doi:10.3166/acsm.40.51-59 © Lavoisier, Paris
Inverse problems in electrochemistry Ann. Chim. Sci. Mat., 2016, 40 (1-2), pp. 51-59
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Abstract - Inverse problems have been becoming an important method for determination of
materials properties, size and shape design, identification of the proper boundary and/or initial
conditions. In this work we show the application of the inverse method to multi-component
electrochemical systems. The basic process operating in these systems is electrodiffusion which can
be described by the full form of the Nernst-Planck and Poisson equations for arbitrary initial
conditions and Neumann-like boundary conditions. No simplifications like electroneutrality or
constant electric field assumption are used. Results for several examples are demonstrated:
determination of chloride diffusion coefficient in concrete, optimization of detection limit for ion
selective electrodes and determination of EIS spectra using NPP model.

Résumé — Problémes inverses pour le transport de matiére et de charge. Les problémes
inverses sont devenus une méthode importante pour la détermination des propriétés des matériaux,
pour la conception de leur taille et forme ou pour l'identification des conditions limites et/ou
initiales. Dans ce travail, nous montrons l'application de la méthode inverse a des systémes
électrochimiques & plusieurs composants. Le processus de base opérant dans ces systémes est
I’électrodiffusion qui peut étre décrite par la forme compléte des équations de Nernst - Planck et de
Poisson pour les conditions initiales arbitraires et les conditions aux limites de type de Neumann.
Aucune simplification comme 1’électroneutralité ou I’hypothése de champ électrique constant ont
été utilisés. Les résultats pour plusieurs exemples sont donnés : la détermination du coefficient de
diffusion du chlorure dans le béton, l'optimisation de la limite de détection pour les électrodes
sélectives d'ions et la détermination des spectres EIS en utilisant le modéle NPP.

1. THE INVERSE METHOD - INTRODUCTION

The inverse method is very useful in determination the physical parameters of any
mathematical model by comparing its prediction with experimental data. It allows calculating the
optimal values of model parameters p,,..., p, by performing computer simulations which give the
solution for these values. The idea is to define the proper goal function, GoalFun(p,,..., p,), which
measures the difference between results produced by real world experiment and model predictions,
and then to seek its global minimum. Let us denote by y(x,5p,,...,p,) the solution of the
mathematical model (Model) as a function of xeR® and time ¢>0. The values obtained from
experiment (Exp) shall be denoted as y/*”(x,7), where we do not show “dependence” on parameters

Tirés-a-part : R. FILIPEK, AGH University of Science and Technology, al Mickiewicza 30, 30-059 Krakow,
Poland.

9537_Annales_40_1_2.indb 51 11/05/16 11:20



52 K. Szyszkiewicz et al

Dy»---» D> Decause there is only one set of their values selected by nature. One possible measure of
difference is

leng

GoalFun(p,,....,p,) =Y, | | (t,t; prs...o p,) = 7 (x,0) P, (1)
L0 Q

where Qc R’ is a domain in space where the process occurs, and ¢, >0 is duration of the process.

In the case when we measure the results only after some time (i.e. at the particular time ¢,,, only)

the goal function will be defined rather as

GoalFun(plz"'apn)zzz J.| yIMOdEI(xatend;pl’-'wpn)_yiExp(xatend)Izdx (2)
rQ

The assumption that we know the experimental data y” (x,7) in the whole domain, x e Q c R’
is rather optimistic. In most case the function is known in selected points, y’(x,,7). In this case the
goal function is usually considered as

GoalFun(p,,...,p,) = ZZ| Y (st s Prseees ) = VP (Xt [P 3)
ik

A procedure based on the inverse method ultimately requires the optimization function (goal
function) be passed to some minimum seeking algorithm such as Hierarchical Genetic Strategy
(HGS) or Sequential Quadratic Procedure (SQP) to find the global optimum. This is purely a
mathematical/numerical problem and there are many possible choices [1].

2. MULTILAYER NERNST-PLANCK-POISSON MODEL

In this paper we demonstrate using of inverse method for electrochemical systems. Thus, we
briefly present Nernst-Planck-Poisson (NPP) system of equations which is multidisciplinary and
appearing in many fields of science and technology where mass and charge transport occurs. It is
general and rich enough in a physical sense to describe the effects occurring in semiconductors
[2,3], building materials (such as concrete) [4], synthetic and biological charged membranes [5] and
colloids [6]. Let us consider a system that consists of # layers, each representing different phase,
inside of which concentration changes of » components ¢/ (ions or uncharged chemical species,

i=1,...,r) and a change of the electrical field E’ in space and time takes place. The scheme of the
n-layer system is presented in figure 1.

AO ;“1 )‘2 ;r—l }n X’n-¢-1
a, a, a, a,
(ao ) (an‘l)
I ¢l =c (%0 ¢l =c(x,t) v a=c(x,t) ¢ =c(x,1) Ca
E'=E(x,1) E? = E(x,f) E"' = E(x,0) E"=E(x.0)
| i ] }) 1 1 | I —
T T T 1 T T T
d, d, d_, d,

Figure 1. The scheme of the n-layer system between two solutions with i-th component
concentration ¢, on the left, and ¢, on the right side of the system.
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Each layer has its own thickness d; and dielectric permittivity ¢, is flat and isotropic, so it

can be assumed as a continuous environment. On the right side and on the left side of that system,
respectively, the bulk solutions with constant concentrations of each component 7, ¢, and c,, are

assumed. The charge z, of each ion i and diffusion coefficients D/ in each layer «,, are known.
An external current density /(#) can be applied to the system. The Nernst-Planck flux expression
describes the flux of ions in space and time:

J
J e,y =-D/ %}(x, ) —R—FTzz:’z,- (¢! ENY(x,1) + (/0" )(xa), 4

The above equation connects the flux with three processes: diffusion (—D/ %’:), migration

—+-D’zc/E’), and convection (+¢/v’). Moreover, Gauss’s law (or the Poisson equation) in the

form:
OE’(x,t) 0@’ (x,t) F ;
=- =— > z.c/(x,0), 5
e = gJZ“( ) (5)
can be substituted with the displacement current equation, as shown by Cohen and Cooley [7]:
r ) J
1(t)=F-ZzIJ,’(x,t)+aj'—a—g——a%zc—ﬁ. (6)
i=1
To connect concentrations evolution in time with flux of components mass balance equation is used
oc/  aJ]
T i (7
ot Ox

Theses equations with proper initial and boundary conditions form a set of partial differential
equations PDEs. Solution of these equations [8] gives the concentration and electrical fields as the
functions of space and time. Finally, the overall electrical potential of the j-th layer (as a function of
time) is calculated by the integral of electric field over space:

Ap'(6)=— [ B/ (x,0)dk, @®)

A

where 4, , and A, represent the phase boundaries.

j-1
For the above problem without simplifications (e.g., constant electric field) a numerical method was

derived and effectively solved using C++ programming language [8].

3. DETERMINATION OF CHLORIDE DIFFUSION COEFFICIENT IN CONCRETE — TWO
COMPARTMENTS AND TIME DEPENDENT DIRICHLET BOUNDARY CONDITIONS.

In this section we present the application of inverse method to determine a chloride diffusion
coefficient in concrete — the parameter which describes the rate of chloride ingress into the concrete
matrix and consequently effects corrosion of rebars in concrete. The classical approach is the so
called two chamber experiment in which a sample of usually cylindrical concrete is placed between
two chambers containing solution. One chamber may contain the concentrated salt with CI” ions
while the second may be free of it (at the beginning). By measuring the time dependent change of
concentration in both chambers and using the inverse methodology we can determine the diffusion
coefficient. The classical method assumes the chloride concentration in the first chamber is
practically constant (because it contains the concentrated salt and the depletion is relatively small)
and takes into account only changing concentration in the second chamber. Here we present a result
when this simplifying assumption is dropped.
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Let us assume the stationary state in the concrete. The balance equation in 1D
@(x,t):—@—]—(x,t) for 0<x<d, t20 9
ot Ox

gives 0J/ox=0, hence J(x,£)=J(¢). Thus the flux J() is determined by its value on the boundary
x=d, which can be expresses as

J@t)= T o), (10)

where V) is the volume of chamber 2 and 4 is the cross-section area. On the other hand we have
J=-Ddc/dx, so c(x,t) is linear with respect to xe[0,d]: dc/ox=(c(d,t)—c(0,t))/d. Taking into
account the Dirichlet boundary conditions ¢(0,7) =¢,(¢), ¢(d,f)=c,(t), and equations (10) and (11)
together with J =-Ddc/dx, we obtain the equation

_Vl_q'_c_z_ __ () —¢ ()
< @) D—d . (11)

for the evolution of concentration in the chamber 1. The unknown is ¢, =¢,(r), but the function
¢, =¢,(t) is given (measurement). The solution of equation (11) is

_b4, ! Q’i(.w)
c,(t, D)=c,(0)e " +ﬁ J.c,(s)eVzd ds. (12)
270

The determination of the diffusion coefficient is now converted to the minimization of the

following goal function

DA 2

- DA ! M.\'
P (ry—e [c;*”(onﬁ felr (s)eh dsJ
270

lend
GoalFun(D) = I

0

dt, (13)

2
lend

or GoalFun(a) = J.

0
c;7(0)=0 (a usual experimental condition). Thus the problem was turned into finding the

1
cEt)y-ae™ J.cf'(s)e‘“ds
0

dt, where « :% is a rescaled diffusion coefficient and

minimum, mi(r)l GoalFun(a). As an illustration let us consider the data measured in two chambers
a>

over the period 60 h with sampling interval 6 h. The values of concentration ¢/ (¢), c;*” are given
in table 1.

Table I. Experimental data in two chamber setup. Change of concentration in both chambers over
time are taken into account.

it /h 0 6 12 18 24 30 36 42 48 54 60
cl(t/M 3] 293 275 266/ 2.53 23 221 207 194 189 175
c2(tyM 0 0.03 012 02 029 045 049 0.56 0.67 0.74 0.82

The goal function for this data defined by (13) is plotted in Figure 2. The plot is not detailed enough
to reveal that there is in fact one global minimum for dimensionless diffusion coefficient, namely

a,, =0.034.
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Figure 2. Plot of the goal function for the two chamber problem with both concentrations changing
over time. This particular plot is for data in table 1.

4. DETECTION LIMIT OF ION-SELECTIVE ELECTRODES

In this section optimization of measurement conditions, i.e., improving of the detection limit
of potentiometric ion sensors is presented. Potentiometric ion sensors based on ion-selective
electrodes (ISEs) are a very important subgroup of electrochemical sensors [9]. They allow
potentiometric determination of the activity of one ion in the presence of other ions. They are very
attractive for practical applications due to their features, such as small size, portability, low-energy
consumption, and relatively low cost. ,

The detection limit is one of the constitutive parameters of an ISE. Typically, the detection
limit of ISE lies in a micromolar (uM) range [10,11] but can be engineered to vary by several orders
of magnitude depending on the inner solution concentrations or the time of measurement. It can be
lowered, even down to a picomolar (pM) range, by using inner solutions whose concentrations of
analyte ions are kept at the low level as was shown by Sokalski ez al. [12,13,14].

Basing on NPP model and using hierarchical genetic algorithm (HGS) as procedure for
finding the optimal parameters we obtained the inverse method [15] for optimal detection limit. The
problem is to find the concentration of the preferred ion (¢, ,¢) in the inner solution and the

measuring time (f,,) providing the best detection limit (DetLim) of an ISE. In the NPP-HGS
method the goal function is defined as the value of the detection limit obtained using the NPP
model for two variable parameters, ¢, and #,,. Thus, using the NPP model the calibration curve
for given (¢, j.1,,,) is computed (simulated)

CalibrationCurve: [-13, =3]13108¢, gt ™ P, sampies Cis >lena) € R, (14)
and next, according to some procedure (the [UPAC or Sokalski’s definition), we can extract from it

the detection limit. Putting these two steps together we have a desired optimization function
GoalFun(c, s, 1,,,) = DetectionLimit (CalibrationCurve(c, 5, t,,,) € R. (15)

For presentation we selected two examples, first with two optimization parameters (Figure 3a)
and second with three parameters (Figure 3b).

HGS optimized this function for the individuals represented by the values of these two
parameters. Figure 3a shows the time-concentration-detection limit map (isolines) obtained using
the NPP model with overlaid points obtained with NPP-HGS method. The detection limit is
depicted by the contour map with different colour intensities (the darker the colour, the lower the
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detection limit). The local/global minima can be read from the plot. In order to obtain such a
contour plot, 1200 calibration curves were calculated [15].
To further demonstrate the effectiveness of NPP-HGS method the optimization of three

parameters, concentration of the primary ion in the inner solution (c, ), measuring time (z,,,)., and
the diffusion coefficient of the preferred ion in the membrane (D/") was made. The results,
presented in Figure 3b. shows that the lowest detection limit is obtained in two regions:

1) log(cpem) <—11.5 when the diffusion coefficient of the preferred ion is in the range
5.1-10™ to 5.9-10""'m?/s, its internal solution is in the range 8.8-107° to 9.6-10° M and
measuring time is around 27 s.

2) log(¢peym) <—=10.5 when the diffusion coefficient of the preferred ion is in the range
1.0-10" to 1.2:10"'m?s™', its internal solution is in the range 2.2-10° to 2.4-10°M and

measuring time is around 482 s.

This result would be very unfeasible to obtain by the “brute force” approach. 12 000
calibration curves (132 000 points) would take around 150 days. The computational effort using
NPP-HGS method was around 20 times smaller.

K. Szyszkiewicz et al

a) b)
600 som0
585
log ¢, .= 5.66 ! —
Y »
t=43521s] L
400 E‘ 1E-9 st
| 5.95 € 4 1% Level
ogc .=
Mg o 2 @ 2" Level
. Treat £ w0 * 3“Level
2 200 3
=7 [3) \
Iog C\.IS = 9 c 1E-11
t=24.281]s) A 1% level o
@ 2"level g
1E-12
0d * 3%level = 0
a 100 1E3
200
1E-5
T 300 3
0 _ 5 10 15 " : c mol/m
logc,;=6.9 log cg logc, , =868 time [s] 500 s | ]
t=152.14s] =0 1E-9
t=24.88s]

Figure 3. a) Example 1: detection limit as a function of time and concentration (two parameters).
The darker the area the better detection limit. The contours were calculated only for visualization of
the detection limit function. But the points show several stages of HGS algorithm which approaches
the minimum. b) Example 2: the picture shows calculated points by HGS in (c, 5.7,,,.D") space
(three parameters). The red, green and blue colours denote the individuals of the first, second and
third populations, respectively.

The presented calculations show a great future potential for the NPP model combined with

the HGS to facilitate the design of ISEs with a lower detection limit and in particular provide
recommendations concerning analytical robustness for measurements in low concentrations.

5. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

In this section we demonstrate the application of the inverse method to model the frequency
perturbation response of the system. Electrochemical impedance spectroscopy (EIS) is a useful tool
for analyzing various electrochemical systems because it allows the separation and characterization
of individual kinetic processes [16]. It has become established as one of the most popular analytical
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tools in material research. Its broad area of application includes corrosion studies and corrosion
control; monitoring of properties of electronic and ionic conduction polymers, colloid and coatings,
measurements in energy storage, batteries, and fuel cells systems, biological analysis and
biomedical sensors; measurements in semiconductors and solid electrolytes; studies of
electrochemical kinetics, reactions and processes [17]. It allows to study such processes as
adsorption, charge and mass transport, and kinetics of coupled sequential and parallel reactions. Of
special interest here is its application for investigation of ISE — or more precisely — for ion selective
membranes which form the main part of such electrodes.

The standard treatment in EIS is based on the electrical equivalent circuit method which is
convenient and easy to implement. But equivalent circuits — according to Macdonald [18] — are mere
“analogs, which do not pretend to describe the physico-electrochemical properties of the system,
but simply reproduce the properties.” One of the consequences is non-uniqueness of such
representation (different circuits can give the same impedance spectra). Thus, we prefer using more
fundamental physico-chemical description (e.g., NPP model) [19].

Another approach in EIS is based on the description of the system by the fundamental and
constitutive laws which take the form of PDEs (dynamical systems). Simulations based on these
equations allow to obtain the impedance spectrum of the analyzed system, {Z(®)} ., <[, where

O denotes the complex number field. Such physical models not only reproduce the impedance
spectrum, but can also elucidate the mechanism of the processes occurring at the interface in terms
of physical concepts. The ultimate goal of EIS is to characterize the mechanism of the charge
transfer reaction and transport modes, so we have to go beyond the equivalent circuits. In the case
of electro-diffusion processes this treatment of EIS can be based on the NPP equations. In special
cases the NPP system can be handled to give analytically expressed Z(w), but in general it requires

numerical simulations [20].

6000 Diffusion coefficients
Reference spectrum D,, /m?s™

—v¥—HGS-NPP Best Fit

N

‘E’ Reference |Inverse HGS-NPP

- value calculation
A¥| 107" 1.006x107"

B*| 0.7x10™" | 0.75x107"

T T T T T T T T T T T T T 1
0 2000 4000 6000 8000 10000 12000 14000
Re(2) X1 0.5x107"" | 0.499x107"

Figure 4. The results of the inverse HGS-NPP compared with the reference spectrum calculated for
different values of diffusion coefficients for each ion. The reference and computed diffusion
coefficients by the inverse HGS-NPP method.

As an illustration of the inverse method in EIS without the equivalent circuits we present an
example of the HGS strategy to find the optimal parameters (diffusion coefficients) in a membrane
system containing three movable ions (A*", BY, X"). The presented method can be used to find
parameters such as membrane thickness, dielectric permittivity, heterogeneous rate constants, and
concentrations (reference or sample solution). The problem is to find the NPP parameters which
minimize the difference between the reference (experimental) and calculated (model) impedance
spectra (Figure 4), i.e. to minimize the following function:
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GoalFun:=Y_ g, |Re(Z")=Re(Z") [ + Y_h | Im(Z"*")~Im(Z}*) |
% * (16)
h ZMadel Z]fxp

where 8k, " are weight functions, “¥ °> “¢ are calculated and experimental complex

impedance values for the k-th frequency. Optimization was performed with constraints

2 ,-1 -13 -9
D, /m’s™ €[1077, 1077]. The simulations show that the diffusion coefficient of the B" ion has little
effect on the shape of the impedance spectrum. The results of HGS-NPP simulations are presented
in Figure 4.

6. CONCLUSIONS

The above examples illustrate the power and flexibility of the inverse method. It can be
effectively used for the description of multicomponent electrodiffusion problems such as impedance
spectra, detection limit of ISEs and generally determination various model parameters. In each case
a goal function for optimization is defined and then a procedure for finding extrema is applied. As
we seek the global extremum some care with the method selection is recommended. Here we used
method based on genetic algorithms which are known for good performance in finding global
extrema. Obviously the presented methodology is as good as the model used for the description of
the real process. In particular, future applications will concern reaction terms in NPP model (e.g.,
complexation), 2D and 3D geometries (e.g., non-planar interfaces, ionic channels), or various
complex boundary conditions.
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