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ABSTRACT. Early warning systems were interested in captured data of mobile objects.

From the 2000s, a new generation of data capture equipment arrives. These capture

devices rise large scale trajectory data. How early warning systems can integrate these

masses of data? How they can give real-time answers to users queries? In this paper,

we present an ontological approach to model the trajectory. The trajectory’s domain

knowledge are expressed as rules used by the ontological inference mechanism. We

show the important complexity of the inference and we propose optimizations. We

evaluate our contributions over real data.

RÉSUMÉ. Les systèmes d’alertes rapides se sont intéressé aux données capturées en

particulier celles des objets mobiles. Depuis le début des années 2000, de nouveaux

dispositifs de capture sont conçus qui sont capables de restituer de grands volumes

de données, appelés trajectoires. Comment les systèmes d’alertes rapides peuvent-ils

intégrer ces masses de données ? Comment répondre en temps réel aux requêtes des

utilisateurs ? Dans ce travail, nous présentons une approche ontologique pour mod-

éliser la trajectoire. Les connaissances du domaine de la trajectoire sont exprimées

sous forme de règles qui alimentent le mécanisme d’inférence ontologique. Nous mon-

trons l’importante complexité de l’inférence et nous proposons des optimisations. Nous

évaluons les contributions sur des données réelles.
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1. Introduction

Recent advances in communication and sensor technology have catalyzed
progress in early warning system for zone tracking. A global early warning
system is needed to inform us of pending threats. The basic idea behind early
warning is that the earlier and more accurately we are able to predict short and
long term potential risks associated with natural and human induced hazards,
the more likely we will be able to manage and mitigate a disaster’s impact
on society, economies, and environment. Early warning (UNEP, 2012) is “the
provision of timely and effective information, through identified institutions,
that allows individuals exposed to hazard to take action to avoid or reduce
their risk and prepare for effective response”.

Research has focused on a biological early warning system over the last few
decades (Butterworth, Gonsebatt, 2001; Green et al ., 2003). In order to apply
the system to regional environmental conditions and achieve different monitor-
ing aims, biological early warning system has been diversified using various test
organisms such as water fleas, mussels, algae, and fish (Baldwin et al ., 1994;
Benecke, Schmidt, 1982; Borcherding, Jantz, 1997; Hendriks, Stouten, 1993).
Within the framework of defining and building a warning biological information
system, several animals are used: mammal, bird, herp, invert, etc. Trajectories
of these species are captured and analyzed over long periods. Thanks to the
collected data and using other external data sources, we are now able to iden-
tify precise states of these animals in their natural environment. Different types
of behavioral parameters have been developed for various kinds of monitoring
systems related to their state.

In this paper, we present our approach for integrating trajectories of marine
mammal, namely seals, in an early warning tracking system. The raw data
captured, commonly called trajectories, traces animals from a departure point
to a destination point as data sequences (sample points captured, time of the
capture). Trajectory data are captured by sensors included in a tag glued to
the fur of the animal behind the head. The captured trajectories consist of
spatial, temporal and spatio-temporal data. Trajectories data can also contain
some extra-data. These datasets are organized into sequences. Every sequence,
mapped to a temporal interval, characterizes a defined state of the animal. In
our application, we consider three main states of a seal: hauling out, diving

and cruising. Every state is related to a seal’s activity. For example, a foraging
activity occurs during the state diving.

To detect the appropriate or protected zone used by a seal, this study de-
velops an early warning system which integrates an alarm rule with a seal tra-
jectory model. For that, we detect the seals’ foraging areas in order to assess
the interactions with the human fisheries activities. Our aim is to quickly and
automatically identify those important (foraging) areas from the seals trajecto-
ries. First of all, we need a trajectory model. In our previous work (Wannous
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et al ., 2013b), we define a trajectory ontology model taking into account do-
main, spatial and temporal data. Using the ontological rules associated with
this model, we compute the inference over these data. The experimental results
addressed time computation and space storage problems of the ontology infer-
ence. Then, we proposed some solutions to reduce the inference complexity by
defining time restrictions in the inference passes refinements in (Wannous et

al ., 2013a). These later studies focus mainly on the term of time computation.

In the present paper, we continue studying the ontological inference com-
plexity, specially in terms of inference space storage complexity. We propose
two-tier inference filters on trajectory data. In other words, two distinct op-
erations are performed to enhance the inference: primary and secondary filter
operations. The primary filter is applied to the captured data with the consid-
eration of domain constraints. The primary filter allows fast selection of the
analyzed data to pass along to the secondary filter. The latter computes the
inference over the data output of the primary filter.

This paper is organized as follows. Section 2 summarizes recent work re-
lated to early warning and monitoring systems with a focus on those based on
trajectory data. In this context, we focus on approaches that define data mod-
els taking into account low level and semantic aspects. Section 3 introduces our
approach and illustrates an overview of our domain data model called ”trajec-
tory ontology”. This trajectory ontology defines temporal concepts mapped to
W3C OWL-Time ontology (Jerry, Feng, 2004) in Section 4. Sections 5 and 6
detail the trajectory ontology inference and the integrated knowledge. In sec-
tion 7, we implement the trajectory ontology, the domain ontology rules and
the temporal rules. Section 8 addresses the complexity of the ontology infer-
ence over the domain and temporal rules. Section 9 introduces an application
domain inference refinement. Section 10 evaluates the ontology inference over
the proposed refinement and present some result about seal zone tracking for
the early warning system. Finally, Section 11 concludes this paper and presents
some prospects.

2. Related work

A state of the art analysis and future directions (UNEP, 2012) is given
to present the environmental threats, including air quality, impacts of climate
variability, severe weather, storms. This report identifies current gaps and
needs with the goal of laying out guidelines for developing an early warning
system. The aim of this report is to identify current gaps and future needs of
early warning systems through the analysis of the state of the art on existing
early warning and monitoring systems for environmental hazards.

In (Doong et al ., 2012), authors present a study for developing a coastal
flooding early warning system (CoFEWs) by integrating existing sea-state mon-
itoring technology, numerical ocean forecasting models, historical database and
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experiences, as well as computer science. A warning signal is presented when
the storm water level that accumulated from astronomical tide, storm surge,
and wave-induced run-up exceeds the alarm sea level.

Biological early warning and emergency management support system (Yuan
et al ., 2009) is given for water pollution accident. This research presents a sys-
tem which integrates an online water quality monitoring device with a water
quality model. The system has been instantiated in Douhe Reservoir. The mon-
itoring device is based on water quality probes and biological sensors which use
fish motion as indicator. Another biological early warning system is developed
by (Jeong et al ., 2014) from swimming behavior of Daphnia magna.

Based on captured data, an early warning system needs a modeling ap-
proach to understand and to analyze these data, that we also call trajectories.
Recently, several approaches were developed because the access to the captured
data became real and easy especially with the advent of open data sharing plat-
forms, like Movebank Data Repository (Crofoot et al ., 2015).

Based on birds migration captured data, an approach called a conceptual
view on trajectories is introduced by (Spaccapietra et al ., 2008). In this ap-
proach, trajectories are considered as a set of stops and moves. Each part
contains a set of semantic data. Based on this conceptual model, several stud-
ies have been proposed. In (Alvares et al ., 2007), authors proposed a trajectory
data preprocessing method to integrate trajectories with spatial data. Their
application concerned daily trips of employees from home to work and back.
However, the scope of their paper is limited to the formal definition of se-
mantic trajectories with the space and time without any implementation and
evaluation. Researchers in (Yan et al ., 2010) proposed a trajectory comput-
ing platform which exploits a spatio-semantic trajectory model. A difference
is made between the semantic and spatial dimensions in order to provide a
data model representation that supports different abstraction levels. Authors
present a solution for extracting semantic trajectories from raw data. One of
the layers of the presented platform is a data preprocessing layer which cleanses
the raw GPS feed, in terms of preliminary tasks such as outliers removal and
regression-based smoothing. However, this work did not discuss the compu-
tation complexity of the platform going from the raw data step processing to
knowledge extraction and finally decision-making.

Based on a space-time ontology and events approach, Boulmakoul et al.
(Boulmakoul et al ., 2012) proposed a trajectory patterns of moving objects.
Important packages of the trajectory patterns are “Space Time Path Domain”,
“Activity Domain”, “Observation and Measure Domains” and “Region Of In-
terest” packages. These packages are then transformed onto a unified moving
object trajectory queries expressed in SQL-like relational database language.
Queries operations on space and time are performed using simple relational
entities and functions. So they seem to rely on a pure SQL-based approach



Biological early warning system 87

not on semantic queries. This work also did not discuss the evaluation of the
proposed approach on real data sets.

In (Boulmakoul et al ., 2013), authors gave a brief outline of a scalable data
collection framework for the unified moving object trajectories meta model.
They gathered different kinds of geographical data based on the unified moving
object trajectories’ meta-model. The collection framework offers components to
collect spatio-temporal data. They test the scalability of the proposed system
by a vehicle tracking simulator which generates and simulates spatio-temporal
data of different moving objects. Recently, Boulmakoul et al. (Boulmakoul et
al ., 2015) proposed a trajectory’s data model which has advantages of both
conceptual and ontological space-time. So they extend the model with new
patterns as the space-time path to describe activities of the moving object
and the composite region of interest. The case study is presented for tracking
travelers at the airport.

3. Modeling approach

3.1. Design and methodology

Our work is based on moving objects trajectories. This requires a trajectory
data model and a moving object model. Moreover, to enrich data with knowl-
edge, a semantic model should be taken into consideration. Therefore, we need
a generic model to consider the trajectory, moving object and semantic models
simultaneously as shown in Figure 1. The semantic trajectory model can con-
sume captured data of trajectories and other external data as shown in Figure 1
link (1). These data are related to an application domain. This requires an
application domain trajectory model which consists of domain model, as shown
in Figure 1 link (2). The latter will support semantics related to users’ needs.
In the domain model, we also find the necessary semantics related to the real
moving object, its trajectories, its activities and others. This semantics is often
designed by a domain expert. In general, considering various facets of data in-
volves that the semantic trajectory model must be extended by other models:
application domain, temporal and spatial models. Then, the main issue is to
build and design the semantic trajectory model with its required components.

The semantic trajectory modeling approach is tightly related to the prob-
lem of a semantic gap between this model and raw data. Link (1) in Figure 1
presents this gap. Moreover, our approach involves multiple models and then
must establish semantic mappings among them, to ensure interoperability. In
Figure 1, links (2) and (3) match the domain, temporal and spatial models
with the semantic trajectory model. This matching extends the capabilities
of our approach. For more efficient semantic capabilities, we want to anno-
tate the data with domain, temporal and spatial knowledge. These knowledge
are defined by experts representing users’ needs. Annotating data with these
knowledge could be done automatically or manually. We cannot use a man-



88 ISI. Volume 21 – no 4/2016

Application Domain

Use Case
Use Case

Use Case
Use Case

Use Case
Use Case

Semantic Trajectory Model

Mobile 
Object Model

Semantic 
Model

Trajectory 
Model

<< consume >>

Data

Raw 

Data

Other 

Data << consume >>

Application Domain 

Trajectory Model

Domain 
Model

<< consume >>

Problem's inputs Modeling required

Other Models

Temporal 
Model

Spatial 
Model

<< consume >>

(1)

(2)

(3)

Figure 1. Problem and its modeling required

ual annotation over huge data. Therefore, we choose an automatic annotation
which can be accomplished by an ontology inference mechanism. This inference
mechanism derives new semantics from existing information using additional
knowledge. Later in this paper, we will present this inference mechanism as
sets of rules.

3.2. Semantic trajectory ontology

In (Malki et al ., 2012; Wannous, 2014), we proposed a methodology for
modeling trajectory data. This methodology focused on several real cases. For
each case, we define a context, data capture, an analysis process of these data,
and a domain model. From these models, we define a trajectory pattern also
called generic trajectory model, Figure 2. A trajectory is a set of sequences of
spatio-temporal path covered by a moving object and has an activity.

To build the trajectory ontology, we use model transformation techniques
introduced by the Model Driven Engineering (MDE) community. For this,
we choose an automatic transformation from UML model into a formal OWL
ontology. We use transformer tool called uml2owl 1 (Hillairet, 2007). This

1. http://perso.univ-lr.fr/ghillair/projects.html
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Figure 2. Semantic trajectory modeling approach

transformer, based on the meta-model eCore Eclipse, takes as input a UML
model and turns it into OWL-DL ontology. So, we transform the trajectory
data model (Figure 2) to an OWL ontology, named owlSemanticTrajectory.
Figure 3 presents the declarative part of this ontology. It contains three parts:
mobile object, trajectory and semantic ontologies. By definition, a trajectory is
a set of spatio-temporal concepts. Spatial and temporal models can be reused
to enrich description of the concepts in the trajectory ontology to represent
their spatial and temporal properties. Table 1 gives a dictionary of the main
concepts of the sematic trajectory ontology. Table 2 explains the relationships
between concepts in the semantic trajectory ontology.
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Figure 3. A view of the semantic trajectory ontology owlSemanticTrajectory
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Table 1. Dictionary classes of the semantic trajectory domain

Classe Description

Trajectory logical form to represent sets of sequences

Sequence spatio-temporal interval representing a capture

GeoSequence spatial part of a sequence

Specific Sequence metadata part of a sequence

Activity mobile object’s activity in a sequence

Mobile object the moving object equipped with a sensor

Table 2. Relationships between concepts in the semantic trajectory domain

Classe Description

hasActivity/hasBaseActivity an object property to the activity of a
trajectory/sequence

startPosition, endPosition the capture position of a geosequence

startDate, endDatee the capture time of a sequence

hasTrajectory the trajectory of a mobile object

4. Time ontology

The seal trajectory ontology includes concepts that can be considered as
temporal. The concept Sequence is a temporal interval. To integrate temporal
concepts and relationships in the seal trajectory ontology, we choose a mapping
approach between our ontology and the OWL-Time 2 ontology (Jerry, Feng,
2004) developed by the World Wide Web Consortium (W3C). This mapping is
detailed in our previous work (Wannous et al ., 2013b). An extract of the declar-
ative part of this ontology is shown in Figure 4 described in detail in (Jerry,
Feng, 2004). We are mainly interested in the ProperInterval concept and its
two properties hasBeginning and hasEnd.
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Thing
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is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

Figure 4. A view of the OWL-Time ontology

2. http://www.w3.org/2006/time
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5. Trajectory ontology inference

Inference is the ability to make logical deductions based on ontology model,
rules and optionally individuals. It derives new knowledge based on rules.
A rule’s definition, Figure 5, has an antecedent, filters and a consequent. If
knowledge is represented using RDF triples, then the antecedent is a set of
triples, filters apply restrictions, and finally consequent is a new derived triple.

Subject

Predicate

Triples

Object

Filters
rdf:li

Antecedent

Consequent

rdf:li

rdf:li

Rule

rdf:li

rdf:li

rdf:li

rdf:li

rdf:li

rdf:li

rdf:li

Triple

Figure 5. Rule’s definition

In the present work, we consider two kinds of inference:

1. Inference using standard rules: Our semantic trajectory ontology is based
on RDF, RDFS and OWL constructs. Inference mechanism associates with
each construct a rule. The results sets are called standard rules. An example
of standard rules is OWLPrime in Oracle RDF triple store (Oracle, 2009).

2. Inference using temporal rules: Our semantic trajectory ontology uses
temporal relationships as defined by Allen’s algebra (Allen, 1983). Each re-
lationship is defined as a rule such as: intervalAfter, intervalBefore,

intervalDuring, etc.

6. Trajectory ontology inference using domain rules

Our application domain is seals’ trajectories, where a seal is considered as
a mobile object. The captured data comes from the LIENSs laboratory3 in
collaboration with SMRU4. We consider three main states of a seal : Dive,

Haulout and Cruise. Every state is related to a seal’s activity, like Resting,

Traveling and Foraging.

The captured data can also contain some meta-data called CTD (Conductivity-
Temperature-Depth) about the marine environment such as water conductiv-
ity, temperature and pressure. Starting from our semantic trajectory ontol-
ogy owlSemanticTrajectory we define the seal trajectory ontology, named
owlSealTrajectory, Figure 6. Formally, each activity is declared in the on-
tology and associated to a domain rule.

3. Lab. CNRS/University of La Rochelle - http://lienss.univ-larochelle.fr

4. SMRU: Sea Mammal Research Unit - http://www.smru.st-and.ac.uk
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7. Implementation

Our implementation framework uses Oracle RDF triple store (Oracle, 2009).
Based on a graph data model, RDF triples are persisted, indexed and queried,
like other object-relational data. In this framework, we create the following
models and rulebases (a set of rules):

– owlTrajectory, owlTime and owlSealTrajectory: declarative part of
the trajectory, time and seal ontologies;

– OWLPrime: rulebase of the standard rules;

– Time_Rules: a rulebase of the temporal holding the interval temporal
relationships. The declarative part of the intervalAfter_rule is presented in
Figure 7 based on operations defined in the TM_RelativePosition table of the
ISO/TC 211 specification about the temporal schema (ISO/TC 211, 2002).

– Seal_Rules: a rulebase of the seal rules. According to the domain expert,
there is a correlation between the geometrical shape of dives and activities.
To classify geometric shapes of dives, the TAD (Fedak et al ., 2001) index is
computed over a set of data. For this classification, we can distinguish three
patterns:

- dive shaped V: if 0 <= TAD < 0.7
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- dive shaped U+V: if 0.7 <= TAD < 0.9

- dive shaped U: if 0.9 <= TAD < 1

Time

depth

U U+VV

0.9 ≤ TAD

0.6 < TAD < 0.9

0.4 < TAD < 0.6

According to the domain expert, we take into consideration different param-
eters to define the seal activities. The parameters are the geometrical shape
of dives (TAD), the maximum dive depth and surface ratio which is the ratio
between surface duration and dive duration. The decision Table 3 summarizes
conditions of the IF parts of rules associated with activities. Based on this ta-
ble, Figure 8 gives an example of rule definition, foraging_rule, in the system.
Detail of the activities:

– Resting is when a seal is sleeping at the sea bottom with the TAD higher
than 0.9. The surface duration after the dive state should be quite high so that
seals have enough time to breath before another sleep under water;

– Traveling could be in any dive depth deeper than 3 meters, but the TAD
should be lower than 0.7 because the seal does not need to spend a lot of time
at the maximum depth. The surface duration does not make any difference in
this case;

– Foraging is when the dive depth is deeper than 3 meters. The TAD
however should be high (>0.9) because the grey seal is a benthic forager, which
means it is feeding on fish located on or close to the sea bottom (i.e at the
maximum depth available). Also the surface duration is short because the seal
wants to go back quickly to look for more fish;

– TravelingForaging is when the dive depth is deeper than 3 meters. The
TAD however should be higher than (>0.7) and smaller than (>0.9). Also the
surface duration is short because the seal wants to go back quickly to look for
more fish.

In our framework, inference mechanism creates a rule index, Figure 9. A rule
index (entailment) is an object containing pre-computed triples from applying
a specified set of rulebases to a specified set of models. If a graph query refers
to any rulebases, a rule index must exist for each rulebase-model combination
in the query. The USER_RULES=T option is required while applying user-defined


