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ABSTRACT
This paper presents the results of principal factor analysis technique (PFA) developed for a 3-year 
study (2010–2012) on two urban wastewater treatment plants (WWTPs) situated in Murcia, Southeast 
of Spain. One of them receives wastewater for a medium-sized city (WWTP1), with an important 
industrial area, and the other one treats only domestic wastewater from a small-sized town (WWTP2), 
with slightly different treatment systems between them. Process performance and operation of WWTP 
are carried out to ensure their compliance with legislative requirements imposed by European Union. 
Because high amounts of variables are daily measured, a coherent and structured approach of such a 
system is required to understand its inherent behavior and performance efficiency. In this sense, PFA as 
a chemometric technique allowed us to investigate and propose a data reduction that allowed to group 
water-quality variables into selected factors with common features to describe the behavior of both 
plants, and their similarities and differences. Four main factors were extracted for WWTP1, associated 
with the presence of nutrients, the ionic component, the organic load to the plant, and the efficiency of 
the whole process, with an explaining variance of 62.12%. For WWTP2, also four main components 
were extracted, explaining 63.82% of the variance. These factors were pollution load to the plant, pollu-
tion output, marine intrusion, and, finally, the ionic component of water. The geochemical background 
composition of water in this zone and the important use of fertilizers in agriculture appeared to be two 
significant factors driving the results.
Keywords: chemometrics, principal factor analysis, wastewater treatment.

1 INTRODUCTION
A continuous monitoring of the effluent of wastewater treatment plants (WWTPs) is always 
required to ensure smooth operation, adjustment to prescribed legislative requirements and 
safety of the receiving water bodies [1]. The efficiency of the sewage treatment plant and the 
quality of the effluent are essential to fulfil the stringent effluent discharge standards [2], 
especially for nitrogen and phosphorus, both identified as the two main nutrients involved in 
aquatic eutrophication [3]. For this purpose, the chemometric analytical techniques applied 
to the study of physicochemical parameters in WWTP are widely used as a reliable assess-
ment procedure which allows to making a simplified model of the whole plant performance, 
reducing the datasets to a few significant variables, factors, or components, without losing 
significant information [4]. In this study, principal factor analysis (PFA) has been used to 
investigate the complex structure underlying the huge amount of water quality variables daily 
processed in two WWTP, transforming them into a manageable set of uncorrelated factors 
that explain most of the observed variance. The final objective was to investigate a data 
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reduction that allows grouping water quality variables into selected factors with common 
features to describe the behaviour of the plant in terms of pollution sources and treatment 
efficiency with a few uncorrelated components. Multivariate techniques have been widely 
applied to grouping water quality variables for different purposes; i.e., the composition of 
sewage of domestic origin [5], surface water [6,7], water quality from roof runoff [8], river 
watersheds [9], distribution of organic pollutants [10,11], heavy metal distribution in waters 
[12], new policy instruments in domestic wastewater treatment systems [13], mineral waters 
[14], and WWTP [15–17], among others. The multivariate statistical analysis employed for 
this study, besides allowing us to simplify the whole set of analyzed variables, eventually 
gave unexpected relationships among data, leading us to extract conclusions never expected 
with a more simplistic statistical approach [18].

The WWTP1 is located in Cartagena (Murcia, Spain), receiving wastewater from both 
urban and industrial activities. It consists of a conventional activated sludge system with a 
primary treatment and two parallel activated sludge reactors, serving about 2,10,000 equiva-
lent inhabitants (35,000 m3·d−1). The biological reactor consists of an anoxic tank for 
pre-denitrification followed by a facultative tank, both completely mixed and with a volume 
of 2,025 m3 each, ahead of the plug-flow aerobic reactor with a total net volume of 12,150 
m3, and aerated mixed liquor return to the anoxic and facultative zones.

The WWTP2 is located in a coastal and touristic area, with minimum industrial impact, 
close to the Mediterranean Sea. The water line consists of screening, grit and grease removal, 
and secondary treatment by extended activated-sludge system, with three lines a volume of 
9,721 m3 each. After the secondary clarifier, process is completed by a tertiary treatment, 
which consists of sedimentation, filtration, and disinfection by UV radiation. This plant is 
designed for 20,400 equivalent inhabitants (about 6,300 m3·d−1). The WWTP1 and WWTP2 
are significantly affected both for the amount and water quality entering the system, because 
of the changes in the population during the summer season, as it will be explained before.

2 MATERIALS AND METHODS

2.1 Sample collection and dataset

For WWTP1, daily wastewater samples were measured for 3 years and for different param-
eters, from the influent (after primary treatment), the activated sludge reactor, the recirculation, 
and the effluent of plant. For WWTP2, data for only 1 year were available.

The following water-quality parameters were included in the dataset: water flow [WF] 
(m3·d−1), pH (pH units), water temperature [WT] (°C), electrical conductivity [EC] (mS·cm−1), 
turbidity [TURB] (NTU), suspended solids [SS] (mg l−1), mixed liquor suspended solids 
[MLSS] (mg·l−1), mixed liquor volatile suspended solids [MLVSS] (mg·l−1), volume of the 
settled sludge after 60 minutes sedimentation [V60] (ml·l−1), sludge volume index [SVI] 
(ml·g−1), chemical oxygen demand [COD] (mg·l−1), biochemical oxygen demand [BOD] 
(mg·l−1), ammonium nitrogen [NH4-N] (mg·l−1), nitrate nitrogen [NO3-N] (mg·l−1), total 
nitrogen [TN], and phosphate phosphorus [PO4-P] (mg·l−1). Acronyms were used with sub-
indexes to properly indicate influent to the biological process (I), biological reactor (BR), 
recirculation (R) or effluent (E) from the WWTP. EC was determined with a Crison GLP 32 
conductimeter (Barcelona, Spain) and pH with a Crison GLP 22 pH meter (Barcelona, Spain), 
both calibrated by means of standard solutions. COD was determined using the Spectroquant 
NOVA 30 from Merck (Darmstadt, Germany), TURB with the Hach 2100N laboratory turbi-
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dimeter (Hach Company, Loveland, USA) and oxytop respirometers (WTW, Weiheim, 
Germany) were used for BOD analysis. All the other parameters were calculated according 
to the  Standard Methods for the Examination of Water and Wastewater [19].

2.2 Statistical analysis

Statistical analysis was carried out using Statistical Package for the Social Sciences (SPSS 
for Windows 22.0). Pearson’s correlation coefficient (r) was computed between different 
parameters to determine the extent to which values of both parameters were correlated. 
Tukey-Kramer method was the multiple comparisons procedure used for the simultaneous 
estimation of pairwise differences of means in one-way ANOVA, and F-Snedecor values 
were used for its fitting performance.

The PFA resulted in a number of factors smaller than the initial set of variables; the first 
factor explains the largest part of the variance and the others represent successively smaller 
portions. To verify the factors’ quality, three criteria were followed: the explained variance of 
each individual factor must be greater than 5%, the accumulated portion of explained vari-
ance must be higher than 70%, and the results should be represented in a simple rotated 
matrix structure to facilitate interpretation [20]. For this purpose, varimax orthogonal rotation 
with Kaiser normalization was used as the rotation method, preferable to more complicated 
oblique rotation methods [21].

The PFA reported different elements as a result: correlation matrix, Kaiser-Meyer-Olkin 
(KMO) test of sampling adequacy, used to study the fit degree of the data to factor analysis, 
and Bartlett’s test of sphericity, to examine the null hypothesis that the resulting correlation 
matrix is an identity matrix. Besides these parameters, total explained variance, sedimenta-
tion graphic, and the rotated solution were obtained. Finally, the sedimentation graphic 
allowed us to choose the number of factors to be extracted; i.e., those with eigenvalues greater 
than one according to the Kaiser criteria.

3 RESULTS AND DISCUSSION

3.1 General considerations

Table 1 depicts the KMO and Barlett’s tests for both WWTP. In both cases, we can reject the 
null hypothesis that the correlation matrix is an identity matrix, accepting a clear correlation 
between response categories and appropriateness of the selected model, with less data than 
the original. Also in both dataset, the KMO test indicated a middling sampling adequacy 
(between 0.700 and 0.790), according to Kaiser’s classification [22], which means that it is 
acceptable to use the PFA technique. For WWTP1, 21 out of 32 attributes satisfied the 0.4 
cross-factor loading threshold in the varimax rotated matrix, and 16 attributes for WWTP2.

As presented in Table 2, six factors were extracted for WWTP1 with eigenvalues greater 
than one, also known as Kaiser’s rule [23], describing 72.80% of the total variance of the 
dataset. Each factor represents a variable in the model, although it is comprised of a linear 
combination of different attributes. The first factor (PF1) accounted for 25.93% of the total 
variance, the second factor (PF2) accounted for 18.15% of the total variance, the third factor 
(PF3) accounted for 10.93% of the total variance, the fourth factor (PF4) accounted for 7.10% 
of the total variance, the fifth factor (PF5) accounted for 5.85%, and the sixth factor (PF6) 
accounted for 4.83% of the total variance. Then, the reduction of dataset dimensionality was 
from 21 to 6, this is 71.43%, losing about 30% of information.
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Table 1: KMO and Barlett’s tests results for WWTP1 and WWTP2.

WWTP1

Kaiser-Meyer-Olkin value Barlett’s test of sphericity

0.751 Chi-square approx. d.f. Sig.

2,054.423 210 p < 0.001

WWTP2

Kaiser-Meyer-Olkin value Barlett’s test of sphericity

0.763 Chi-square approx. d.f. Sig.

1,668.507 136 p < 0.001

Table 2: Component and total explained variance for WWTP1 and WWTP2 after 
varimax orthogonal rotationa.

WWTP1

Component

(Factor) Eigenvalue Initial variance(%)

Cumulative

variance (%)

PF1 5.446 25.933 25.933
PF2 3.812 18.154 44.087
PF3 2.296 10.932 55.019
PF4 1.491 7.101 62.120
PF5 1.229 5.851 67.971
PF6 1.014 4.827 72.798

WWTP2

Component (Factor) Eigenvalue Initial variance(%)
Cumulative variance 
(%)

PF1 5.178 30.457 30.457
PF2 2.468 14.516 44.972
PF3 1.782 10.480 55.452
PF4 1.423 8.370 63.822
PF5 1.258 7.402 71.224

In a similar way, five factors were extracted for WWTP2 with eigenvalues greater than 
one, describing 71.22% of the total variance of the dataset. The first factor (PF1) accounted 
for 30.46% of the total variance, the second factor (PF2) accounted for 14.52% of the total 
variance, the third factor (PF3) accounted for 10.48% of the total variance, the fourth factor 
(PF4) accounted for 8.37% of the total variance, and the fifth factor (PF5) accounted for 
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7.40%. In this case, the reduction of dataset dimensionality was from 28 initial variables to 
5, this is 82.14%, losing also about 30% of information.

3.2 Principal factor analysis for WWTP1

Once factors were extracted, there is a need for their interpretation. The first factor (PF1) was 
characterized by a clear influence of nutrient pollution, as it was mainly affected by nitrogen 
and phosphorus compounds; therefore, it could be labelled as the “nutrient  factor”, increased 
during winter and spring (F = 5.112, p < 0.01). Acosta et al. [24] have reported a increase in 
the application of fertilizers during these seasons. The second factor (PF2) represented the 
inorganic or ionic component of the model, mainly represented by the water electrical con-
ductivity and water temperature. The electrical conductivity proved to be higher for the 
summer than for the other three seasons, which could be explained by an easier evaporation 
of water due to an increase on temperature and sun irradiance, significantly different from the 
other seasons with increased precipitations, leading to a general diluting effect [25]. The third 
PF3 was mainly related to the organic load of wastewater; including suspended solids (0.648), 
chemical (0.879) and biochemical (0.839) oxygen demand in the influent. For that  reason, 
positive scores on PF3 were mainly observed for samples collected in winter, spring, and 
autumn for the three studied years, where the population within the city is at its height, 
decreasing during the summer season In contrast, the second factor displayed the positive 
score during the spring and summer periods, showing the geochemical background compo-
nent of our waters. The fourth factor received high loadings from suspended solids in the 
effluent, chemical oxygen demand, and biochemical oxygen demand, all of them in the efflu-
ent of the WWTP1. Because the positive loading of these three variables in the effluent, this 
factor may be considered as a measure of the WWTP1 performance efficiency, being higher 
for winter and spring, when both the organic and nutrient load are increased. The fifth factor 
and sixth factor were eliminated for the analysis, as they proved to display only one water 
quality parameter each one. A similar decision has been reported by other authors [20]. 

3.3 Principal factor analysis for WWTP2

Table 3 depicts loadings for each factor or component after varimax rotation for WWTP2. 
Again, the first factor (PF1) was characterized by the highest number of attributes loading on 
a single factor (six). The water-quality parameters loading on this factor were V60 (0.732), 
SS (0.904), BOD (0.911), COD (0.908), TN (0.735), and phosphate (0.934), all of them in the 
influent. Because this result, PF1 could be associated with the pollution input to the WWTP2, 
both organic and inorganic, and could perfectly represent the influent to the sewage plant. As 
depicted in Fig. 1, it is worth noting that its value increases during summer season, due to the 
location of WWTP2 in a coastal and touristic zone.

The second component (PF2) accounts for 14.52% of explained variance and includes [SS]

E (0.718), [BOD]E (0.728), and [TN]E (0.613). These weights give the PF2 the role of efflu-
ent, or the pollution output of WWTP2. As in PF4 for WWTP1, the positive loading of these 
three variables within the PF2 for WWTP2 would indicate a measure of the performance 
efficiency. As presented in Fig. 1, PF2 values by season are always under 0.0 score, except for 
autumn. This could be due to heavy rains and intense storms taking place in our Mediterra-
nean area during that season, producing strong water runoffs loaded with particulate matter 
and water pollutants, including nutrients and fertilizers that could reach the WWTP2.
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Table 3: Rotated component matrix with factor loadings (> 0.4) for WWTP2.

Attribute

Factor (component)

PF1 PF2 PF3 PF4 PF5

[WF] −0.434

[pH]I 0.899
[pH]E 0.861
[EC]I 0.851
[EC]E 0.828
[V60] 0.732
[TURB] 0.812
[SS]I 0.904
[SS]E 0.718
[BOD]I 0.911
[BOD]E 0.728
[COD]I 0.908
[COD]E 0.726
[TN]I 0.735
[TN]E 0.613
[PO4-P]I 0.934
[PO4-P]E 0.934 0.487

Figure 1: Temporal patterns for first four components by season in WWTP2.
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The third extracted factor (PF3) are involved such variables as [pH]I (0.899) and [pH]E 
(0.861), and with a lower weight [WF] (−0.434). This factor increases in winter, being nega-
tive the rest of the seasons, when tourism increases in that area. For that reason, it could be 
related to marine intrusion in the sewage system. During wintertime, the  discharge to the 
sewage system is the lowest compared with the other three seasons; this fact would explain 
that marine intrusion would look highlighted during winter, with a rise of pH because of the 
basic character of seawater. The rest of the year, the higher water flow would cushion this 
effect.

The fourth factor (PF4) explained 8.37% of the variance in the dataset (Table 2), receiving 
loadings from two water-quality parameters: EC, both in the influent (0.851) and the effluent 
(0.828), and phosphate in the effluent (0.487). This factor could represent the inorganic or 
ionic component of the model, displaying its higher values during spring and fall. As in PF2 
for WWTP1, its ascent during spring is due to the rise of temperature in this period related to 
winter, allowing higher water evaporation. Although this pattern should continue in summer, 
the increase in population, with the highest water flow for WWTP2, would mask this factor. 
The temperature stays high in this latitude during autumn, although the touristic population 
decreases, rising PF4 again. Beside this, the previously mentioned storm water runoff during 
autumn would explain the increase on phosphorus values. The fifth factor (PF5) demon-
strated 7.40% of the variance in the data, with only two variables represented; i.e., TURB and 
COD in the effluent. As indicated by other authors [26], this factor could be ignored. Exclu-
sion of this PF5 for WWTP2 meant the reduction in the explained variance from 71.22% 
down to 63.82% of the dataset. Similar results have been previously reported; Zhang et al. [7] 
reported an explained variance of 58.79% for four factors controlling the water quality of the 
Xiangjiang River, and Vialle et al. [8] explained, with three components, a 60.00% of the 
total variance of their dataset for water quality monitoring of roof runoff.

4 CONCLUSIONS
This study used a different chemometric techniques, PFA, to identify the inherent  structure of 
a water quality dataset, containing physical and chemical parameters from two different 
WWTP. One of them receives WWTP1, with an important industrial area, and the other one 
treats only domestic WWTP2 situated near the coast. Four main factors were extracted for both 
of them, although with slightly different interpretations. WWTP2 displayed a marine intrusion 
factor because of its proximity to the sea, being higher during winter time, when the population 
in the coast decreases. However, WWTP1 presented a specific factor dealing with nutrients, 
because its proximity to agricultural areas. It is interesting to note that both of them shared an 
ionic component, due to the geochemical background composition of water in our region.
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