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ABSTRACT

In this work the Forchheimer, non-Boussinesq natural convection heat transfer of water around 4 °C. is analyzed,
the following dimensionless parameters are found to describe the problem which are namely the modified Rayleigh
number (Ra,). the inclination angle (®). the aspect ratio of the enclosure (A), and the exponent for non-

Boussinesg-approximation (n).

It was found that the increasing of the modified Rayleigh number Ra, increased the mass flow rates and the
buoyancy forces and consequently increases the mean Nusselt number, it was found also that the increasing of the
value of the exponent for non-Boussinesq-approximation (n): which physically means a non-linear temperature —
density relationship, caused the mean Nusselt number and the dimensionless stream function to decrease to reach
their minimum values at n=2, this is due to smaller temperature difference and consequently smaller buoyancy
forces. The inclination angle (®), has a certain effect on heat transfer and fluid flow as the maximum heat transfer

rate is obtained at inclination angels around ®=30"-60".
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1. INTRODUCTION

The flow of homogenous fluids and heat transfer
through porous media has been of considerable interest
because of numerous applications of flow through
porous media. Fluid density usually changes as a
function of the fluid’s temperature in a reasonably
linear manner. A notable exception is liquid water. Pure
water at a pressure of one atmosphere has a maximum
density of 9999720 kg/m’ at 4°C. Above this
temperature the density of water decreases as the
temperature is increased in a manner similar to other
fluids. For temperatures below 4°C, the trend is
reversed as density increases with increased
temperature, giving rise to a maximum density at the
4°C point.

In previous paper (Duwairi 2006) investigated the
problem of transient laminar magneto hydrodynamic
free convection over a vertical isothermal plate in water
in the temperature range between 20°C and 0°C
assuming a linear relationship between fluid density and
temperature. It was assumed then that the equation Eq.
(1). Can be employed to give the density of pure or
saline water which was described by (Gebhart 1977)

Instead of the linear-density model used in the
Boussinesq-approximation
p=pm (1=BT=Tn )" ("

Where p_and Tyare the maximum density and
temperature at the given pressure and salinity, B is the
coefficient of thermal expansion and n is the exponent.

The present paper extends this work by investigating
the natural convection of water at 4 °C in a porous
media filled rectangular enclosure. To present the result
for the Non-Boussinesq approximation along with other
parameters which are included in the final system of
partial differential equations, the governing continuity,
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momentum and energy equations are going to non-
dimensionlized using suitable stream function and
dimensionless temperature ratios and finally solved
using finite difference method. The stream lines and
isotherms are plotted to obtain flow patterns and
temperature fields at different effects of the above
parameters as well as the mass and heat fluxes inside
the porous enclosure. The boundary conditions selected
on the enclosure are two adiabatic and two isothermal
walls. (Alexandre et al., 2005) discussed Distribution
of heat sources in vertical open channels with natural
convection.

In the literature many studies exists for the mixed
convection boundary layer flow about vertical, inclined,
and wedge surfaces immersed in a viscous fluid. Such
as (Cawley 2004) who studied the free convection in a
vertical cylinder of water in the density at 4 °C, (V.
Kumaran a 2006) who studied the steady free
convection from a vertical wall/plate embedded in a
porous medium filled with water at 4 °C, also (Oztop,
Varol et al. 2009) analyzed the natural convection in
right-angle triangular enclosure filled with saturated
cold water which has a density maximum and (Hsieh
1993) and ( ling, Nazar Pop 2006) who considered
free convection flow past a vertical surface under
different boundary conditions.

Others dealt with free/ mixed convection boundary
layer flow of water at 4 oc past different geometries
with constant or variable surface temperature in a
porous medium among those was (M. Guedda a 2011)
who investigated the (wo-dimensional  mixed
convection boundary-layer flow over a vertical flat
plate embedded in a porous medium saturated with a
water at 4 °C, (Khan and Gorla 2009) studied the
mixed convection of water at 4 °c along a wedge in a
porous media, also (ling, nazar, pop & Merkin 2007)
considered the steady mixed convection boundary-layer
flow over a vertical impermeable surface in a porous
medium saturated with water close to its maximum



density. (Shehadeh and Duwairi 2010) and (Al-
Badawi and Duwairi, 2010) studied heat transfer to
water but using Boussinseq approximation. In all these
studies the free/mixed convection of water at 4 ec for
external flow were investigated either for flow in a
plain or a porous media, but little attention is given to
the internal flow heat transfer problem due to
complexity in solving for the pressure gradients inside
different conduits.

2. MATHMATICAL FORMULATION AND ANALYSIS

The geometry considered is an inclined rectangular
enclosure, which embedded in a fluid-saturated porous media
as shown in fig. (1). One wall of the enclosure is kept at
uniform high temperature and the opposite is kept at a
uniform low temperature. The other two walls of the
enclosure are adiabatic, i.e., it is assumed that no heat is

transferred into or out of walls.

Figurel. Schematic of physical model and coordinate system
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Where x and y are the horizontal and vertical coordinates,

and the corresponding velocities are u and v respectively, the

gravitational acceleration g is acting downward in the

direction opposite to the y coordinate. The Darcy effect is

introduced through the term (ﬂ} in the momentum
K

equation in x and y-directions. The non-Darcy effect is

introduced through the Forchheimer term [&uZJin the
JK
momentum equation in x and y-directions. The non-
Boussinseq term effects on convection heat transfer is
introduced into the governing equations through two terms

(pgB(T —T,)cos¢) and (pg (T —T,)sin ¢) in the momentum
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equation raised to the power n. For n=1 the problem is the
traditional Boussinesq convection heat transfer problem, for
n>1 the problem is the non-Boussinesq convection heat
transfer problem. The boundary conditions on the solution
for flow in the enclosure are:

T=T, atx=0

T =T, atx=W

-al:O aty=0 andy=H 2
W ] )

u=0 atx=0 andx=W

v=0 aty=0 andy=H

The solution will be obtained in terms of the stream function.
The stream function is defined by:
_ay 217
oy dx
Before discussing the solution to the above pair of equations,
they will be written in dimensionless form. For this purpose,
the following dimensionless variables are defined:

xut gad we¥ T
W w a, Tn _T(-

In terms of dimensionless stream function, the

continuity, momentum, energy equations:
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Here g, =w_ F,—:Qfﬁ' (10)
W v ' vW

Where Ra,, is the Darcy-modified Rayleigh number based
on the enclosure width W. Fr is the Forchheimer number
based on the enclosure width W. In terms of dimensionless
variables defined in Eq. (6), the boundary conditions are:

a=1 tX =0
= 1)
=0, atX =1
3—0:0 atY =0and Y = A
ay

Here A= H/W is the so-called aspect ratio of the enclosure.

All wall surfaces ¥ =0 (12)

A finite difference numerical procedure is used to solve the
governing equations (7-10) with the corresponding boundary
conditions (11 & 12), an iterative procedure is used in which
all the variables at the nodal points are first suggested,
updated values are than obtained by applying the governing
equations and the process is repeated until convergence is
attained.. To check accuracy of the predicted results, a
comparison is done with those of Qosthuizen and Naylor
[11] for the case of absent magnetic filed strength and the



both results are shown in table .1. It is clear from these
results that they are in complete agreement.

Qosthuizen and Presented
[ Naylor [11] Nu Results
Nu
o’ 1 1
30 275 27450
90° 25 25084
180° ] n

Table .1 Comparison between predicted results and those
obtained by Oosthuizen and Naylor [11]

4. RESULTS AND DISCUSSION:

A numerical study was performed to examine the steady-
state, laminar convection heat transfer problem inside a
porous media filled inclined rectangular enclosures with the
parameters as power exponent of non-Boussinseq equation,
modified Darcy Rayleigh number, inclination angle and the
aspect ratio of the enclosure. The left-hand side wall is hot
and the right-hand side wall is cold while the other two walls
of the enclosure are adiabatic. The Finite difference scheme
is used to solve the momentum and energy equations. The
dimensionless streamlines and isotherms are plotted to obtain
flow patterns and temperature fields at different effects of all
parameters above.

4.1. The modified Rayleigh number effects:

The effect of the modified Rayleigh number on the
dimensionless streamlines and isotherms patterns was studied
for different values of the exponent for non-Boussinesg-
approximation, (n=land n=2).

Figure (2) illustrates the effect of the modified Rayleigh
number in the momentum equation on the dimensionless
streamlines and isotherms patterns for various values of Ra,,
with other parameters unchanged at ®=30-, A=1, Fr=0.01
and (n=1and n=2). Comparing results obtained for n=1 with
those obtained for n=2, gives a better understanding to the
combined effect of both parameters (“Ra,™ and “n”).

For small values of Rayleigh number i.e. at Ra,=1 Fig. (2-a)
the hot fluid along the left wall and the cold fluid along the
right hand side wall has relatively small value dimensionless
stream function of fluid flow, which is 0.04 at the center of
the enclosure and the heat transfer becomes by conduction, it
was obtained to be 0.06 for Ra,=land n=1.As the Ra,
number is increased through Ra,=50 to reach the maximum
value at Ra,=100 Fig.(5.4- b&c) the value of dimensionless
stream function of fluid flow increases to reach up to 6 at the
center of the enclosure. From the results obtained for n=1 we
can see that the maximum value at Ra,=100 is about 10.And
in both cases it can be seen that the gradual increase of the
Ra, from Ra,=1 to Ra,=100 has a recognized effect of the
flow temperature (dimensionless temperature). The increase
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in the exponent “n” while keeping the value of Ra,, constant
mans small rates of buoyancy forces, so in actual increasing
the exponent “n” will result in an increase in the
dimensionless temperature flow rates, and defines higher
temperature inside the enclosure, this is due to the high
buoyancy force effect on the fluid circulation. Also the
relation between the variation of mean Nusselt number and
the dimensionless stream function at the center of the
enclosure and the inclination angel for an enclosure with
various values of Rayleigh number for a square enclosure i.e.
A=1 and Fr=0.01 for the exponent for non-Boussinesq-
approximation n = 1, is illustrated by Figure (5).
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Figure 2, typical dimensionless streamline and dimensionless
temperature patterns for various Darcy-modified Rayleigh number,

(a) Raw=1, (b) Raw=100, for ®=30°, A=1, Fr=0.01 and n=1. 0.2 08 I
4 e S
3 —==0\ Nu_Me¢an .
¢ — i
0 » Y
1 , : i,
5 R
3 \
3 ) \
-g Raw'= 1, 504100 S R E
-9
-10 clination angle (®)
-11 ————Wheehnter
p2 04 06 OB 1

Figure 3 variation of mean Nusselt number and the dimensionless | e
center-stream function with the inclination angel for an enclosure ol TR
with various values of Ra, at A=1 Fr=0.01 and n=I dii o - ==
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Figure 4, typical dimensionless streamline and dimensionless
temperature patterns for various aspect ratio of the enclosure, (a)
A=1, (b) A=5, for ®=30°, Ra,=100, Fr=0.01 and n=2.
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Figure 5, variation of mean Nusselt number and the dimensionless

center-stream function with the inclination angel for an enclosure

with various values of the enclosure’s aspect ratio (A) at n=1

(a) Fr=0.01 and Ra,.=100.
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@) Figure 6, typical dimensionless streamline and dimensionless
temperature patterns for various inclination angel of the enclosure,
(a) ®=45°, (b) ®=90°, (c) ®=180°, for Ra,=100, A=1, Fr=0.01 and

n=2.
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I . 1 with various values of (n) at A=1 Fr=0.01 and Ra,=100
— A " Nomenclature

The velocity in x direction. [m/ s]
The velocity in y direction. [m/ s]
(b)

The cold wall temperature. [K]

u
v
Te
Th The hot wall temperature. [K]
g Gravitational acceleration. [m/ s°|
K Permeability. [m?]

Ce Forchheimer constant.

n Power Eexponent in non-Boussinseq equation
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P Pressure |Pa]
T Temperature. [K]
w The length in x-direction. [m]
H The length in y-direction. [m]
ka Thermal conductivity of the porous media and
fluid. [W/m K]
Cp Specific heat at constant pressure. [kl/kg.K]
Fr Forchheimer’s number.
Ra,, The Darcy- Rayleigh number.
A The aspect ratio of the enclosure.
Greek symbols
¢ The inclination angle of the enclosure. [degrees]|
n Absolute viscosity. [kg/m.s|
p The fluid density. [kg/ m’]
Po The fluid density at some reference temperature, [kg/m3|
P Coefficient of thermal expansion. [K™?|
P Streamline function.
L ¢ Dimensionless stream function.
2
g Thermal diffusivity- ™M/ s
v Dynamic viscosity. [m?/ s
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