value 

𝛼𝐶𝑜𝑝𝑝𝑒𝑟 = 3.93 × 10−3 K−1 given by Fallou [13]. 

Eq. (15) shows that 𝐾  is proportional to 𝐷4 . Thus, the 

relative standard deviation of 𝐾  would be four times the 

standard deviation of 𝐷 if Eq. (15) was used to calculate 𝐾. 

Since the measurement of the electrical resistance of a thin 

wire is much more accurate than the measurement of its 

diameter, the resistance per length unit 
𝑅

𝐿
 of each wire has 

been measured and then 𝐾 has been calculated by:  

 

𝐾 =
16(1+𝛼𝜃) 𝐼0

2

𝜆𝜋𝐷2  
𝑅

𝐿
            (31) 

 

Moreover, when using Eq. (31) instead of Eq. (15), it is no 

longer necessary to know the value of the electrical resistivity 

𝜌0 of the wire to calculate 𝐾. 

Table 1 presents the measured values for each of the three 

wires.  

The mean temperature �̅� of a Copper wire with a length 

𝐿 = 2.1 cm  and a diameter 𝐷 = 0.025 mm  has been 

measured using the experimental device described in Figure 

1, under an air pressure of 3 × 10−2 mbar. The measurement 

has been repeated three times.  
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Table 1. Experimental values of the linear resistance of the 

wires 

 
 Chromel Chromel Copper 

𝐷[mm] 0.127 0.254 0.025 

𝐿 [m] 1.044 1.070 0.200 

𝑅 [Ω] 55.81 15.33 6.987 
𝑅

𝐿
 [Ω m-1] 53.46 14.33 34.94 

 

The measured values of �̅� and the values of the thermal 

conductivity 𝜆 calculated by Eq. (19) or Eq. (22) on one hand 

and by Eq. (28) on the other hand are presented in Table 2. 

For the estimation of using Eq. (19) or Eq. (22), two limit 

values ℎ𝑚𝑖𝑛  and ℎ𝑚𝑎𝑥  of the external heat transfer coefficient 

ℎ  have been considered, enabling the estimation of two 

extreme values 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥  of 𝜆. 

 

Table 2. Experimental values of (�̅� − 𝑇𝑎); estimated and 

reference value of the thermal conductivity 𝜆 of Copper 

 
𝐷 [m] 0.025 mm 

�̅� − 𝑇𝑎 [K] 16.65 K 

𝑠�̅� [K] 0.12 K 

𝜆 [W m-1 K-1] 

Eq. (19) 

(ℎ = 6 W m−2K−1) 
393.0 

Eq. (19) 

(ℎ = 2 W m−2K−1) 
379.6 

Eq. (28) 370.9 

Reference [14] 386 

 

The low pressure value decreases the convective heat 

transfer and the external heat transfer is essentially done by 

radiation. The radiation heat transfer coefficient of a surface 

at temperature 𝑇 is lower than 4𝜎𝑇3, where 𝜎 is the Stefan-

Boltzmann constant (𝜎 = 5.67 × 10−8 W m−2K−4) , 

corresponding to an approximate value of 6 W m-2 K-1 for a 

black body at a temperature of 25°C. Thus, the extreme 

values ℎ𝑚𝑖𝑛 = 2 W m−2K−1  and ℎ𝑚𝑎𝑥 = 6 W m−2K−1  have 

been considered. 

Compared to a reference value of  386 W m-1 K-1 [14], the 

relative deviation is less than 2 % that is quite acceptable. It 

may be noted that using the approximate Eq. (28) would lead 

to a greater deviation around 4%.  

For the Chromel wires the mean temperatures of wires 

with lengths between 15 mm and 85 mm have been measured 

under a constant pressure of 6.10-2 mbar. An algorithm 

minimizing the sum of the quadratic errors between the 

experimental values and the values calculated with Eq. (19) 

enabled the simultaneous estimation of the thermal 

conductivity 𝜆 and of the external heat transfer coefficient ℎ 

for each wire. The experimental points and the theoretical 

curves are presented in Figure 7. The values of 𝜆   and 

ℎ obtained using Eq. (19) are presented in Table 3.  

Furthermore, the specific heat 𝑐 of the Chromel has been 

measured with a Setaram dsc3 differential scanning 

calorimeter and its density 𝜌 has been estimated by weighing 

a sample and measuring its dimensions. The thermal 

diffusivity 𝑎  has been estimated by the flash method [15] 

applied on a plane sample.  The thermal properties obtained 

at 20°C are: 

𝜌𝑐 = 3.83 × 106 J m−3 K−1, 𝑎 = 4.54 × 10−6 m2s−1  

leading to 𝜆 = 17.4 W m−1 K−1. 

The estimated values of the Chromel thermal conductivity 

obtained by our method are very close to the values obtained 

by coupling the results of the calorimetric and flash methods, 

with a deviation less than 4% that is quite acceptable.  

 

 
(a) 

 
(b) 

  

Figure 7. Experimental (  ) and modeled (    ) temperature for 

Chromel wires: a) D = 0.127 mm and b) = 0.254 mm 

 

Table 3. Estimated values of  the wire thermal conductivitiy 

𝜆 and of the external heat transfer coefficient ℎ for two 

Chromel wires 

 

Chromel Wire 
𝜆 ℎ 

[W m-1 K-1] [W m-2 K-1] 

Experiment 
𝐷 = 0.127 mm   18.0 5.8 

𝐷 = 0.254 mm 18.2 4.5 

Reference  - 17.4 - 

 

 

6. CONCLUSIONS 

 

The steady-state method proposed in this paper enables the 

measurement of the thermal conductivity  of an electrical 

conducting wire or fiber. The expression of the wire mean 

temperature has been established as a function of the wire 

thermal conductivity  and of the external heat transfer 

coefficient h. This expression has been used to realize a 

sensitivity analysis that demonstrated the possibility of the 

simultaneous estimation of  and h from several steady-state 

measurements carried on different wire lengths. The 

estimation of  is realized without making the assumption 

that the external heat transfer is null. The theoretical model 

and the estimation method have been validated by an 

experimental study carried out with a Chromel wire and with 

a Copper wire. The estimated values of the thermal 

conductivities are in good agreement with references values 

(less than 5 % deviation).  

The extension of the method to thinner and shorter wires 

or fibers would be of great interest and may be studied in the 

future. 
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NOMENCLATURE 

 

D wire diameter, m 

h external heat transfer coefficient, W.m-2.K-1 

L wire length, m 

n number of wire lengths tested 

P wire perimeter, m 

R electric resistance,  

R0 electric resistance at initial temperature,  

S wire section area, m2 

sT̅ standard deviation of T̅, °C 

T wire temperature, °C 

Ta ambient temperature, °C 

T̅ wire mean temperature, °C 

x distance from the middle of the wire, m 

 

Greek symbols 

 

 

 temperature coefficient of the wire 

electrical resistance, K-1 

ϕ0 heat flux per volume unit, W.m-3 

 thermal conductivity, W.m-1.K-1 

ρ density, kg.m-3 

 wire electrical resistivity, .m 

 wire temperature rise, K 

θ̅ wire mean temperature rise, K 

ω alternative current pulsation, rd.s-1 
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