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Image category recognition is important to access visual information on the level of objects 

and scene types. In this paper, we propose a new approach for color object recognition using 

the powerful information provided by the color. This approach is based on the combination of 

Gray-Edge color constancy, hue components in HSV (hue, saturation, value) color space and 

cell and bin ideas used in the HOG (Histograms of Gradients) descriptors. The proposed 

oriented descriptor benefits of the invariance of hues against light intensity change, light 

intensity shift and light intensity change and shift, and solve its missing of invariance against 

light color change by using Gray-Edge color constancy. Moreover, the use of cells and bins in 

this proposed descriptor building boost its invariance the geometric and photo-metric 

transformation and increases the recognition rate. SVM classifiers (Support Vector Machine) 

which is a strong classification method known for its flexibility and its power of generalization 

are used for the training and recognition steps. The proposed method is evaluated on two 

publicly available datasets including Columbia Object Image Library and The Amsterdam 

Library of Object Images and obtained a recognition rate of 95.64% and 96.48% – clearly 

showing the exceptional performance compared to existing methods. 
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1. INTRODUCTION

Recognizing objects from an image is a difficult task in 

computer vision. Obviously human beings are recognizing 

objects through vision with high accuracy and little effort, it is 

still unclear how this perfect performance is achieved. When 

developing a computer vision model to recognize an object, 

which rises from challenging theoretical problems, such as 

how to model the visual appearance and recognize objects. In 

general object recognition model is framed as image 

acquisition, prepossessing, feature extraction, and 

classification [1-6]. 

A simple and effective recognition scheme is to represent 

and match images on the basis of color histograms as proposed 

by Swain and Ballard [7]. The work makes a significant 

contribution in introducing color for object recognition. 

However, it has the drawback that when the illumination 

circumstances are not equal, the object recognition accuracy 

degrades significantly. This method is extended by Funt and 

Finlayson [8], based on the re-time theory of Land [9], to make 

the method illumination independent by indexing on 

illumination invariant surface descriptors (color ratios) 

computed from neighboring points. However, it is assumed 

that neighboring points have the same surface normal. 

Therefore, the derived illumination-invariant surface 

descriptors are negatively affected by rapid changes in surface 

orientation of the object (e.g. the geometry of the object). 

Healey and Slater [10] and Finlayson et al. [11] use 

illumination-invariant moments of color distributions for 

object recognition. 

These methods are sensitive to object occlusion and 

cluttering as the moments are defined as an integral property 

on the object as one. In global methods, in general, occluded 

parts will disturb recognition. Slater and Healey [12] 

circumvent this problem by computing the color features from 

small object regions instead of the entire object. 

To better understand the differences between the detectors, 

Hoiem et al. [13] provides an extensive analysis of the object 

detectors and their properties. Their conclusions are that 

detectors work well for standard object appearances and for 

common imaging conditions. Evidently, a different 

construction property of the detectors (e.g. search strategy, 

functionalities and presentation of the model) influences the 

robustness of the methods of varying imaging conditions (e.g., 

unusual views and size of the object, occlusion, clutter). For 

example, detectors based on the sliding window approach [14] 

using predefined window sizes and aspect ratios are good for 

finding likely object positions (positions of the approximate 

object). However, they are less suited to detect deformable 

objects with precision. Hoiem et al. [13] shows that these types 

of detectors usually suffer from poor location errors. On the 

other hand, a flexible sliding window allows detect deformable 

objects. The large number of candidates region for detection 

limits the use of strong classifiers. Therefore, selective search 

[13] is integrated as pretreatment steps of current state-of the

art techniques [15] to reduce the computational complexity of

the sliding window based approaches on generating a reduced

set of candidates Regions. However, Hosang et al. [16] show

that selective research generates candidate regions that are

sensitive to changes in scale, illumination and geometric

transformations. This result is because selective search is

based on segmentation derived from super pixels that are
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unstable for small distortions of the image. 

From the above observations, the choice which colors 

models to use depends on their robustness against varying 

illumination across the scene (e.g. multiple light sources with 

different spectral power distributions) [17], for this in this 

paper we propose a new recognition method independent of 

the illumination change based on the combination of Gray-

Edge color constancy, hue components in HSV (hue, 

saturation, value) color space and cell and bin ideas used in the 

HOG (Histograms of Gradients) descriptors. The proposed 

feature is effective in recognition of color handmade objects 

with uniform background. 

This paper is organized as follows: In Section 2, we present 

some old color based feature extraction studies (histogram of 

oriented gradient (HOG), opponent histogram, hue histogram, 

SIFT (Scale Invariant Feature Transform) feature and local 

Image Descriptor from Even Gabor Filter Responses), those 

methods will be used for a detailed comparison with the 

proposed methodology. In Section 3 we present our proposed 

feature and the methodology of building the descriptor. In 

section 4, Experiments are carried out on Columbia Object 

Image Library (COIL-100) and The Amsterdam Library of 

Object Images. 

 

 

2. COMPARATIVE METHODS 
 

In this section we will present some exciting methods which 

are opponent histograms, hue histograms of Gever, SIFT 

features (Scale Invariant Feature Transform) and a local Image 

Descriptor from Even Gabor Filter Responses. Those classical 

Color based features will be used for a detailed comparison 

with the proposed HUE descriptor. But, first we will start by 

given a definition of light intensity, light intensity shift, light 

intensity change and shift and light color change. 

-Light colors change: According to Kries Model [18], 

changes in the illumination can be modeled by a diagonal 

mapping of Von. This diagonal mapping is given as follows: 
 

, .c u c uF D F=                              (1) 
 

According to Van de Sande et al. [19], where 𝐹𝑢  is the 

image taken under an unknown light source, 𝐹𝑐 is the same 

image transformed, so it appears as if it was taken under the 

reference light (called canonical illuminant), and 𝐷𝑢,𝑐  is a 

diagonal matrix which maps colors that are taken under an 

unknown light source 𝑢 to their corresponding colors under 

the canonical illuminant c : 
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𝑅 is the red component of images in RGB color space, 𝐺 is 

the green one and 𝐵 represents the bleu component. 

-Light intensity change: For Eq. (2), when the image 

values change by a constant factor in all channels (i.e.𝑎 = 𝑏 =
𝑐 ), this is equal to a light intensity change: 
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Light intensity changes include shadows and lighting 

geometry changes such as shading. Hence, when a descriptor 

is invariant to light intensity changes, it is scale-invariant with 

respect to (light) intensity [19]. 

-Light intensity shift: An equal shift in images intensity 

values in all channels, i.e. light intensity shift, where 
(𝑜1 = 𝑜2 = 𝑜3) and (𝑎 = 𝑏 = 𝑐 = 1) will yield: 
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Light intensity shifts correspond to object highlights under 

a white light source and scattering of a white source. When a 

descriptor is invariant to a light intensity shift, it is shift 

invariant with respect to light intensity [19]. 

-Light intensity change and shift: The above classes of 

changes can be combined to model both intensity changes and 

shifts: 
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i.e. an image descriptor robust to these changes is scale 

invariant and shift invariant with respect to light intensity [19]. 

 

2.1 HOG (Histogram of Oriented Gradient) 

 

The HOG descriptors were introduced by Dalal and Triggs 

[20-22]. The main idea of the histogram of oriented gradient is 

that the local appearance and the shape of the object in an 

image can be described by the distribution of intensity of the 

gradients or the direction of contours. 

Firstly, the implementation of these descriptors is obtained 

by dividing the image into small connected areas, called cells, 

and secondly, in each cell the histogram of the direction of the 

gradient is calculated. The combination of these histograms 

represents then the descriptor. 

HOG descriptor maintains some key advantages compared 

to other methods, since the histogram of oriented gradient 

descriptors operates on localized cells, this method maintains 

invariance to geometric and photometric transformations, and 

these changes will only appear in large areas of space. 

In the original paper, the HOG features are proposed for 

pedestrian (human) detection and later many researchers used 

them to detect some other objects such as cars, dog, cat, etc. 

Lee et al. [23] show how prediction time can be decreased for 

car detection. A faster HOG approach for car detection by 

detecting the shadow region under the cars is proposed by Li 

and Guo [24]. Hsiao et al. [25] present in detail the 

implementation of HOG and SVM, for person detection. 

Bauer et al. [26, 27], and still for person detection, by using an 

FPGA (Field Programmable Gate Arrays), a CPU (Central 

Processing Unit), and a GPU (Graphics Processing Unit) in a 

pipeline architecture, authors present another efficient 

implementation of the same suite of algorithms. 

 
2.1.1 HOG (Histogram of Oriented Gradient) limitation 

As I mentioned before, the Histogram of Oriented Gradient 

is calculated within a small region of images called cells, we 

get those cells by dividing the image according to a number of 
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pixels in this image, such as for example, a cell of 8 * 8 pixels 

or 5 * 5 pixels, in our opinion, for large test image (compared 

to training images), the HOG is less symmetrical, due to the 

impact of changing pixels number of the image. 

Also, this method is sensitive to illumination condition 

change, a change in the illumination color and light scattering, 

shadows and lighting geometry changes such as shading and 

the highlights under a white light source and scattering of a 

white source, all this, can operate significantly the recognition 

rate of this method. 

The novelty of our descriptor compared to the HOG is using 

the stability of hues against the illumination change in the 

HSV color space and Gray-Edge color constancy to make 

object colors independent to the light color to make the 

proposed descriptor robust against illumination conditions 

change. We also changed the method of choosing cell size to 

keep the descriptors symmetrical in order to facilitate the 

classification task and to make our descriptor more invariant 

to geometric and photometric transformations. 

 

2.2 Opponent histogram 

 

According to Van de Weijer and Schmid [28], channels of 

the opponent color space are given as: 
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The color information by is represented by the channel 𝑂1 

and 𝑂2 and the intensity information is represented by 𝑂3. The 

opponent angle 𝑎𝑛𝑔𝑥
𝑜 in opponents color space is supposed to 

be specular invariant [28]. This opponent angle is defined as:  
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where, 𝑂1𝑥  denotes the first order derivative of 𝑂1 , etc. 

Authors in [28] applied an error analysis to the opponent angle. 

Here, 𝜕𝑎𝑛𝑔𝑥
𝑂 is defined as the weight of the opponent angle:  
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The opponent histogram is quantized to 36 bins. For more 

details about opponent descriptors the reader will be able to 

refer to [28, 29]. 

 

2.2.1 Opponent histogram limitation 

According to Van de Sande et al. [19], opponent histograms 

in not invariant to light intensity change, light intensity shift, 

light intensity change and shift and light color change. So this 

feature is not invariant to change in shadows and lighting 

geometry changes such as shading, object highlights under a 

white light source and scattering of a white source and to a 

change in the illumination color and light scattering. Moreover, 

this descriptor is not invariant to geometric and photometric 

transformation. 

The proposed hue descriptor solves those drawbacks by the 

use of the hue which is invariant to light intensity change 

(change in shadows and lighting geometry changes such as 

shading), light intensity shift (objects highlights under a white 

light source and scattering of a white source) and light 

intensity change and shift(combinations of the above two 

conditions), and also the Gray-Edge color constancy to solve 

the problem of missing invariance to the light color 

change(change in the illumination color and light scattering). 

Moreover, cells and bin ideas used in the proposed hue 

descriptor solve the lack of invariance to geometric and 

photometric transformation. 

 

2.3 Hue histograms 

 

The hue becomes unstable near the Gray axis in the HSV 

color space. To this end, Van de Weijer et al. [29] apply an 

error propagation analysis to the hue transformation. The 

analysis shows that the certainty of the hue is inversely 

proportional to the saturation. Therefore, the hue histogram is 

made more robust by weighing each sample of the hue by its 

saturation. The H color model is scale-invariant and shift-

invariant with respect to light intensity. 

Hue and saturation of HSV color space can be computed 

from opponent colors [28]:  
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where, 𝑂1 and 𝑂2 are two components from opponent’s color 

space cites in Eq. (6) and equation Eq. (7), respectively.   

Same to the opponent histogram, hue histogram is quantized 

to36bins. For more details about opponent descriptors the 

reader will be able to refer to [28, 29]. 

In last few years, and because of the invariance of hue to the 

illumination change, many authors propose descriptors built 

using hue. In our experiment we will use the hue histogram 

cited by Van de Sande et al. [19]. 

 

2.3.1 Hue histogram limitation 

According to Van de Sande et al. [19], hue histograms is not 

invariant to light color changes, so the recognition rate will be 

affected by a change in the illumination color and light 

scattering. Furthermore, its building strategy is not effective in 

large scales, so the recognition system will not be invariance 

to geometric and photometric transformation. The novelty of 

the proposed hue descriptor compared to this hue histograms 

is the use Gray-Edge color constancy to make the descriptor 

invariant to the light color changes, and also changing the 

methodology of building the descriptor by using cell and bin 

ideas, this new methodology of buildings make the descriptor 

invariant to geometric and photo-metric transformation. 

 

2.4 SIFT features 

 

Scale Invariant Feature Transform (SIFT) is originally 

presented in 2004 by Lowe [30] as a strength descriptor for 
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object detection and recognition. The SIFT features are 

computed in four steps. The first one is to determine local key 

points, those points are important and stable for given images. 

Then features are extracted from each key point that explains 

the local image region samples, which are related to its scale 

space coordinate image. In the second step, weak features are 

removed by a specific threshold value. In the third step, 

orientations are assigned to each key point based on local 

image gradient directions. Finally, the 1*128 dimensional 

feature vector is extracted, and bi-linear interpolation is 

performed to improve the robustness of features. The above 

theory is defined through equations Eq. (13), Eq. (14) and Eq. 

(15).  
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where, 𝜉(𝜇, 𝜈, 𝜎)  is scale space of an image, 𝜓(𝜇, 𝜈, 𝑘𝜎) 
denotes the variable-scale Gaussian, 𝑘  is a multiplicative 

factor 𝐷(𝜇, 𝜈, 𝜎)  denotes the difference of Gaussian 

convolved with a segmented image. For more details about 

SIFT feature, the reader will be able to refer to the paper [30]. 

 

2.4.1 SIFT features limitation 

The drawback of SIFT feature is that it is mathematically 

complicated and computationally heavy. SIFT is based on the 

Histogram of Gradients. That is, the gradients of each Pixel in 

the patch need to be computed and these computations cost 

time. Moreover SIFT feature is not effective for low-powered 

devices. Moreover the SIFT descriptor is not invariant to light 

color changes, because the intensity channel is a combination 

of R, G and B channels [19]. The proposed hue descriptor 

solves this drawback by using color which improve the 

recognition rate. Furthermore, its construction method is less 

complicated, then the calculation time will be less than that of 

SIFT, so the proposed feature will be suitable for low devices. 

Moreover, the use of Gray-Edge color constancy to make 

colors channels independent to the light color, then the 

recognition system will be more robust. 

 

2.5 Gabor filter responses descriptor 

 

A 2D Gabor filter [31] is a complex filter that consists of a 

real/even part 𝐺𝑒 and an imaginary/odd part 𝐺0, 
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With: 𝑥 ′ = 𝑥 𝑐𝑜𝑠 𝜃 + 𝑦 𝑠𝑖𝑛 𝜃 and 𝑦′ = −𝑥 𝑠𝑖𝑛 𝜃 + 𝑦 𝑐𝑜𝑠 𝜃  

The filters have the form of a sinusoidal plane wave with 

wavelengths w  and orientation 𝜃  multiplied by a Gaussian 

envelope with a standard deviation𝜎. In order to ensure equal 

shape of Gabor filters of different sizes, 𝜎 is defined as a linear 

function of 𝑤  by𝜎 = 𝑐. 𝑤 . The parameter 𝛾  is the spatial 

aspect ratio of the filter. 

 

2.5.1 Local image descriptor from even Gabor filter responses 

Although Gabor filters are well known and often used, but 

authors [32] use those filters for the first time to present a 

descriptor based on multi-scale and multi-oriented even Gabor 

filters. According to the authors, this robust descriptor to 

illumination is a 3D joint histogram 𝐻(𝜃𝑖 , 𝑤𝑗 , 𝑙) of the values 

in �̃�: 

 

( ) ( ) ( ), , . , ,i j l i j

p F
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�̃� : The normalized feature map, 𝐿  Cells, 𝐶𝑙(𝑝), 𝑙 = 1. . . 𝐿 

are defined that represent the weighting of the spatial location 

𝑝 for the cell’s local sub-histogram. For more details about this 

local image descriptor from even Gabor filter responses, the 

reader will be able to refer to [32]. 

 

2.5.2 Local image descriptor from even Gabor filter responses 

features limitation 

Zambanini and Kampel [32] present the local Image 

Descriptor from Even Gabor Filter Responses as a descriptor 

robust to illumination Changes only. This descriptor is not 

invariant to geometric and photometric transformation, so the 

recognition rate of this method can be decreased in case of 

shadows and lighting geometry changes such as shading, 

translation, rotation and changing direction …, etc. Our 

proposed HUE descriptors solve this drawback by using cell 

and bin ideas. 

 

 

3. THE PROPOSED METHODS: HUE DESCRIPTOR  

 

The HSV system (Hue, Saturation, Value) is an image 

coloring mode that is often more efficient than the classic RGB 

system (Red, Green, Blue), especially for fractal images. It’s a 

3D polar match up a system of hue, saturation and value. 

 
 

Figure 1. Hue color wheel with degree 

 

-Hue: signifies the illustration of color type. It's expressed 

by a number which is an angular position on the chromatic 
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wheel 0 to 360 degrees (Figure 1). 

Image patches are represented by a histogram over hue 

computed from the corresponding RGB values of each pixel 

according to Van de Sande et al. [19] by: 
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                       (19) 

 

To counter instabilities in hue, its impact on the histogram 

is weighted by the saturation of the corresponding pixel. The 

hue descriptor is invariant with respect to lighting geometry 

and specularities when assuming white illumination. 

For building our proposed hue descriptor we start first by 

measuring colors of objects independent the light source color, 

to make this independence we use the Gray-Edge color 

constancy, after that we move the image division, in this step 

we divide our image to 25 cells (sub-image) overlapped by 

50%. For each cell we calculate the hue value of each pixel, 

and by using bin ideas, each cell will be coded with a vector 

of 12 values. This work will be repeated for all 25 cells. The 

Final step is regrouping the vectors of cells in one only victor, 

this vector will be the final characterization victor of the object 

image (Figure 2). 
 

 
 

Figure 2. Building steps of the Hue descriptor 

 

3.1 Step01: Gray-edge color constancy 

 

Color constancy is the ability to recognize colors of objects 

independent of the color of the light source [33]. Obtaining 

color constancy is of importance for many computer vision 

applications, such as image retrieval, image classification, 

color object recognition and object tracking 

Van de Weijer et al. [34], propose a new hypothesis for 

color constancy namely the Grey-Edge hypothesis, which 

assumes that the average edge difference in a scene is 

achromatic. Based on this hypothesis, they propose an 

algorithm for color constancy. Contrary to existing color 

constancy algorithms, which are computed from the zero-

order structure of images, this method is based on the 

derivative structure of images. Furthermore, authors propose a 

framework which unifies a variety of known (Grey-World, 

max-RGB, Minkowski norm) and the newly proposed Grey-

Edge and higher-order Grey-Edge color constancy algorithms. 

For more details about Gray-Edge color constancy readers will 

be able to refer to reference [34]. 

In our descriptor the first step is it’s about applying this 

Gray-Edge color constancy to make the colors of the object 

image invariant to light color changes. An example application 

of this Grey-Edge color constancy is shown in Figure 3. 

 

 
(a) Original image (1\_l5c3.png) 

 
(b) Gray-Edge color constancy second order application on 

(1\_l5c3.png) result 

 

Figure 3. Gray-edge color constancy second order effects 
 

3.2 Step02: Image division 
 

One of the key advantages of the HOG descriptor is its 

invariance to the geometric and photometric transformation 

since it operates on local calls [22], in order to keep this 

invariance to the geometric and photo-metric transformation 

in our proposed descriptor we used this cell method to make 

the hue descriptor operate on local calls also. For this reason, 

and after several studies, we have chosen to divide the object 

image into 25 cell overlapped by overlapped by 50 % as shown 

in Figure 4. 

 

 
(a) Gray-Edge color constancy second order application 

on (1\_l5c3.png) result 

 
(b) 25 cells of Gray-edge color constancy second order 

result 

 

Figure 4. Image division result (descriptor cells) 

475



 

3.3 Step03: Building cell features 

 

In this part, we start first by dividing the hue wheel into 12 

parts called bins. 
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After creating the 12 bins, we compute the hue value of each 

pixel of this cell according to Eq. (19). Then, the vote in bins 

will be done according to the hues value of each pixel, the 

magnitude of each bin is calculated by adding the hue 

magnitudes of all corresponding pixels. In this way we build a 

feature vector of 12 values (each value from these 12 values 

corresponds to the magnitude of a bin). 

 

magnitude 01,magnitude 02,
feature cell 01=

...,magnitude 11,magnitude 12

bin bin

bin bin

 
 
    (20) 

 

3.4 Step04: Histograms normalization 

 

In this paper we used the 𝐿2 normalization [20]. Let v  be 

the non-normalized vector containing all histograms in a given 

block, ‖𝑣‖𝑘 be its k-norm for 𝑘 = 1,2, . .. and 𝑒 be some small 

constant (the exact value, hopefully, is unimportant). Then the 

normalization 𝐿2 of the vector can be expressed as following: 

 

2 2

2

v
f

v e

=

+

                             (21) 

 

To get the final feature of cell 01, we normalize the vector 

cited in Eq. (19) with this 2L normalization. 

 

3.5 Step05: Histograms normalization 

 

To get the final Hue descriptor, steps 3 and 4 are repeated 

for all cells (25 cells). And then, all cells features will be 

regrouped in one vector (Figure 2) called ‘Hue descriptor’. 

 

  01,    02,  
 

,    11,   12

feature cell feature cell
Hue descriptor

feature cell feature cell

 
=  

 
(22) 

 

 

4. CLASSIFICATION 

 

All the Hue descriptors (Eq. (22)) of the database images 

are used to form a classifier of type SVM which generates a 

model (a set of vectors support). During the phase of the test, 

the descriptors are calculated in a way identical to the phase of 

training. Making a decision to join a pattern to its class is 

performed directly through the decision-making function of 

the SVM. 

4.1 Support vector machine (SVM) 

 

Vladimir Vapnik [35] proposed machine training with 

vectors of support (Support Vector Machine). From this time, 

the SVM has been largely used in the pattern recognition; the 

regression and the estimate of density. We will recall here the 

elementary principles of this machine. 

Suppose a couple (𝑥𝑘 , 𝑦𝑘) of random variables of values in 

𝑅𝑛 × {−1,1} , where 𝑥𝑘  are the Hue descriptors for the 

examples of training and 𝑦𝑘  are the labels of classes. The SVM 

requires the resolution of the problem of optimization 

according to: 

 

, ,

1

1
min

2

n
T

w b k

k

w w C 
=

+                    (23) 

 

Under the constraint: 

 

( ) 1

0

T

k k

k

y w b 



 +  −


                (24) 

 

where, 𝑤 is the vector orthogonal to the hyperplane, 𝑏 is the 

displacement relative to the origin, 𝜉𝑘  constraint release 

variables and 𝐶 it’s balancing variable. 

The method consists of transforming the data 𝑥𝑘 in a space 

of dimensions rose due to function 𝜑. The SVM look for a 

function of optimal decision of the form:  

 

( ) ( ).f x w x b= +                         (25) 

 

The kernel function is: 

 

( ) ( ) ( ), .
T

i j i jx x x x =                     (26) 

 

The basic kernel functions are: 

-Linear: the linear kernel function is: 

 

( ), T

i j i jk x x x x=
                         (27) 

 

-Polynomial: the polynomial kernel function is: 

 

( ) ( ), .
d

T

i j i jk x x x x r= +
                     (28) 

 

-Gaussian or RBF (Radial Basis functions): the gaussian 

kernel function is: 

 

( ) ( )2

, expi j i jk x x x x= − −
                     (29) 

 

-Sigmoid: the sigmoid kernel function is: 

 

( ) ( ), tan T

i j i jk x x x x r= +
                       (30) 

 

4.2 SVM multi-class 

 

SVM is inherently two class classifier. However, problems 

in real are in most case multi-class problems, the simplest 

example is the recognition of the optical characters. In such 
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cases, we do not try to assign a new example to one of the two 

classes but to one of many classes, i.e. that the decision is no 

longer binary and a single hyper-plane is not enough anymore. 

SVM multi-class separator reduces the multi-class problem 

to a composition of many two class hyper planes [36, 37]. 

These methods break down the whole of examples into many 

subsets; each subset represents a problem of two-class 

classification. For each problem a hyper-plane of separation is 

determined by SVM binary method. We build during the 

classification a hierarchy of the binary hyper-planes which is 

traversed from root to leaf to decide the class of a new example. 

There are several methods of decomposition in the literature 

like SVM one against one proposed by Vapnik [38] and SVM 

One against all proposed by Knerr et al. [39]. 

In this paper, we will use SVM multi-class one-against-all 

with a Gaussian kernel function to classify the descriptors data 

of the learning base in experiments 

 

 

5. RESULTS AND DISCUSSION 
 

In order to evaluate our descriptor, we used two databases, 

Columbia object image libraries (coil-100) and The 

Amsterdam Library of Object Images. The first database one 

will be used for testing the invariance to geometric and 

photometric transformation, and the second one for studying 

the invariance to illumination condition changes. 

For a detailed comparison between the proposed 

methodology with some other color-based feature extraction 

studies, we compare the proposed Hue descriptor results with 

the results of HOG descriptors, opponent histograms, hue 

histograms, sift feature and local image descriptors from even 

Gabor filter responses. 

The local image descriptor from even Gabor filter response 

results are used only in Amsterdam Library of Object Images 

tests because the source code provides by authors doesn’t 

support the image size of coil-100(128*128 pixels). 

 

5.1 Image database 

 

In this part we will give a brief presentation about Columbia 

object image libraries (coil-100) and The Amsterdam Library 

of Object Images. 
 

5.1.1 Columbia object image library (coil-100) 

Columbia Object Image library (coil-100) [40] is a database 

of color images contains 7200 image of 100 objects, 72 

different views for each object Images of the objects were 

taken at pose intervals of 5 degrees, these different angles for 

each object makes this data set ideal to test the robustness of 

geometric and photometric transformation. This is why this 

data set is widely used in object recognition experiments. 

 

 
 

Figure 5. Samples of images from the coil-100 database 

Figure 5 shows some object from the database, while Figure 

6 shows the same object with different views. 

 

 
 

Figure 6. An object from the coil-100 database with different 

orientations and scale changes 

 

5.1.2 The Amsterdam Library of object images 

Geusebroek et al. [41], present the ALOI (Amsterdam 

Library of Object Images) collection of 1,000 objects (Figure 

7) recorded under various imaging circumstances. In order to 

capture the sensory variation in objects recordings, they 

systematically varied viewing angles, illumination angle 

(Figure 8), and illumination color for each object (Figure 9), 

and additionally captured wide-baseline stereo images. They 

recorded over a hundred images of each object, yielding a total 

of 110,250 images for the collection. These images are made 

publicly available for scientific research purposes. The light 

color is varied by changing the illumination color temperature, 

resulting in objects illuminated under reddish to white light. 

For completeness, ALOI dataset are also included objects 

lighted by a different number of white lights at increasingly 

oblique angles (between one and three white lights around the 

object, introducing self shadowing for up to half of the object). 

 

 
 

Figure 7. Samples of images from Amsterdam Library of 

object images 

 

 
 

Figure 8. Example object from ALOI viewed under 24 

different illumination directions  

 

 
 

Figure 9. Example object from ALOI-COL viewed under 12  

different illumination color temperatures 
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5.2 Results 

 

Test step contains 2 parts: the first is Columbia object image 

library (coil-100) test in which we focus on testing invariance 

to photometric and geometric transformation, while the 

Amsterdam Library of Object Images test is dedicated to 

testing the invariance to the illumination conditions change. 

 

5.2.1 Columbia object image library (coil-100) tests 

This experiment is conducted on 34 objects. These 34 

objects are chosen by sampling one of each 3 successive 

objects (we take object number 1 and we don’t take objects 

number 2 and number 3, we take object number 4 and we don’t 

take objects number 5 and number 6, …). Through this method, 

the list of taken object in this experiment from the coil data is 

(object number1, object number4, object number7, object 

number 10, object number 13, object number 16, object 

number 19, object number 22, object number 25, object 

number 28, object number 31, object number 34, object 

number 37, object number 40, object number 43, object 

number 46, object number 49, object number 52, object 

number 55, object number 58, object number 61, object 

number 64, object number 67, object number 70, object 

number 73, object number 76, object number 79, object 

number 82, object number 85, object number 88, object 

number 91, object number 94, object number 97 and object 

number 100). 

Since each object has 72 images of different poses (5 

degrees apart), we used 22 images for training and 50 for tests 

for each object from the object list cited before. These 22 

images of training are chosen by taking $15$ degrees apart. 

Each image will be coded using HOG descriptors (HOG), 

opponent histograms (OPP), hue histograms (Hue H), SIFT 

features (SIFT), and the Hue descriptor proposed in this paper 

(Hue dis). 

The descriptor parameters used in this experiment are: For 

HOG histogram 9 is taken as the number of bins and 3 the 

number of HOG windows per bound box. For Opponent 

histograms and hue histograms we have used 36 as the number 

of bins, 2 as smooth flags and lambda=1. For the SIFT feature 

sigma=√2, octave=3 and level=3. While, for the proposed hue 

descriptor the number of cells is 25 and the number of bins is 

12. 

To facilitate the result reading, object list is divided into 

groups, group 01 contains the objects with the number from 1 

to 25 (1, 4, 7, 10, 13, 16, 19, 22 and 25). Group 02 contains 

objects with the number from 28 to 52 (28, 31, 34, 37, 40, 43, 

46, 49 and 52). Group 03 contains objects with the number 

from 55 to 79 (55, 58, 61, 64, 67, 70, 73, 76 and 79) and group 

contains 04 objects with the number from 82 to 100 (82, 85, 

88, 91, 94, 97 and 100). 

The classifiers are trained to use all but one image. This last 

image is used as a test image. In this way, the test image is not 

used in the training set. Table 1, Table 2, Table 3 and Table 4 

give the number of recognized images for each object from a 

total of 50 images per object used in tests. While, Table 5 

represents the average number of recognized images and the 

recognition rate of experiments carried on Columbia object 

image library (coil-100) data test. The F1 score value [42] is 

used to determine the average number of recognized images 

(ANRI). 
 

Recognized images

Recognized images + Unrecognized images
ANRI =      (31) 

Table 1. Number of recognized images for group 01 from a 

total of 50 images for each object 
 

 
HOG 

[20] 

OPP 

[19] 

Hue H 

[19] 

SIFT 

[30] 

Hue Dis [this 

article] 

Obj01 40 44 45 37 48 

Obj04 41 44 46 40 50 

Obj07 50 48 50 50 50 

Obj10 40 41 42 39 45 

Obj13 39 40 42 38 47 

Obj16 39 43 42 36 48 

Obj19 40 43 45 40 49 

Obj22 40 42 42 39 46 

Obj25 50 50 50 50 50 

 

Table 2. Number of recognized images for group 02 from a 

total of 50 images for each object 
 

 
HOG 

[20] 

OPP 

[19] 

Hue H 

[19] 

SIFT 

[30] 

Hue Dis [this 

article] 

Obj28 39 40 41 40 44 

Obj31 38 41 42 39 47 

Obj34 50 50 50 50 50 

Obj37 41 40 43 41 47 

Obj40 40 43 44 40 48 

Obj43 38 40 42 39 47 

Obj46 37 40 43 39 46 

Obj49 50 46 50 48 50 

Obj52 38 42 42 39 46 

 

Table 3. Number of recognized images for group 03 from a 

total of 50 images for each object 
 

 
HOG 

[20] 

OPP 

[19] 

Hue H 

[19] 

SIFT 

[30] 

Hue Dis [this 

article] 

Obj55 38 41 42 39 46 

Obj58 50 45 48 46 50 

Obj61 44 42 45 42 48 

Obj64 39 42 43 40 46 

Obj67 39 42 44 37 48 

Obj70 50 48 48 47 50 

Obj73 50 50 50 48 50 

Obj76 40 42 42 39 47 

Obj79 40 41 42 40 48 

 

Table 4. Number of recognized images for group 04 from a 

total of 50 images for each object 
 

 
HOG 

[20] 

OPP 

[19] 

Hue H 

[19] 

SIFT 

[30] 

Hue Dis 

[this article] 

Obj82 40 44 48 42 50 

Obj85 39 40 42 38 46 

Obj88 46 44 46 42 50 

Obj91 40 41 42 39 46 

Obj94 50 50 50 50 50 

Obj97 36 41 42 39 46 

Obj100 40 42 44 39 47 

 

From the results shown in Table 5, the proposed Hue 

descriptor has the best recognition rate in this experiment 

(95.64%), followed by Hue Histogram (89.36%). The 

opponent histogram coming third with 86.59% followed by the 

HOG (84.18%) and the SIFT is last (83.00%). 

From the HOG feature and the proposed Hue descriptor 

results (Table 5), it can be noticed that changing the method of 

choosing the cell, the number bins and also replacing the arc-

tangent used in HOG by the hue values in the proposed Hue 

descriptor, and also using Gray-Edge color constancy second 

order applications all this has improved the recognition rate by 
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around 12%. The proposed hue descriptor also has around 

13% batter recognition rate then the SIFT feature. This better 

performance in the proposed is due to the use of color and also 

due to its strategy of building. 

 

Table 5. Average number of recognized image and the 

recognition rate of experiments carried on Columbia object 

image library (coil-100) data test 

 

 
Average number of 

recognized images 

Recognition 

rate 

HOG [20] 42.09/50 84.18% 

OPP [19] 43.29/50 86.59% 

Hue H [19] 44.68/50 89.36% 

SIFT [30] 41.50/50 83.00% 

Hue Dis [this 

article] 
47.82/50 95.64% 

 

From the opponent histogram and the proposed Hue 

descriptor results, it can be noticed that changing the method 

of building the feature by using bins and cell ideas, and also 

by using hue components Gray-Edge color constancy second 

order applications have made the descriptor more robust 

against geometric and photometric transformation, this 

robustness has improved the recognition rate by around 9%. 

From the Hue histogram and the proposed Hue descriptor 

results shown in Table 5, it can be noticed that the proposed 

Hue descriptor is more efficient than the hue histogram. This 

efficiency is due to the strategy of building the proposed 

feature by using cell and bin ideas and also due to using Gray-

Edge color constancy second order applications in the 

proposed feature. This efficiency is clearly shown in the 

recognition rate of the proposed Hue descriptor which have 

6% more than the hue histogram recognition rate. 

From the results of Table 5 also, it's observed that for object 

category recognition, descriptors using color (opponent 

histogram, hue histograms and the proposed hue descriptor) 

are more efficient than other methods (HOG and SIFT 

features). 

Table 5 also confirms that the HOG feature is more robust 

than the SIFT feature against geometric and photometric 

transformation, this superiority of robustness is because the 

HOG feature is a local feature since it operates on local calls. 

The theoretical properties of hues invariant are confirmed. 

Features using this component of chrominance (hue histogram 

and the proposed hue descriptor) have the highest recognition 

rate.  

 

5.2.2 The Amsterdam Library of object images tests 

This experiment is conducted on 26 objects. These 26 

objects are chosen by sampling one of each 40 successive 

objects. Through this method, the list of taken object in this 

experiment from Amsterdam Library of Object Images data is 

(object number 1, object number 40, object number 80, object 

number 120, object number 160, object number 200, object 

number 240, object number 280, object number 320, object 

number 360, object number 400, object number 440, object 

number 480, object number 520, object number 560, object 

number 600, object number 640, object number 680, object 

number 720, object number 760, object number 800, object 

number 840, object number 880, object number 920, object 

number 960 and object number 1000). 

Geusebroek et al. [41], present the Amsterdam Library of 

Object Images collection of one thousand objects, which we 

recorded under 72 in plane viewing angles, 24 different 

illumination angles (Figure 8), and under 12 illumination 

colors (Figure 9). In this part of experiment, we focus on 

invariance ton illumination conditions changes. For this for 

each object we took the images of different illumination angles 

and different illumination colors, therefore each object has 36 

different images. We used 25 images for training, and 7 for 

tests for each object from the object list cited before. These 7 

images of training are chosen by sampling one of each 3 

successive images. 

Each image will be coded using HOG descriptors (HOG), 

opponent histograms (OPP), hue histograms (Hue H), SIFT 

features (SIFT), local image descriptors from even Gabor filter 

responses (Gabor), and the Hue descriptor proposed in this 

paper (Hue dis). Parameters of descriptors are the same used 

in the previous experiments. 

Same to the previous experiments, object list is divided into 

groups, group 01 contains the objects with the number from 1 

to 320 (1, 40, 80, 120, 160, 200, 240, 280 and 320). Group 02 

contains objects with the number from 360 to 680 (360, 400, 

440, 480, 520, 560, 600, 640 and 680) and group 03 contains 

objects with the number from 720 to 1000 (720, 760, 800, 840, 

880, 920, 960 and 1000). 

The classifiers are trained to use all but one image. This last 

image is used as a test image. In this way, the test image is not 

used in the training set. Table 6, Table 7 and Table 8 represents 

the number of recognized images for each object from the total 

of 25 images per object used in tests. While, Table 9 represents 

the average number of recognized images and the recognition 

rate of experiments carried on The Amsterdam Library of 

Object Images data test. 

 

Table 6. Number of recognized images for group 01 from a 

total of 25 images for each object 
 

 
HOG 

[20] 

OPP 

[19] 

Hue 

H 

[19] 

SIFT 

[30] 

GABOR 

[32] 

Hue 

Dis 

[this 

article] 

Obj01 20 21 22 20 22 23 

Obj40 23 23 23 22 23 24 

Obj80 21 21 22 20 23 23 

Obj120 23 22 23 22 24 25 

Obj160 21 22 22 20 22 24 

Obj200 21 21 22 20 21 23 

Obj240 19 20 20 19 21 22 

Obj280 20 20 21 20 22 24 

Obj320 22 22 23 21 23 24 

 

Table 7. Number of recognized images for group 02 from a 

total of 25 images for each object 
 

 
HOG 

[20] 

OPP 

[19] 

Hue 

H 

[19] 

SIFT 

[30] 

GABOR 

[32] 

Hue 

Dis 

[this 

article] 

Obj360 22 23 24 22 24 24 

Obj400 21 21 22 20 22 23 

Obj440 21 22 23 20 23 23 

Obj480 22 23 24 22 24 24 

Obj520 20 21 21 19 22 23 

Obj560 19 21 21 20 21 23 

Obj600 20 20 21 19 21 22 

Obj640 20 21 21 20 22 23 

Obj680 21 22 22 21 22 23 
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Table 8. Number of recognized images for group 03 from a 

total of 25 images for each object 
 

 
HOG 

[20] 

OPP 

[19] 

Hue 

H 

[19] 

SIFT 

[30] 

GABOR 

[32] 

Hue 

Dis 

[this 

article] 

Obj720 21 22 23 21 23 24 

Obj760 20 20 22 19 22 23 

Obj800 20 21 22 19 21 23 

Obj840 21 21 22 21 23 23 

Obj880 19 20 20 18 20 21 

Obj920 20 20 22 20 22 23 

Obj960 20 21 22 20 21 23 

Obj1000 19 21 22 19 23 23 

 

Table 9. Average number of recognized image and the 

recognition rate of experiments carried on the Amsterdam 

Library of object images 

 

 
Average number of 

recognized images 

Recognition 

rate 

HOG [20] 20.62/25 82.46% 

OPP [19] 22.08/25 88.32% 

Hue H [19] 22.88/25 91.52% 

SIFT [30] 20.96/25 83.84% 

GABOR [32] 23.08/25 92.32% 

Hue Dis [this 

article] 
24.12/25 96.48% 

 

From the results shown in Table 9, the proposed Hue 

descriptor has the best recognition rate in this experiment 

(96.48%), followed by GABOR features (92.32%). Hue 

Histogram coming third with 91.52% followed by the 

opponent histogram (88.32%) and the SIFT feature (83.84%). 

HOG recognition rate is the last with 82.46%. 

HOG feature is sensitive to illumination condition change, 

like change in the illumination color and light scattering, 

shadows and lighting geometry changes such as shading and 

the highlights under a white light source and scattering of a 

white source, all this, can operate significantly the recognition 

rate of this method. The proposed Hue descriptor solve this 

lack of invaiance by Hue which is invariant to shadows and 

lighting geometry changes such as shading and the highlights 

under a white light source and scattering of a white source, and 

also by using Gray-Edge color constancy second order which 

solve the problem of missing invariance to change in the 

illumination color and light scattering. This invariance added 

have improved the recognition rate with around 14% (Table 5). 

The SIFT feature is not invariant to light color changes 

(change in the illumination color and light scattering), the 

proposed Hue descriptor solve this problem by using Gray-

Edge color constancy second order. This invariance added can 

be clearly noticed from the difference in the recognition rate 

shown in table5 (the proposed hue descriptor rete is highest by 

around 12%). 

The proposed hue descriptor solves the drawbacks of 

opponent histograms by using the hue which is invariant to 

light intensity change (change in shadows and lighting 

geometry changes such as shading), light intensity shift 

(objects highlights under a white light source and scattering of 

a white source) and light intensity change and shift 

(combinations of the above two conditions), and also the Gray-

Edge color constancy to solve the problem of missing 

invariance to the light color change (change in the illumination 

color and light scattering). This invariance added have 

improved the recognition rate of the opponent histogram with 

around 12% as shown in Table 5. 

As it mentioned before, the hue histogram is invariant to 

changes in the illumination color and light scattering. The 

proposed hue descriptor solves this miss of invariance by using 

Gray-Edge color constancy second order. Thing that has 

improved the recognition rate with around 5%. 

Even if Zambanini and Kampel [32], present their 

descriptors as a local descriptor robust to illumination Changes, 

but this experiment results show that combination of Gray-

Edge color constancy, hue components and cell and bin ideas 

give a descriptor more efficient. 

From the results of Table 9, the theoretical invariance 

properties of color descriptors are validated. By observing the 

results with respect to illumination conditions changes, the 

color descriptors without invariance to this property, such as 

the opponent histogram do not perform well. There is a clear 

distinction in performance between these descriptors and the 

invariant descriptors, such as the hue histogram and the 

proposed hue descriptor. Overall, descriptors using color 

perform much better than the HOG and SIFT descriptors. 

 

 

6. CONCLUSION 

 

In this paper, a new color object recognition model has been 

proposed which is analyzed in theory and evaluated in practice 

for the purpose of recognition of multicolored objects 

invariant to a substantial change in illumination and also 

photometric and geometric transformation. The proposed 

oriented descriptor benefits of the invariance of hues against 

light intensity change, light intensity shift and light intensity 

change and shift, and solve its missing of invariance against 

light color change by using Gray-Edge color constancy. 

Moreover, the use of cells and bins in this proposed descriptor 

building boost its invariance the geometric and photo-metric 

transformation and increases the recognition rate. This idea is 

based on measuring colors of objects independent of the light 

source color by using color constancy, and then dividing the 

image into twenty-five cells overlapped by 50% to make the 

descriptor operate on local calls. Cells feature is building by 

calculates the hue value on each pixel and allocating the 

magnitude of hues in twelve bins, by grouping this bins-

magnitude values in a vector, we get a characterization feature 

for the cell, then, after feature normalization, and by grouping 

all the twenty-five cells features in one vector we get the final 

descriptor of images. SVM classifiers (Support Vector 

Machine) which is a strong classification method known for 

its flexibility and its power of generalization are used for the 

training and recognition steps. The proposed method is 

evaluated on two publicly available datasets including 

Columbia Object Image Library and The Amsterdam Library 

of Object Images and obtained a recognition rate of 95.64% 

and 96.64% - clearly showing the exceptional performance 

compared to existing methods. This also shows that this model 

of recognition is promising and could be the subject of 

industrial applications. Changing the type of data (for example 

using the proposed feature to detect pedestrians (human) or 

some other objects such as car, dog, cat, etc., or using non-

uniform background) will be the subject of our future works. 

We are also aiming that the feature proposed in this paper will 

be the base of an application that will replace the use of bar 

code in commercials store (mall, pharmacies …, etc.). 
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