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The output power prediction of wind power plants is an important guarantee to improve 

the utilization rate of wind energy and reduce wind curtailment. However, due to the strong 

randomness of wind energy, the ultra-short-term prediction accuracy of wind power output 

is poor. In view of the problem above, a prediction model based on deep learning of 

grouped time series (LW-CLSTM) was proposed in this paper. Based on this model, the 

authors attempted to explore a prediction method of wind power output. For this, first the 

multivariate data of wind power was fused, cleaned, dimension-reduced, and standardized, 

and the time period characteristics of the output power itself were extracted. Afterwards, 

it proposes a time sliding window (TSW) algorithm, and constructs a neural network input 

data set. Then a deep neural network prediction model combining the Convolutional 

Neutral Network (CNN) and Long-Short Term Memory (LSTM) was established, and the 

regression evaluation criteria for output power forecast accuracy in wind power production 

were designed, to compare the proposed model with four other prediction models. Finally, 

the experiments on the TensorFlow platform using real data show that this model has better 

prediction accuracy than the other four models, reaching a prediction accuracy rate of 

92.5%, which verified the effectiveness of this prediction method. 
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1. INTRODUCTION

As an important renewable energy source, wind energy has 

developed rapidly in recent years. Due to its characteristics of 

randomness and fluctuation, the wind output power is unstable. 

Also, large-scale wind power access poses challenges to the 

normal operation, scheduling and grid security of power 

systems [1-3]. The forecast technology of wind power output 

provides a method to solve this problem. It can predict the 

output power of wind power plants in the future, and is of great 

significance in formulating a reasonable dispatching and 

maintenance plan, and improving wind power utilization [4-7]. 

The research on wind power output prediction has been 

carried out for decades, achieving a wealth of research results. 

According to the length of forecast time, wind power output 

forecast can be divided into ultra-short-term forecast, short-

term forecast, and medium- and long-term forecast [8, 9]. 

Ultra-short-term forecasts focus on active output power within 

30 minutes to 4 hours, short-term forecasts focus on that within 

1 to 3 days, and medium- and long-term forecasts focus on that 

in the coming weeks, months, and years. In terms of the 

differences in wind power forecast technologies, there have 

formed several types of stable wind power output forecast 

methods [10], namely physical model method [11], 

conventional statistical model method [12], and intelligent 

calculation method [13]. First, the physical model method uses 

numerical weather prediction (NWP) data to obtain microscale 

meteorological information by performing terrain, wake flow, 

and spatial correlation analysis on the surrounding area of the 

wind farm, and then combines the technical parameters of the 

wind turbine and the energy conservation equation to achieve 

its output power. This method is suitable for medium and long-

term prediction, but excessive empirical parameters lead to the 

complexity of the model, the large amount of calculation and 

the difficulty of transplantation. Second, the conventional 

statistical model method usually uses the wind power time 

series and wind speed time series as the basis. It can establish 

the mapping relationship between the input characteristics and 

the wind power time series only through the historical data. 

After performing statistical regression fitting of various 

historical meteorological data and power data, this method 

shall realize the prediction of future output power. Specifically, 

the commonly used methods include Kalman filter method 

[14], random time series method [15, 16], support vector 

machine method [17, 18], and so on. Literatures [19-21] have 

successfully used statistical model methods in short- and 

medium-term wind power prediction. However, the 

conventional statistical model is difficult to construct, with 

strong randomness of parameters, and the accuracy of 

prediction cannot be guaranteed. The third is the intelligent 
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calculation method. With the in-depth development of 

computer software and hardware technology, and artificial 

intelligence theory, wind power forecasting has gradually 

begun to use the intelligent calculation, such as wavelet 

analysis prediction method, genetic algorithm prediction and 

other prediction algorithms. These algorithms use different 

structural designs to extract different features of the data. But 

they vary greatly in terms of the principles, making it difficult 

to build models, and the prediction results still cannot fully 

meet the actual requirements of wind power companies. 

With the deep development of machine deep learning theory, 

researchers have attempted to use deep learning methods in 

intelligent computing. Deep neural networks can effectively 

avoid the disappearance of gradients [22-24]. Its multilayer 

network structure can fit complex non-linear mappings, and 

has obvious advantages when processing large numbers of 

samples and non-linear data. Also, its prediction results are 

reproducible, saving the computing resources of the wind 

power prediction system [25, 26]. Deep neural networks [27], 

Convolutional Neural Networks (CNN), and Recurrent Neural 

Network (RNN), etc. are often applied in deep learning. 

Literatures [28, 29], based on the GRU and CNN (improved 

version of the LSTM), have made some progress in building a 

combined deep learning network. However, there are various 

influencing factors on the wind power prediction problems, 

and most of them are continuous variables, which leads to an 

exponential increase in the computational complexity of many 

network parameters when directly input in deep learning 

network. Without scientific and reasonable optimization, it 

shall result in low accuracy of network prediction poor 

generalization ability, and even the difficulty for the network 

to converge. 

This paper mainly studies the short-term and ultra-short-

term output power prediction of wind power from several 

hours to several days. For this, it proposes to build a prediction 

model (LW-CLSTM) based on deep learning of grouped time 

series. This model performs multivariate data fusion of 

historical wind power data, historic metrological data, and 

turbine state data, construction of time series data sets with the 

TSW, extraction of time cycle characteristics of wind power 

output, and establishment of deep networks using CNN and 

LSTM network structures. Then, a prediction method with 

high prediction accuracy and strong operability was formed 

through the multivariate data fusion, data cleaning, 

construction of deep learning models, and improvement in the 

evaluation criteria. Finally, the experiments were conducted on 

this method using the real data, to obtain 92.5% of accuracy 

based on the evaluation indicators of d_MAE average 

difference method (see 2.6.2).  

 

 

2. SHORT-TERM AND ULTRA-SHORT-TERM WIND 

POWER PREDICTION METHOD BASED ON LW-

CLSTM DEEP LEARNING MODEL 

 

2.1 Overall framework of wind power output prediction 

method 

 

The wind power prediction process includes raw data 

collection of wind farm, data fusion and cleaning, data 

dimensionality reduction and standardization, construction of 

data sets, establishment of CNN-LSTM deep learning models, 

training and optimization of models, prediction and evaluation. 

The output power prediction of a wind power plant is 

essentially a problem of mapping a set of input sequences to a 

set of output sequences. Its core is how to generate a predicted 

power sequence. 

 

 
 

Figure 1. Flow chart of wind power output prediction 
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The prediction process is divided into six stages (Figure 1): 

(1) Multivariate data fusion and cleaning. Collect the 

meteorological data, historical power data and wind turbine 

status data of the wind farm, perform the unification of data 

format and time intervals, and splice the data in the 

corresponding sampling time, fill in missing values and correct 

distortion values; (2) Data dimension reduction and 

standardization. The data is subjected to standardized 

processing such as dimensionality reduction, discretization, 

normalization, and one-hot encoding to form discrete data 

including only 0 and 1. (3) Construction of data sets using the 

sliding window. Analyze the time period characteristics of the 

data, and propose to use the TSW to construct a grouped time 

series data set and extract the grouping time series 

characteristics of the data; (4) Establishment of a deep learning 

model. Based on the TSW data set, a multi-layer CNN and 

LSTM network structure are combined to establish a deep 

learning model (LW-CLSTM) and realize automatic extraction 

of wind power features; (5) Model training and optimization. 

Use the real data set to train the deep combination model, and 

optimize the model based on the test data set; (6) Model 

evaluation and prediction. The trained model is used for 

prediction, and compared with the actual output power data 

and other prediction methods. 

 

2.2 Data fusion and cleaning 

 

There are many types of data generated by wind power 

plants, e.g., the volume of some data is huge, formats and time 

intervals of some other data are inconsistent, and abnormal 

data such as missing data and distortion also exist. All these 

data related to each other contain the key factors for the normal 

operation of wind turbines [30], which requires data fusion and 

cleaning.  

Data fusion is to unify the time intervals according to the 

sampling frequency of 15 minutes, and then perform data 

splicing in the corresponding sampling time, so that the data is 

presented in the form of a unified two-dimensional table and 

form an initial two-dimensional data set. Data cleaning means 

to deal with missing values and distortion values. The missing 

value in wind power data is the time series where the output 

power is located. It will destroy the original data structure to 

continuously or randomly distribute it in the middle of the data, 

or directly delete or simply complete (zero value completion, 

before and after value completion, and mean value 

completion). Given that only the output power sequence is 

missing in the fused data set, it is a univariate data missing 

problem. Thus, this paper uses a multiple linear regression 

method to predict missing values in the data sequence. For the 

distortion value in the data, t test can be first used to find and 

delete it directly, and then correct it according to the 

processing method of missing values.  

 

2.3 Data dimension reduction and standardization 

 

Through data fusion and cleaning, the initial data set is 

obtained. It includes various features of different types of data 

mentioned above, most of which have little effect on wind 

power output power. In order to reduce the amount of 

calculation and facilitate the network convergence, the data is 

reduced in dimension. In this paper, Principal Component 

Analysis (PCA) was used for feature selection and data 

dimension reduction. However, there are still significant 

differences in the dimension of various features retained after 

the PCA. To ensure the fair contribution of each variable to the 

machine learning result, each variable is normalized and 

converted into a relative amount with unified dimension. Due 

to the continuous features of the normalized data, segmented 

discretization and one-hot encoding can be performed to make 

the final data set appear as a three-dimensional sparse matrix 

with only 0 and 1, which can greatly reduce the amount of 

network calculation and speed up network convergence. 

 

2.4 Construction of input data set based on time sliding 

window 

 

To mine all the features of the initial wind power data, an 

algorithm based on the TSW was proposed to construct the 

input data set and expand the input data, thereby improving the 

prediction accuracy. The actual output power is sequence data 

with a time period. Extracting its period characteristics can 

improve the prediction accuracy of the model. Therefore, the 

actual output power was added to the DATA set of the input 

data set. 

 

 
 

Figure 2. Construction diagram of training data set using the 

time sliding window 

 

Figure 2 shows the construction of the training data set 

using a sliding window. The periodic characteristics of the 

actual output power data were analyzed to determine the 

lookback of the sliding window. By moving the window 

downwards, the standard data was segmented to form the input 

sample set. When selecting data in a sliding window, the first 

sample was the first to the lookback records of the data, the 

second sample was the second to the lookback +1 records, and 

so on. Let the total number of data records be L, then the 

number of records in the data set constructed by the sliding 

window was (L-lookback+1)×lookback, which is equivalent to 

the original data being expanded by lookback times. 

 

2.5 Establishment of a deep network model based on the 

CNN and LSTM 

 

Considering the significant periodicity of wind power data, 

RNN can be used to extract time-period features, while CNN 

can quickly and automatically extract local features and 

significantly reduce the amount of calculations. Therefore, 

based on these two network structures, this paper attempts to 
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build a combined neural network model for wind power 

prediction. 

 

2.5.1 LSTM-BASED Extraction of time series features 

The normalized data set is a time series, and the predicted 

output power data is a time period series. The RNN can be 

used to construct a deep learning model, which can process 

end-to-end sequence data. But when the input time sequence 

or the time series to be predicted is long, the historical 

sequence information will be replaced by the more recent 

information, causing the far-end information obtained by the 

RNN training to disappear or explode. Thus, the RNN is not 

suitable for processing time series data. LSTM network is an 

improvement of RNN. This block adds four structures: input 

gate, output gate, forget gate, and memory cell while retaining 

the advantages of standard RNN network structure. This can 

achieve reasonable retention and forgetting of grouped time 

series state of wind power, eliminate the problem of gradient 

disappearance or local optimization, and has a good memory 

effect on wind power output and time period characteristics of 

historical meteorological data, thereby achieving higher 

prediction accuracy in theory [31, 32]. Figure 3 shows the 

abstract structure of the hidden layer in LSTM. 
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Figure 3. LSTM network structure 

 

In Figure 3, when the time step is t (t=1, 2 ..., n), then the 

input state of the LSTM block is xt, the forget gate state is ft, 

the input gate state is it, the output gate state is Ot, while the 

unit candidate state signal is 𝑁t, the unit memory state is Nt, 

and the unit output state is ht. The forget gate controls the wind 

power information that is forgotten; the input gate processes 

the signals received by the unit to generate signals it and 

candidate signals 𝑁t, and also updates the state of the unit Nt; 

the output gate generates signals and determines the output 

signal ht of the unit. The signal conversion between units can 

be expressed as: 

 

 ( )f t 1 t fhσ , x btf W −= +  (1) 

 

 ( )t i t 1 t ii σ W , bh x−= +
 

(2) 

 

 ( )t t C t 1 t CÑ tanh(i W ,x bh −= +
 

(3) 

 

t t t 1 tN f N i tN− += 
 

(4) 

 

 

(5) 

 

( )t t th O tanh N=
 (6) 

 

It can be seen that the time periodic characteristics of wind 

power sequence data can be memorized for a long time in each 

node of the LSTM network. Information that needs to be 

forgotten can also be completed by the cell forgetting 

mechanism. After multiple input training, the LSTM deep 

network can well fit the non-linear relationship between input 

data and output power data of wind power, and obtain 

satisfactory prediction results. 

 

2.5.2 CNN-based fast extraction of features  

Due to the long time span of wind power sequence data and 

much time required for model training, CNN can be used to 

optimize the model and shorten the training time. 1D CNN is 

very applicable to time series data analysis, and suitable for 

analyzing signal data with a fixed length period. 

 

 
 

Figure 4. Schematic diagram of 1D CNN convolution 

 

Figure 4 shows the convolution principle of a filter's 1D 

CNN on the wind power sequence data. For the standardized 

wind power sequence data, each element is a two-dimensional 

matrix with a width as the feature number and a height as the 

TSW value (LookBack). Taking the size of the filter's 

convolution kernel as Height, then each convolution forms a 

convolution window with a width of Feature and a height of 

LookBack, and then convolves downwards until the end. The 

1D CNN convolution filter is a one-dimensional vector, which 

does not change the number of features. It can only reduce the 

vertical LookBack value through the convolution operation to 

obtain a new time window value NewStep  as shown in (7), 

which reduces the amount of calculation while automatically 

extracting features locally. 

 

NewStep=(Loo 1)kBack Height N− +   (7) 

 

Figure 4 shows the convolution process of a filter, but a 

convolution filter can only learn one feature. In order to 

comprehensively learn the features of wind power sequence 

data, N convolution filters are defined. After one convolution, 

a two-dimensional matrix NewStepN is derived as the output 

of the first convolution. The output data of multiple 

convolutions can be pooled to further reduce the data 

dimension and increase the operation speed. 

 

2.5.3 Establishment of a combined neural network model 

based on CNN and LSTM 

As above, this paper established the deep learning model 

using the CNN and LSTM combined network based on the 

TSW data set. The prediction model is composed of a data 

input layer, two convolution layers, two dense layers, three 

LSTM layers, and DropOut layer. 

 ( )t 1 to σ H ,x bt ooW − +=
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Figure 5. Network structure of the LW-CLSTM prediction model 

 

Figure 5 shows the structure of the prediction model. It 

consists of dense layers (fully connected), CNN convolution 

layers, LSTM layers and output layer. The data processing in 

this network structure is as follows: 

(1) The TSW data set was input into a dense layer. The data 

set was a three-dimensional matrix X; the first dimension of X 

was the number of elements of the two-dimensional matrix 

determined by the total data sample and time window size; 

each element was a two-dimensional matrix with the number 

of rows as the size of the time window and the number of 

columns as the feature number of input data. The number of 

elements and the number of features in the dense layer were 

the same. This layer passed all the characteristics of the input 

data to the next layer; 

(2) The convolution layer received the output of the dense 

layer, and output a two-dimensional matrix NewStep N  

through two layers of convolution and one layer of pooling. At 

this time, the features of the wind power sequence data were 

automatically extracted, but the time window value of the data 

has been reduced three times, and the amount of data also 

decreased simultaneously; 

(3) Then, the LSTM layer was composed of three LSTM 

layers, one DropOut layer, and one regularization layer. Each 

layer of LSTM consisted of 32, 64, and 96 LSTM cells, and 

this layer automatically extracted the correlation between 

meteorological data and output power, and data time-order 

characteristics; regularization layer and DropOut layer prevent 

overfitting in training between the two LSTM layers; 

(4) Finally, the network output a predicted power sequence 

through a dense layer. 

 

2.6 Evaluation index design for regression prediction 

accuracy of LW-CLSTM model  

 

Error evaluation standards such as mean absolute error 

(MAE), and R2-Score, etc. are commonly used in regression 

analysis [33, 34], but for wind power plants, statistical 

evaluation criteria for prediction accuracy need to be designed. 

This paper designs two evaluation standards: the statistical 

distribution method of maximum relative error (s_MRE), and 

the MAE average difference method (d_MAE). 

 

2.6.1 Statistical distribution method of maximum relative error 

s_MRE 

In addition to the evaluation criteria such as the mean square 

error (MSE), root mean square error (RMSE), MAE, and R2-

Score commonly used in regression analysis, this paper also 

designs an intuitive evaluation standard of regression 

prediction accuracy s_MRE based on the statistical 

distribution of predicted and true values, as shown in formula 

(8). Let the number of test sets be N, the ratio of the absolute 

value to the true value of the difference between the i-th 

predicted value and the true value in the test set be λi; let the 

acceptable value λi of the power plant be θ, and the number of 

the predicted values in the test set that satisfy λi<θ be n, then 

(n/N)% was the statistical accuracy rate A of the prediction 

model. After joint research with the wind power plant, the 

value of θ that met the production needs was 0.2, the accuracy 

of the model constructed could reach up to 755, and the 

corresponding R2-Score value was 0.93. 
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In formula (8), λi is the relative error. The value of A is 

obtained under the maximum tolerable relative error, which is 

the error evaluation method proposed in this paper. 

 

2.6.2 Mean difference method d-MAE  
In order to meet the requirements of forecasting accuracy 

evaluation during wind farm operation, this paper also design 

a mean error difference method, as shown in formula (9) in 

this paper. The value size is positively correlated with the 

prediction accuracy. 
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3. EXPERIMENTAL VERIFICATION 

 

This experiment used Keras deep learning platform with 

TensorFlow as the underlying layer. It called data processing 

and data visualization modules such as NumPy for data 

processing and display, the optimizers module for 

optimization of error back propagation, the regularizers 

module for regularization of the model, the callbacks module 

for dynamic adjustment of the learning rate, and CNN1D and 

LSTM modules to build a long-term and short-term memory 

deep learning model based on a TSW data set. Besides, Python 

was applied to write programs, and the experimental 

environment was a GPU deep learning platform. 

 

3.1 Experimental data set 

 

Experimental data were collected from a wind farm of 

certain wind power company in Inner Mongolia for model 

training and verification. They were mainly divided into two 

parts: the first part was the numerical weather prediction data, 

from January 1, 2019 to May 22, 2019, for a total of 13,632 

records, which included 9 fields such as date and time etc. The 

other part was the output power data from January 1, 2019 to 

May 21, 2019, for a total of 13,536 records. After the data 

splicing, the PCA was performed to finally obtain 13,494 valid 

records with 7 characteristics such as wind speed and output 

power, which constituted the initial data set. Intuitively, the 

output power and wind speed should be linearly related. To 

verify this, a scatter plot was drawn for correlation analysis as 

shown in Figure 6. It can be seen from the figure that there is 

no simple linear relationship between wind speed and output 

power, and a deep learning model needs to be established, 

enabling the machine automatically to learn its complex non-

linear relationship. 

 

 
 

Figure 6. The scatter plot of wind speed and direction 

 

3.1.1 Periodic analysis of data 

Periodical analysis was conducted on the actual power data 

in the initial data set. In the experiment, the sample data were 

visually displayed for three consecutive days from 00:00 to 

24:00 every day, including a total of 96 sampling records for 

24 hours (Figure 7). It is found from the figure that the output 

power of three consecutive days has a periodic characteristic 

of phase equity, indicating that the periodic characteristic of 

the output power itself should be extracted to improve the 

prediction accuracy.  

 

3.1.2 Construction of an input data set using time sliding 

window   

In order to extract the time periodic characteristics of the 

output power itself, the output power combined with other 

meteorological data was taken as input features, and the data 

set was divided into a Data set and a Label set; the Data set 

was a two-dimensional matrix of 13,494 rows and 7 columns, 

and the Label set was One-dimensional matrix of 13,494 

elements. Referring to the periodic analysis of the data, the 

TSW value Lookback was selected to be 288. To construct the 

data set using the sliding window described above, the final 

shape of the Data set was (13206,288,7), and that of the Label 

set was (13206,1). Then the data was standardized and 

discretized to ensure that it contains only 0 and 1 in the form 

of sparse matrix. Finally, dividing the processed data set into 

training and test sets, the data set was constructed. 

 

 

 

Figure 7. Periodicity of actual output power 
 

3.2 Error evaluation index 

 

MSE, RMSE, MAE and R2-score are commonly used for 

evaluation in regression analysis. RMSE is the root of MSE; 

it’s better to obtain a smaller value for both in the same data 

set, but the data set size is sensitive. MAE is not affected by 

the size of the data set, and can better reflect the actual 

situation of the prediction error. RMSE and MAE have a good 

error evaluation function under the same data set, but due to 

different dimensions, it is difficult to measure the effectiveness 

of the model. R2-score can eliminate the effects of different 

dimensions through average calculation; in practice, the value 

of R2-score is closer to 1, with a better model effect. This 

paper uses the MAE indicator in the loss curve of the 

prediction model, and compares the performance of different 

prediction models on the above indicators in the experiments. 

 

3.3 Experimental design 

 

3.3.1 LW-CLSTM model experiment 

A TensorFlow-based Keras deep learning platform was 

deployed on the GPU platform. According to the designed 

model, a deep network was built, which consists of a dense 

(fully connected) input layer, the hidden layer (incl. two CNN 

convolutional layers, a maximum pooling layer, three LSTM 

layers, and three DropOut layers), and an output layer. The 

network involves different categories of hyper-parameters: the 

number of nodes in the input layer, the number of nodes in 

each LSTM layer, L1\L2 regularization parameters, DropOut 

automatic drop index, gradient optimizer Nadam's initial 

parameters and automatically decreasing parameters of 

learning rate. Table 1 shows the setting of each hyper 

parameter. 

 

3.3.2 Comparative experiment design 

In order to compare and evaluate the prediction effect of the 

LW-CLSTM model, a TLW-LSTM model was designed by 
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removing the CNN convolution layer based on the LW-

CLSTM model. Meanwhile, several types of machine learning 

models such as support vector machines, decision trees, and 

random forests were designed for comparative evaluation. 

 

Table 1. Hyper parameters of deep neutral network 

 

Parameter 

type  

Node 

number 

Convolution 

kernel 

Pooling 

kernel 

Activation 

function 

L1 

regularization 

L2 

regularization 
DropOut Optimizers 

Input layer 7 - - RELU - - - - 

CNN1 32 3 - RELU - - - - 

CNN2 32 3 - RELU - - 0.3 - 

MaxPooling - - 4 - - - - - 

LSTM1 32 - - Sigmod 0.001 0.002 0.3 Nadam 

LSTM2 64 - - Sigmod 0.001 0.001 0.5 Nadam 

LSTM3 64 - - Sigmod 0.001 0.002 0.6 Nadam 

Nadam Lr=0.002, Beta_1=0.9, Beta_2=0.999, Epsilon=1e-08, Schedule_decay=0.004 

Reduce_lr Patience=5, Factor=0.8, Mode='auto', Verbose=1, Min_delta=0.0001, Cooldown=0, Min_lr=0.0000001 

 

3.4 Experimental results of prediction models 

 

3.4.1 Experimental analysis of LW-CLSTM and TLW-LSTM 

models 

The processed training data set was used to perform 50 

rounds of iterative training on the constructed LW-CLSTM 

model, and draw the MAE loss curve of the training process 

as shown in Figure 8 (a). It can be seen from the figure that the 

losses of training and testing at the beginning were decreased 

rapidly, and then started to decline slowly after 5 rounds; after 

30 rounds, the trained MAE and MAE also decreased slowly; 

after 50 rounds, the loss reached the lowest level and the model 

completely converged. In contrast, as shown in Figure 8 (b), 

the TLW-LSTM had no convolutional layer, but the 

performance of the training loss curve was basically the same, 

indicating that the CNN convolution and pooling have no 

significant effect on the loss of the model, and the network 

convergence of the two is basically synchronous. 

 

 

(a) The loss curve of LW-CLSTM model 

 

(b) The loss curve of TLW-LSTM model 

 

Figure 8. Comparison of training loss curves between LW-

CLSTM and TLW-LSTM models 

The trained model was applied to predict the output power 

of the input data of the test set, which were then compared with 

the actual power data of the test set. Figure 9 shows the 

comparison curve of the predicted power and actual output 

curve of the two models within 4 hours. The horizontal axis 

was the sampling time at 15 minute intervals, and the vertical 

axis was the megawatt (MW) power value. It can be seen from 

Figure 9 that the predicted power curves of the two models 

well fit the actual output power curves of the wind farm. To 

compare the convergence time of the two models under the 

same data set, after 50 rounds of training, the TLW-LSTM 

spent 80 minutes, and the average time per round was 96 

seconds, while the LW-CLSTM model need 25 minutes, and 

29 seconds per round. This indicates that the CNN network 

greatly reduces the amount of calculation and accelerates the 

training speed without affecting the accuracy of LSTM 

training. 

 

 

(a) Training accuracy curve of LW-CLSTM model 

 

(b) Training accuracy curve of TLW-LSTM model 

 

Figure 9. Comparison of predicted power and actual power 

between LW-CLSTM and TSW-LSTM model 
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3.4.2 Comparative analysis of experiments 
In order to better reflect the engineering value of the model 

constructed in this paper, a random forest learning model was 

also designed in the experiment to compare with the deep 

learning model proposed. All models were experimentally 

verified under the same data set, and the output power within 

the next 24 hours was predicted. The error index of each model 

is shown in Table 2 and Figure 10. 

 

Table 2. Comparison of errors and accuracy indicators 

between various prediction models 

 

Evaluation 

indicators 
MSE RMSE MAE 

R2-

Score 
d_MAE  s_MRE 

Physical model 220.1 149 8.53 - 65.7% 56.3% 

Random forest 1162.2 34.0 19.12 0.41 61.4% 38.6% 

TLW-LSTM  11.7 3.4 1.39 0.93 92.7% 77.9% 

LW-CLSTM 12.7 3.5 1.36 0.93 92.5% 75.7% 

 

It can be seen from Table 2 that the MAE value of the 

random forest machine learning model was around 20, 

indicating a very high MAE and a significant gap between the 

predicted value and the true value; from the perspective of 

accuracy, the d_MAE values of random forests were all about 

60%, and its s_MRE value was less than 40%, which indicates 

that the prediction results are difficult to be recognized by 

users. The physical model of the wind power plant had a MAE 

value of about 8, which is significantly lower than the random 

forest; the d_MAE value was about 65%, which is slightly 

higher than the random forest; the s_MRE value was 56%, 15 

percentage points higher than the random forest, indicating a 

better degree of recognition of the prediction results.  

The MAE value of the LW-CLSTM prediction model 

constructed in this paper was 1.36, and the d_MAE value was 

about 92% which is significantly better than the other two 

models; the s_MRE value was 76%, indicating that the 

prediction result is highly recognized by users. In addition, 

LW-CLSTM and TLW-LSTM have basically the same 

performance in various evaluation indicators such as accuracy 

and error, which shows that after CNN convolution and 

pooling are added to the TLW-LSTM model, features can still 

be extracted well, and the operation speed is accelerated. 

 

 

 

Figure 10. Comparison of prediction effects between 

different models 

 

Figure 10 compares the power curves of the physical model, 

the LW-CLSTM model, and the random forest model and the 

actual output power curve. The predicted output power curve 

of the physical model and the random forest within a day 

differs significantly from the actual output power curve, and 

both curves cannot fit synchronically. The output power curve 

predicted by the LW-CLSTM method proposed in this paper 

fits well with the actual output power curve within a day, and 

has obtained higher prediction accuracy. 

 

 

4. CONCLUSIONS 
 

This paper conducts an experimental study on the whole 

process of short-term and ultra-short-term wind power 

prediction including data processing, prediction model 

construction, prediction effect evaluation, and model 

optimization. It proposes to fuse the time period characteristics 

of historical power data and use sliding time windows for 

constructing the input data sets, and then constructs an LW-

CLSTM deep learning model for wind power prediction. In 

addition, two kinds of regression evaluation criteria for wind 

power prediction were designed using real wind farm data. 

Finally, the proposed model was compared with other models, 

to verify its good prediction accuracy. The following 

conclusions have been drawn: 

(1) It can effectively extract the time periodic characteristics 

of the output power and improve the prediction accuracy rate 

by integrating the historical power data into the input data set, 

and using the TSW; 

(2) The use of LSTM effectively extracts the time series 

characteristics of the data set, fit the output power curve of the 

wind farm well, and obtain good prediction results; 

(3) The use of CNN convolutional network can significantly 

reduce the training time of the model, and improve its 

practicability, thereby verifying the effectiveness of the 

proposed prediction method in this paper. 
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