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In the current article, we examine the slip effects for the inclined MHD Williamson 

fluid over a permeable wall with a chemical reaction. The second law of 

thermodynamics was applied to examine the aspects of entropy generation. The 

governing partial differential equations (PDEs) are reduced to ordinary differential 

equations (ODEs) via appropriately adjusted transformation. The dimensionless 

developed boundary layer equations have been solved by differential transform method 

(DTM) for various values of parameters. The most relevant outcomes of the current 

analysis are that augmented magnetic strength and Williamson fluid parameter 

undermine the fluid velocity which established a thicker velocity boundary layer while 

suction/injection show the opposite trend. Another most important outcome is that an 

increase in suction/injection decreases the entropy generation while it uplifts with 

Brinkman number. It is also observed that Bejan number decreases with the chemical 

reaction parameter. 
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1. INTRODUCTION

In the present day, the flow of an electrically conducting 

fluid in a channel in the presence of a magnetic field has 

captured the interest of researchers due to practical 

significance in astrophysics and plasma physics to drug 

targeting. The mechanism of magnetohydrodynamics is that a 

magnetic field can induce currents in a moving conducting 

fluid, which in turn creates opposing forces on the fluid. Quite 

several research papers addressed the flow, heat and mass 

transfer of Newtonian/non-Newtonian fluid flow with the 

transverse magnetic field by considering effects of different 

parameters such as the thermal radiation, porosity, and slip [1-

4]. Moreover, the application of the aligning magnetic field on 

fluid flow has also received numerous attentions. For instance, 

Bagewadi and Bhagya [5] examined the influence of the 

magnetic field on a steady viscous incompressible fluid flow 

with infinite electrical conductivity. Sandeep and Sugunamma 

[6] studied the influence of the aligning magnetic field on the

unsteady flow of a dusty fluid through a porous medium in a

vertical channel. Recently, Endalew and Nayak [7] considered

the effects of an inclined magnetic field and chemical reaction

of unsteady flow through a porous medium over align plate

with thermal radiation. Yadav and Jaiswal [8] scrutinized the

impact of an inclined magnetic field on a rotating fluid in the

presence of a porous medium. Salman and Abdulhadi [9] used

this concept to investigate the two-dimensional peristaltic

couple stress fluid flow over an asymmetrically inclined

channel through a porous medium.

A literature survey shows that heat and mass transfer 

problems with a chemical reaction have received a 

considerable amount of practical usefulness in food processing, 

polymer production, geothermal engineering and other fields 

of chemical sciences. So far, research works by several authors 

[10-17] involved in the diffusion of molecular species 

relatively to first and higher-order chemical reactions that have 

considered under different conditions. On the other side, 

analysis of characteristics of chemically reacting fluid flow in 

the presence of species and with activation energy has 

attracted the interest of researchers and has received a 

considerable amount of attention during the past few decades. 

For instance, Ahmad et al. [18] investigated the unsteady two-

dimensional flow of a viscous fluid with binary chemical 

reaction and Arrhenius activation energy passing through a 

channel. Mabood et al. [19] utilized the combined effect of the 

binary chemical reaction and Arrhenius activation energy on 

electrically conducting fluid with variable thermal 

conductivity. 

We remark at this juncture that all the above studies involve 

analyses that are only based on the first law of 

thermodynamics. It is however well known that the convection 

mode of heat transfer in channel flow is inherently irreversible 

[20]. To access the nature of the irreversibility, an analysis 

based on the second law of thermodynamics is required. Some 

recent studies involving such analysis include the work of 

Eegunjobi and Makinde [21] who studied the effect of velocity 

slip flow of a viscous fluid in a permeable channel with 

entropy generation. Das and Jana [22] extended this to 

incorporate the magnetic effect. They constructed the analytic 

solution for the flow and heat transfer and interpreted the 

results through graphs. The unsteady flow of this viscous fluid 

with variable viscosity and convective cooling is further 

investigated by Chinyoka and Makinde [23]. Other interesting 

results arising from the second-law analysis are discussed by 

Adesanya et al. [24], Dalir et al. [25], and Opanugat et al. [26]. 

In all these studies, the researchers argued that it is essential to 
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carry out such entropy production analysis to be able to 

measure the quantity of energy available for work during the 

convection in fluid flow with the view to upgrade the 

performance of the system. 

This research is motivated by studies on Williamson fluid 

discussed by Nadeem et al. [27], Nadeem and Akbar [28], and 

Nagendra et al. [29], the objective is to study the irreversibility 

analysis due to Williamson fluid subjected to an inclined 

magnetic field with slip effect and binary chemical reaction. 

Thus, the present study extends the work of Das and Jana [22] 

to the non-Newtonian case. To the best of authors' knowledge, 

this study has not been considered in the previous works of 

literature. The mathematical model is presented in section 2, 

the desired solutions of the governing differential equations 

are obtained in section 3 using the differential transform 

method (DTM). The analyses of the results are presented in 

tables and graphs in sections 4 and 5 while section 6 gives the 

concluding remarks. 

 

 

2. PROBLEM FORMULATION 
 

In Figure 1, a steady flow of an incompressible Williamson 

fluid through a permeable channel with distance 2a  apart 

with slip is considered. The fluid injection is taken effect at the 

lower wall while sucked off at the upper wall. The flow is 

driven due to pressure gradient, also, the fluid is assumed to 

be acted upon by an external inclined magnetic field of 

constant strength 
0

B with an angle   placed across the 

channel while the effect of the applied voltage is negligible. 

The governing equations arising from the first law of 

thermodynamics in the presence of thermal radiation is given 

by Gbadeyan and Yusuf [2], Chinyoka and Makinde [23]. 

 

 
 

Figure 1. Problem geometry 
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Expressing 
r

q as a function of temperature the Rosseland 

approximation is given as [1]. 
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Due to poor temperature difference in the fluid flow, the 

function 
m

T  is, therefore, express linearly using the Taylor 

series expansion with respect to 
f

T  and by neglecting the 

higher-order terms, the approximate term is [18]. 
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u  is the velocity of the fluid, a  is the channel width,   is 

the fluid viscosity, 
0

V  is the uniform suction/injection velocity 

at the channel walls, k  is the thermal conductivity coefficient, 

  is the fluid density, 
p

C  is the specific heat at constant 

pressure, D  is mass diffusivity,   is the chemical reaction 

parameter, 
1

  and
2

  are the slip coefficients, T  is the fluid 

temperature, 
f

T  and 
0 ?

T are reference temperature and ambient 

temperature respectively, 
0

B  is the intensity of the magnetic 

field, 
0

  is the electrical conductivity of fluid, 
1

  is denoted 

as Stefan Boltzman’s constant, while  is the mean absorption 

coefficient, 
s

E  denotes activation energy parameter, m  is a 

unitless constant exponent fitted rate constants typically lie in 

the range −1 < 𝑤 < 1. 

Introducing the following non-dimensional quantities 

 
2 22

2 0 0

0 0

3 2
01 0 0 0

0 0

2
,  , , , , Pe Pr s

16
= , , , , ,

3 ( )

f

f

B ay u a p
w G H

a v a v x

T TT v v a
N Kr Br s

k T a k T T


 

 

  

 

 
= = = = = = •



−
 = = = =

−

 

0 0 0

0 0 0 0

2
1,20 0

1,2

0 0

2 2

0

2

0

= ,Pr , , , ,

, , , , ,
( )

( )

f p f

w

f f

s m
c

m p f

G
s

f

C C C TT T C C
T

C k T T C C T

v E D C
L E E B

D C T T kT k a

E T a
N

k T T


 






− − −
 = = = =

− −

= = = = −
−

=
−

 
(8) 

 

Given Eqns. (6)-(8), the dimensionless form of the 

governing equations with their corresponding boundary 

conditions becomes: 
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And the dimensionless boundary conditions 
 

( )
( )

( )
1

 B ,  ?0,  ?0
dw y

w y y
dy

 = = = at 0y =  (12) 

 

( )
( )

( )
2

 B ,  1?,  1?
dw y

w y y
dy

 = = = at 1y =  (13) 

 

In above equations, s  is the injection/suction,   is the 

non-Newtonian parameter, H  is the Hartmann number, G  is 

the pressure gradient parameter, N  is the radiative flux 

parameter, Pe  is the Peclet number, non-dimensional 

activation energy parameter E , L  is the Schmidt number, 
1
 B

is the lower plate slip parameter, 2B  is the upper plate slip 

parameter, Br  is the Brinkman number, Kr  is the chemical 

reaction rate constant, and  is the temperature difference. 

The entropy generation rate 
G

E for the present model is 

expressed as 
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The dimensionless entropy generation rate and the 

irreversibility ratio are 
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Here, Π  is the concentration difference, and   is the 

diffusive constant parameter. 

Also, defining 
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Therefore, the Bejan number Be  and the irreversibility 

ratio Φ  are defined as 
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3. SOLUTION TECHNIQUE AND VALIDATION 
 

We are interested in obtaining a semi-analytical solution to 

Eqns. (9)-(13) via the differential transform method (DTM). 

In this method, the technique of Taylor’s analytical solution of 

the differential equation is used. Transformation rules 

theorems are applied on the governing differential equation 

and corresponding the boundary conditions of the system (see 

Tables 1 and 2) to obtain a set of recurrence relations equations 

in terms of the differential transforms of the original unknown 

variables and the expressions of these differential transforms 

when substituted into the corresponding inverse formulae give 

the desired finite series solution of the problem. Some of the 

studies featuring this method was discussed by Opanuga et al. 

[26], Ayaz [30], Mohammadyari et al. [31]. 

Consider a function ( )y x  which is analytic in a domain D 

and about a point 0t t=  with 
thk derivative. The differential 

transform of the function is given as: 
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( )y x is the original function and ( )Y k  is the transformed 

function. The inverse transformation is defined as: 
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and the finite series is written as  
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Some fundamental mathematical operations performed by 

differential transform method are given in Table 1 below, 

particularly the ones used in the course of this study.  

The iterative schemes are 
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The transformed boundary conditions are 
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where, , ,A C D  are constants to be determined. To obtain these 

constants we employ the second boundary condition, i.e. 
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and solving simultaneously with the other governing 

parameters. 

 

Table 1. Some DTM theorems 
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Table 2. DTM theorems used for the boundary conditions 
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4. CODE VALIDATION 

 

To validate the solution obtained by DTM, the exact 

solution of the Newtonian flow 0 = of the model has been 

considered earlier by Das and Jana [22] when 𝛾 =
𝜋

2
. The 

solution of the momentum equation and its corresponding 

boundary condition is given as: 
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A very good agreement is reported in Table 3, Also 

convergent of the series solution is displayed in Table 4; 

confident of this solution is therefore reliable. 

 

Table 3. Comparison between the exact and DTM solution of 

velocity profile for ,

2


 =

2

1,H = 1,G = 0.1,s = 0, =

1
0.1,B =

2
0.1B =  

 
y  

DTM ( )w y  Exact ( )w y  

0.0  0.03619078267  0.03619078  

0.1  0.06778459159  0.06778459  

0.2  0.09031919293  0.09031919  

0.3  0.10393020550  0.10393020  

0.4  0.10866485260  0.10866485  

0.5  0.10448154920  0.10448154  

0.6  0.09124858994  0.09124858  

0.7  0.06874192040  0.06874192  

0.8  0.03664195382  0.03664195  

0.9  0.005547060308−  0.00554706−  

1.0  0.05811996948−  0.05811996−  

 

 

5. DISCUSSION OF RESULTS 

 

Comprehensive analysis has shown in Figures 1-8 for the 

influence of the governing parameters on the dimensionless 

velocity, temperature, and concentration profiles. Further, the 

effects of these parameters on skin friction, Nusselt number, 

and Sherwood number are also shown in Table 4. The 

influence of magnetic parameter
2

H , non-Newtonian 

parameter  , thermal radiation parameter N , chemical 

reaction rate parameter Kr  and the suction/injection parameter 

s on the friction factor, heat transfer rate number and the mass 

transfer rate is shown in Table 4. It was shown from this table 

that increase parameters 
2

H  causes a reduction in friction 

factor at both walls. The rate of heat transfer decreases at the 

wall 0y =  reduces with in 
2

H  whereas it rises at the wall 

4



 

1y = . At 0y = , increase in the non-Newtonian parameter 

lessens the friction factor and the mass transfer rate but 

enhances the rate of heat transfer and the opposite trend is 

noticed at the wall 1y = . The rate of heat transfer is seen to 

increase at 0y =  with rising thermal radiation parameter 

whereas it reduces at the wall 1y = . An increase in chemical 

reaction rate suppresses the rate of mass transfer at lower wall 

0y =  but enhances at the upper wall 1y = . An increase in the 

suction/injection parameter reduces the friction factor and 

Sherwood at the lower wall while the reversed trend is noticed 

at the upper wall, whereas the rate of heat transfer decreases at 

both walls. 

 

 

Table 4. Convergence DTM results for ,

2


 = 2 1,H = 1,G = 0.1,s = 0, =

1

0.1,B =
2

0.1,B = 0.6,E = 1, = 1,N = 2,Pe = 3,L = 1,Kr =

0.1y =  

 

𝑖 𝑤𝑖 ∑𝑤𝑖

𝑛

𝑖=0

 𝜃𝑖  ∑𝜃𝑖

𝑛

𝑖=0

 𝜙𝑖 ∑ 𝜙𝑖
𝑛
𝑖=0 . 

0 0.03144176037 0.0314418 0.000000000 0.0000000 0.0000000000 0.0000000 

1 0.3144176037 0.0628835 0.6234501537 0.0623450 0.4021218550 0.0402121 

2 -0.3668829472 0.0592147 0.1840195400 0.0641852 0.3015913912 0.0432280 

3 0.02419044977 0.0592388 0.2509409493 0.0644361 0.2312200666 0.0434593 

4 -0.0521795958 0.0592336 -0.057380022 0.0644304 0.07763604832 0.0434671 

5 -0.0084960051 0.0592336 0.0232647535 0.0644306 0.00927842076 0.0434671 

6 -0.0044414595 0.0592336 -0.021074840 0.0644306 -0.0106504573 0.0434671 

7 -0.0017073892 0.0592336 -0.003220534 0.0644306 -0.0111973246 0.0434671 

 

 
 

Figure 2. Influence of magnetic field parameter 
2

H  for 
1 2

0.5, 0.2,  0.1, 1,  2,  5, 1,s B B G N Br Pe= = = = = = = =

0.6,  3, 1, 1, 0.6,  1, 6 , 1E L m Kr   = = =  =  = = = =   

 

 
 

Figure 3. Influence of Williamson parameter   for 
2

1 2
0.5, H 2,  0.1, 1,  2,  5, 1,s B B G N Br Pe= = = = = = = =  

0.6,  3, 1, 1, 0.6,  1, 6 , 1E L m Kr   = = =  =  = = = =  
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Figure 4. Influence of Suction/injection parameter s  for 
2

1 2
0.2, H 2,  0.1, 0.3,  2,  5, 2,B B G N Br Pe = = = = = = = =

0.6,  3, 1, 1, 0.6,  1, 6 , 1E L m Kr   = = =  =  = = = =   

 

 
 

Figure 5. Influence of angle of inclination parameter Br  for 
2

1 2
0.05, H 2,  0.1, 0.5,  1,  ?, 1,

6
s B B G N Pe= = = = = = = =

0.6,  3, 1, 1, 0.6,  1, 0.2, 1E L m Kr  = = =  =  = = = =   

 

Figure 2 depicts the effect of the magnetic field parameter

H  on the flow profile. Figure 2(a) shows a consistent 

depreciation in the velocity profile as the magnetic field 

increases. This deceleration is due to the Lorentzian magnetic 

drag opposing the fluid flow. It is shown in Figure 2(b) that 

the presence of a magnetic field causes more entropy is 

generated in fluid and decrease is noticed in the entropy profile 

toward the walls of the plate. The frictional heat and the 

diffusive irreversibility dominate over the transfer 

irreversibility as depicted in Figure 2(c).  

The response of the varying values of the non-Newtonian 

Williamson fluid parameter   on the flow profiles is 

illustrated in Figure 3. Figure 3(a) depicts that the Williamson 

fluid parameter is seen to decrease both the profiles of the 

velocity and entropy generation rate. Physically, the 

Williamson fluid parameter measures the impact of viscosity 

to elasticity. Due to low resistance to flow, it causing a 

decrease in the velocity profile. The rate of entropy generation 

is seen to increase significantly across the channel with 

increasing numbers of Williamson fluid parameter. Moreover, 

the heat transfer dominates the irreversibility ratio throughout 

the channel.  

Figure 4 illustrates the influence of the fluid 

suction/injection parameter on the flow profiles. Due to a 

continual rise in fluid flow injecting through the lower plate 

and sucked off through the upper wall, a symmetrical pattern 

is noticed at the centerline and almost the upper plate (see 

Figure 4(a)). At the plate with injection In Figure 4(b), the 

entropy generation rate decreases with the rise in fluid 

suction/injection parameter while opposite behavior is 

observed at the plate with suction. With an increase in the fluid 

suction/injection parameter, the irreversibility ratio 

contributed equally at the centerline of the channel. 

Figure 5 Present the angle of Brinkman number Br  on the 

flow profiles. As depicted in Figure 5(a), an increase in 

Brinkman number upsurge the temperature distribution due to 

an increase in fluid kinetic energy. Consequently, the rate of 

entropy generation increases with a rise in Brinkman number, 

while Brinkman number increases the heat transfer dominates 

over the fluid viscosity as shown in Figures 5(a) and 5(b).  

We observed in Figure 6(a) that the increase of the thermal 

radiation parameter N  results in a rise in the temperature 

distribution throughout the channel. This phenomenon is 

because the large value of the thermal radiation parameter 

implies a larger surface heat flux which leads to an increase in 

the temperature distribution of the fluid. The higher value of 

the thermal radiation parameter increases the rate of entropy 

generation as depicted in Figure 6(b). Consequently, it is 

displayed in Figure 6(c) that the dominance of heat transfer 

irreversibility over viscous irreversibility increases with the 
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thermal radiation parameter. 

The effect of the chemical reaction parameter Kr  on the 

flow profiles is shown in Figure 7. A higher value of chemical 

reaction parameter implies lower molecular diffusivity, it is 

observed in Figure 7(a) that lesser species is diffused thereby 

causing a reduction in the concentration distribution. 

Consequently, Figure 7(b) shows that the rate of entropy 

generation is suppressed at the lower plate while reverse 

behavior is noticed at the upper plate. However, as depicted in 

Figure 7(c) that the Bejan number is seen to decrease with an 

increasing number of chemical reaction parameter. This shows 

that an increase in this parameter breaks the symmetry due to 

a continual decrease in the diffusion. Finally, drawn the flow 

pattern of the current study in Figure 8(a) and (b). 

 

 
 

Figure 6. Influence of Thermal radiation parameter N  for 
2

1 2
0.05, H 2,  0.1, 1,  0.2,  5?, 1,s B B G Br Pe= = = = = = = =  

0.6,  3, 1, 1, 0.6,  1, 6 , 1E L m Kr   = = =  =  = = = =   

 

 

Figure 7. Influence of chemical reaction parameter Kr  for 
2

0.05, H 2,  0.1, 1,  2,  5, 1,1 2s B B G N Br Pe= = = = = = = =

0.6,  3, 1, 1, 0.6,  0.2, 6 , 1E L m    = = =  =  = = = =   

 
 

Figure 8. (a) Streamlines (b) Isotherms pattern of the present study 
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Table 5. Values of ( ) ( ) ( )w' , ' , 'y y y   when 
1 2

1, , 0.1, 2, 3, 0.6, 2, 1,Ω 0.6

6

G B B Br Pe E L m


= = = = = = = = = =  

 

H α N K s w(0) -w(1) θ(0) θ(1) ϕ(0) ϕ(1) 
1 0.2 2 0.5 0.1 0.3790692 0.6399072 0.5987834 1.5358174 0.7187397 1.6396473 

2 0.2 2 0.5 0.1 0.3553057 0.6132564 0.5980300 1.5392221 0.7187492 1.6395899 

3 0.2 2 0.5 0.1 0.3221001 0.5768956 0.5968921 1.5438227 0.7187678 1.6395044 

3 0.2 2 0.5 0.1 0.3221001 0.5768956 0.5968921 1.5438227 0.7187678 1.6395044 

3 0.4 2 0.5 0.1 0.3221001 0.5768956 0.5969901 1,5428806 0.7187649 1.6395151 

3 0.6 2 0.5 0.1 0.3124296 0.6730513 0.5970966 1.5414187 0.7187601 1.6395329 

3 0.2 1 0.5 0.1 0.3221001 0.5768956 0.4512420 1.8716379 0.7243002 1.6272579 

3 0.2 2 0.5 0.1 0.3221001 0.5768956 0.5968921 1.5438227 0.7187678 1.6395044 

3 0.2 3 0.5 0.1 0.3221001 0.5768956 0.6831496 1.3933475 0.7158798 1.6456134 

3 0.2 2 0.5 0.1 0.3221001 0.5768956 0.5968921 1.5438227 0.7187678 1.6395044 

3 0.2 2 0.8 0.1 0.3221001 0.5768956 0.5968921 1.5438227 0.6321980 1.9224724 

3 0.2 2 1.0 0.1 0.3221001 0.5768956 0.5968921 1.5438227 0.5821807 2.0983371 

3 0.2 2 0.5 0.1 0.3221001 0.5768956 0.5968921 1.5438227 0.7187678 1.6395044 

3 0.2 2 0.5 0.3 0.3155117 0.6067958 0.5968365 1.5417154 0.5813439 1.8614655 

3 0.2 2 0.5 0.5 0.3087681 0.6384658 0.5967627 1.5394734 0.4645763 2.1048017 

 

 

6. CONCLUSIONS 

 

A semi-analytical method has been employed to investigate 

the slip effects on the flow and heat transfer mechanisms of 

Williamson fluids through a porous channel. In the present 

study, the effect of a binary chemical reaction and Arrhenius 

activation energy is taken into account to stimulate the mass 

transfer. The result for a limiting case of this present study 

when 0, =  was further compared with that obtained by Das 

and Jana [23]. Some of the findings from the current study are: 

 

• The fluid velocity is an increasing function of 

Williamson fluid and magnetic parameters 

• Thermal boundary layer thickens due to radiation 

parameter 

• Concentration decreases with an increase in chemical 

reaction parameter 

• An increase in Brinkman number causes the increase 

of entropy generation 

• Bejan number is decreasing function of chemical 

reaction parameter 

• The skin friction coefficient suppresses with 

magnetic and non- Newtonian parameters.  

• The Nusselt number increases with thermal radiation 

parameters at both walls, whereas the Sherwood 

reduces with chemical reaction rate parameter at

0y =  and strengthen at 1y =  
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