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 In this paper, the optimal feeder routing along with optimal distributed generator 

placement is formulated as an optimization problem. In this problem, the total cost of 

capital recovery, supply interruption and energy losses are minimized. Also, line loading 

capacity and bus voltage constraints are applied. By proposing a novel method to code the 

solutions of the optimization problem with the facilitation obtained from the utilization of 

the Kruskal's algorithm, it is guaranteed that graphs of all solutions would always be 

spanning trees. The main result of the implementation of this method within meta-heuristic 

algorithms is to limit the search space to radial networks leading to snap quicker answers 

with higher degree of optimality. A distribution network with a 24 load points and 42 

candidate branches is used as a baseline to indicate the effectiveness of the proposed 

method which was tested using three meta-heuristic algorithms including genetic 

algorithm, particle swarm optimization and simulated annealing. 
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1. INTRODUCTION 

 

The feeder routing is one of the main parts of distribution 

system planning, aiming at determining number of feeders and 

their routes to connect demand locations with substations 

undertaking the satisfaction of technical and physical 

constraints in a way that the demand is met at minimum cost. 

The growth of peak demand, low reliability, and high-power 

losses are major problems of distribution networks. To deal 

with these problems, the use of distributed generators (DGs) 

in distribution networks has considerably grown to satisfy the 

needs for providing load locally, reduce the peak demand of 

distribution network, reduce power losses, increase reliability, 

and improve voltage profile. At the presence of distributed 

generators, feeder routing would have more significant role 

because DGs have great effect on determining the optimal 

route. In this paper, feeder routing and DG placement issues 

are considered simultaneously.  

Because distribution feeder routing is a large-scale non-

convex problem which involves many variables and 

constraints, the preferred solution mostly contains meta-

heuristic optimization approaches rather than mathematical 

techniques. Since distribution networks are generally used 

radially, one of the main constraints of the problem of 

distribution feeder routing is the radiality of the feeding paths 

of all load points. This is a hard limit discrete constraint. It is 

therefore recommended not to use the penalty concept at 

optimization process. 

Generally, the problem of optimal routing of distribution 

feeders, independently or in combination with other issues of 

the distribution network planning problem, such as 

determining the location and optimal size of substations, has 

been considered in a variety of studies, some of which are 

referred to hereafter. The combination of the steepest descent 

approach and the simulated annealing technique is used for 

optimal planning of radial distribution networks, taking the 

uncertainties of the inputs and the various models of 

determining the interruption costs into account [1]. In this 

paper, only the connectivity of network configuration is 

checked using a network connectivity matrix. A stochastic 

model for the expansion planning of an active distribution 

network comprising shared electric vehicle charging stations, 

solar based distributed generations, and battery energy storage 

systems is presented [2]. A mixed integer linear programming 

model is presented for short-term expansion planning of power 

distribution systems [3, 4]. The model is able to solve the 

problems of optimal allocation of voltage regulators and 

capacitor banks, optimal reconductoring of distribution 

networks and determining optimal tap position of distribution 

transformers. A practical methodology based on 

georeferenced data for planning a resilient underground 

distribution network is presented [5]. In this paper, a modified-

prim algorithm is used to determine optimal location of 

distribution transformers and to find the minimal path of the 

medium voltage network. A multi-objective joint planning 

model for active distribution network planning is presented [6]. 

In this paper, using the multi-objective natural aggregation 

algorithm, the location and size of the electric vehicle charging 

stations, renewable energy sources, battery energy storage 

system, and distribution network expansion schemes are 

determined. By using an improved harmony search algorithm, 

optimal location and size of distribution substations and 

feeders are investigated in the presence of distributed 

generators [7]. In this paper, in order to keep the radial 

structure of distribution network, the simultaneous satisfaction 

of the two constraints is evaluated: first, the determinant of the 

branch-node matrix must be zero, and second, the number of 

branches should be less than the number of nodes by one. An 

adaptive genetic algorithm is applied to determine the optimal 

site and size of sub-transmission substations and renewable 

and non-renewable distributed generations associated with 

optimal feeder routing [8]. In this paper, a method is 
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introduced based on the rank of the Laplacian matrix of bus 

incidence matrix for checking the radiality of networks with a 

desired number of HV/MV substations. A stochastic 

optimization algorithm is provided to find the optimal feeder 

routing considering the stochastic variations of electric vehicle 

charging stations as well as photovoltaic and wind distributed 

generators [9]. In this paper, the radial structure of feeders is 

not considered. The simulated annealing algorithm is used for 

optimal planning of new urban distribution networks based on 

the selection of the best subset of paths providing back-feed 

from the entire path set generated for the available cable routes 

[10]. In this paper, the interconnecting and/or ring (not radial) 

feeders are searched. Using genetic algorithm, the planning of 

a hybrid AC/DC distribution system involves determining the 

optimal location and size of the AC/DC distribution 

substations, as well as the length and capacity and path of the 

AC/DC feeders on both low and medium voltage sides [11]. In 

this paper, the Minimum Spanning Tree method is used for 

routing feeders on both the MV and LV sides of the 

distribution system. A biogeography-based optimization is 

employed to find the optimal location and rating of distribution 

transformers and substations, as well as the type and route of 

medium and low voltage feeders based on uniform or non-

uniform load density [12]. The Imperialist Competitive 

Algorithm (ICA) is used to find an optimal route of medium-

voltage (MV) feeders at the presence of load forecasting 

uncertainties in multistage mode [13]. The presented solution 

uses two features of a tree in a graph to check the radial 

structure of the network in any iteration of ICA. A combined 

methodology [14] implemented by the particle swarm 

optimization (PSO) technique for the distribution network 

expansion planning, considering DGs in the presence of load 

and price uncertainties under electricity market environment 

has been presented; however they have ignored any expansion 

plan that does not have a radial structure. A multistage 

expansion planning framework [15] has been proposed to find 

optimal sizing, siting and timing of HV substation and medium 

voltage feeders’ routes using an imperialist competitive 

algorithm (ICA) with an efficient coding. In their presented 

method, during the optimization process to maintain the radial 

structure of a network, firstly, the vectors (countries) of the 

ICA are manipulated so that the number of their “1” do not 

change, and secondly, by executing a subroutine only 

solutions that do not have a loop are accepted, and the other 

solutions are removed from the simulation process. A graph-

theoretic [16] based feeder routing of the given power 

distribution system is observed and the impact of DG 

integration on the feeder routing have been proposed. In their 

approach firstly, using the proposed methodology, a set of near 

optimal solutions has been originated and then an optimal 

solution from the set of near optimal solutions is selected by 

running the modified load flow program for each of the near 

optimal solutions. The particle swarm optimization technique 

[17] is used to determine the optimal location and size of 

MV/LV distribution substations, and a modified-Prim 

algorithm is used to find the optimum feeder routing of LV 

and MV networks. A multi-objective planning algorithm [18] 

using dynamic programming is suggested to determine the 

optimal feeder routes and branch conductor sizes with 

simultaneous optimization of cost and reliability. Their 

proposed method guarantees that the radiality constraint is 

never violated since the network nodes are connected one by 

one using dynamic programming; however, because the 

dynamic programming suffers heavily from the “curse of 

dimensionality”, it limits its application to small networks. A 

modified bacterial foraging technique [19] for optimal feeder 

routing in radial distribution system planning has been used to 

provide a solution rapidly with a better probability of 

achieving a global optimal solution. A direct search technique 

[20, 21] is applied for optimum feeder routing in radial 

distribution system. In these papers, the concept of principle 

of optimality theorem is effectively used to make the direct 

method more computationally efficient, reducing total 

numbers of radial paths. A new technique [22] employing 

discrete particle swarm optimization (DPSO) method is 

presented to find optimally distribution transformer and 

substation locations and ratings, as well as, the route and type 

of Medium Voltage (MV) and Low Voltage (LV) feeders. An 

improved genetic algorithm [23] is applied to determine 

optimal sizing and locating of the high and medium voltage 

substations, as well as medium voltage feeders routing. They 

use a subroutine to check the loop conditions in the network at 

any iteration according to crossover and mutation processes. 

Optimal planning of radial distribution network [24] is done 

by employing simulated annealing technique and the steepest 

descent approach is used to generate the initial solution for the 

optimization procedure. They check the graph connectivity of 

new solutions by evaluating a network connectivity matrix. 

The ant colony system algorithm (ACS) [25] is adapted to find 

the solution of the optimal planning problem of primary 

distribution circuits. They enforce the radial characteristic of 

the network by a proposed branch selection approach. 

The main challenge of the routing of distribution feeders is 

that the solution (network configuration) should be radial. On 

the other hand, using the Kruskal's algorithm, we can find the 

minimum spanning tree for a connected weighted graph. 

Therefore, in this paper, first a coding method for each 

solution is proposed. Using this coding together with the 

Kruskal's algorithm, we can limit the optimal solution search 

space to no more than the radial (tree) distribution solutions. 

Then, the capability of the proposed coding is examined with 

its application in the implementation of the three meta-

heuristic algorithms (GA, PSO and SA) to devise a 

comprehensive solution method for the feeder routing and DG 

placement problems altogether. 

At the rest of the paper, first, in section 2, the problem is 

formulated. Then, in the third section, problem-solving 

algorithms are introduced. In Section 4, the proposed method 

for coding the solution of the problem and in Section 5, its 

fitness function is presented. Section 6, contains the results of 

implementing the proposed method on a distribution system. 

Finally, in the seventh section, the paper ends with expressing 

the conclusion of the study.  

 

 

2. PROBLEM FORMULATION 
 

In this paper, optimal feeder routing along with DG 

placement is defined as an optimization problem in which the 

objective function is the minimized total cost which satisfies 

the specified constraints. In this section, the objective function 

and the constraints and the modeling of DGs are introduced.   

 

2.1 Objective function 

 

Eq. (1) introduces the objective function of the optimization 

problem [21, 24]: 
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𝐶𝑡 = 𝐶𝐶 + 𝐶𝑖 + 𝐶𝑙  (1) 

 

where, 𝐶𝑡 ,  𝐶𝐶 , 𝐶𝑖  and 𝐶𝑙  are the total annual cost, capital 

recovery fixed cost, the cost of supply interruption and the cost 

of energy losses, respectively. 

The capital recovery cost can be calculated as [21, 24]: 

 

𝐶𝐶 = 𝒈∑ 𝑪𝒌
𝒌∈𝑴

 (2) 

 

where, 𝒈 is the capital recovery rate of the fixed cost and 𝑪𝒌 

is the cost of the branch 𝒌 of the main feeder. It should be 

noted that costs of branches originating from the source 

substation include both the lines and the corresponding 

substation costs. M stands for the set of branches of a network 

configuration that has been investigated. 

Considering the facts that in radial networks there is no 

alternative supply route and the outage of a branch interrupts 

the delivery to all consumers supplied through it, the cost of 

supply interruption can be obtained by Eq. (3) [21, 24]: 

 

𝐶𝑖 = 𝒄𝒊𝒑𝜶𝒅∑ 𝝀𝒌𝑹𝒆{𝑰𝒌}√𝟑𝑼𝒓
𝒌∈𝑴

 (3) 

 

where, 𝒄𝒊𝒑, 𝜶, 𝒅, 𝝀𝒌, 𝑰𝒌 and 𝑼𝒓  indicate the cost per unit of 

energy not delivered, the load factor, the repair duration, the 

branch failure rate, the branch current at peak load and the 

network rated voltage, respectively. 

The cost of energy losses is calculated by Eq. (4): 

 

𝐶𝑙 = 𝟖𝟕𝟔𝟎𝒄𝒍𝒑𝜷∑ 𝒓𝒌|𝑰𝒌|
𝟐

𝒌∈𝑴

 (4) 

 

where, 𝒄𝒍𝒑, 𝒓𝒌 and 𝑰𝒌 are the cost per unit of energy lost (the 

cost of one watt-hour of energy loss), the branch resistance and 

the branch current at peak load, respectively. 

The coefficient β is the loss factor defined by (5) in terms of 

the load factor (𝜶): 

 

𝛽 = 0.15𝛼 + 0.85𝛼2 (5) 

 

2.2 Constraints 

 

The constraints to be satisfied are: 

i) Loading capacity constraints: The current which passes 

through a branch of the network should be within its thermal 

capacity limit: 

 
|𝐼𝑘| ≤ |𝐼𝑘𝑚𝑎𝑥|              ∀ 𝑘 ∈ 𝑀 (6) 

 

where, |𝐼𝑘|  is the current magnitude of the branch k and 

|𝐼𝑘𝑚𝑎𝑥| is the upper bound of |𝐼𝑘|. The current magnitudes of 

the network branches are calculated by performing load flow. 

ii) Bus voltage constraints: The voltage of a bus must be 

within its allowable limits: 

 

𝑉𝑖𝑚𝑖𝑛 ≤ |𝑉𝑖| ≤ 𝑉𝑖𝑚𝑎𝑥  (7) 

 

where, |𝑉𝑖|  is the voltage magnitude of bus i and 𝑉𝑖𝑚𝑖𝑛  and 

𝑉𝑖𝑚𝑎𝑥  are the upper and lower bounds of |𝑉𝑖| respectively. The 

voltage magnitudes of the network buses are calculated by 

performing load flow. 

iii) Radiality constraint: Since distribution networks are 

operated radially, one of the main constraints of the problem 

is that the network structure should be radial. In other words, 

the graph of the network should be a spanning tree, which is a 

tree that connects all nodes (buses) and has no loops. This is a 

hard limit discrete constraint so the use of penalty concept 

within the optimization process is not recommended [15]. 

 

2.3 Modeling of distributed generators 

 

The distributed generator unit in each bus is modeled as 

negative PQ load. Because the distributed generator injects 

active power into a network, the active power of the PQ load 

is considered to be a constant and a negative value. Since it is 

assumed here that the distributed generator operates with a 

unity power factor, the reactive power of the PQ load is 

considered as constant value of zero. 

 

 

3. THE PROBLEM SOLVING METHOD  

 

Given that the problem of the optimal feeder routing along 

with DG placement is a complex and combinatorial problem, 

in this paper a meta-heuristic optimization approach is used to 

solve it. Therefore, the use of three meta-heuristic algorithms 

including genetic algorithm (GA), the particle swarm 

optimization (PSO) algorithm, and the simulated annealing 

(SA) algorithm are tested. Before applying these algorithms, a 

possible solution of the problem must first be encoded as a 

string (vector) of numbers. Also a fitness function that 

expresses the degree of achieving to the main objective of the 

problem and the level of satisfying the constraints must be 

defined to evaluate each solution. After that, the 

implementation of the meta-heuristic algorithm begins by 

generating an initial solution or a population of initial solutions 

and continues by iterating an iterative process. At each 

iteration round, by applying the particular operators of the 

corresponding algorithm to the current population/solution, a 

new population/solution is generated which is an improvement 

regarding the previous one in terms of the fitness function. The 

iterative process of the algorithm is stopped when a 

predetermined stop condition is met. Then the best solution by 

far is introduced as the final optimal solution. 

The process of generating new population/solution depends 

on the algorithm used. In genetic algorithm, the population of 

new solutions is generated by applying selection, crossover 

and mutation operators on the current population. In PSO 

algorithm, the new population of particles (solutions) is 

generated by updating the velocity and position values of the 

current population particles. The degree by which any particle 

will be updated depends on the best position obtained by the 

particle itself and the best global position obtained by all the 

particles at the previous iterations [14]. In SA algorithm, new 

solution at any iteration is generated in the neighborhood of 

the current solution by a certain neighborhood structure. Better 

solutions are always accepted, and the new solutions which are 

not better are also accepted with some probabilities to avoid 

falling into local optimal solution. 

In the optimal distribution feeder routing, each solution is a 

configuration of the network, the traditional coding method for 

a configuration is to allocate a bit to each candidate branch 

(line) of the under-study network. Having “one” at any of 

corresponding bits indicates that the corresponding branch is a 

member of the corresponding network configuration while 

“Zero” means that the corresponding branch does not exist 
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there. 

To overcome the distribution feeder routing problem the 

main challenge is that the optimal solution (network 

configuration) should be radial, while if the traditional coding 

method is used to code the solutions (network configurations), 

most of the search space is formed by non-radial 

configurations (unacceptable solutions). In this paper, 

however, using the Kruskal's algorithm, a method is proposed 

for coding the distribution network configuration, which limits 

the search space to radial configurations only. 

4. CODING SOLUTION

The solution to the problem should specify the route of 

distribution feeders and the location of the DGs. So, each 

solution is coded by a vector X as follows: 

𝑋𝑇 = [𝑤𝑇 𝐷𝑇]

= [
𝑤1 𝑤2 … 𝑤𝑛𝑏𝑟⏟            

𝑓𝑒𝑒𝑑𝑒𝑟 𝑟𝑜𝑢𝑡𝑒𝑠

| 𝑑1 𝑑2 … 𝑑𝑛𝐷𝐺⏟            
𝐷𝐺 𝑙𝑜𝑎𝑐𝑡𝑖𝑜𝑛𝑠

] 
(8) 

The vector X consists of two parts. The first part which 

contains the vector 𝑤𝑇 , encodes the route of the distribution

network, and the second part, which includes the vector  𝐷𝑇 ,

encodes the location of the DGs. The element 𝑤𝑖 , which is a

number within the interval of [0,1], represents the weight of 

the candidate branch i within the execution of Kruskal's 

algorithm. The purpose of this research is to code routes so 

that using Kruskal's algorithm in graph theory, the search 

operation is performed only in the space of radial paths. In this 

case, high-quality optimal solutions are easily available. The 

element 𝑑𝑖 represents the bus number which is used to be a

candidate to install i-th DG, and therefore it is an integer 

number between one and the number of candidate buses. 

Using Kruskal's algorithm, a radial solution corresponding 

to the values of the elements of the vector   𝑤𝑇  is generated.

Kruskal's algorithm is a greedy algorithm in graph theory, 

which is used to find a minimum spanning tree for a connected 

edge-weighted graph. The minimum spanning tree (MST) of a 

connected, edge-weighted graph is a subset of the edges of the 

graph that connects all the vertices together, without any 

cycles and with the minimized total edge weight. The process 

of using the Kruskal's algorithm to generate a radial solution 

corresponding to the weight vector w is as follows: 

1- All candidate branches are arranged in an ascending order

by their weights to form an ordered set, called set A.

2- The set of branches of the radial network corresponding

to the weight vector w, called set B, is initially set to empty.

3- Moving forward along set A, for each member, if the

union of branches in set B and the current member of A

do not create any cycles, then the selected branch is added

to the set B.

4- The branches of the resultant set B provide the radial

solution corresponding to the vector w.

To clarify the issue, the implementation of Kruskal's 

algorithm is illustrated with a simple example. 

Example: Consider the simple network shown in stage 1 of 

Figure 1, which has four nodes and five candidate branches 

with numbers 1-5. Suppose the weights of the vector encoding 

the routes of this network are 𝑊𝑇 =
[0.7 0.9 0.4 0.1 0.6] . The steps needed to find the 

corresponding network with the vector W are as follows: 

1- Because the order of ascending weights of candidate

branches are { 𝑤4 = 0.1, 𝑤3 = 0.4, 𝑤5 = 0.6, 𝑤1 =
0.7, 𝑤2 = 0.9  {, the result of sorting the candidate

branches will be the set A = {4, 3, 5, 1, 2}. 

2- We initially set the set B to empty. So B = {}. B is the set

of branches of the radial network corresponding to the

weight vector W.

3- We select the first branch of set A, which is branch 4. If

this branch is added to set B, the stage 2 of Figure 1 would

be the outcome that does not produce any cycles. So we

add this branch to set B, and so B = {4}.

4- We select the second branch of set A, which is branch 3.

If branch 3 is added to the branches of set B, the stage 3

of Figure 1 would be the result that does not produce any

cycles. So we add branch 3 to set B, and so B = {4, 3}.

5- We select the third member of set A, which is branch 5.

If branch 5 is added to set B, the stage 4 of Figure 1 would

be the upshot which generates a cycle. Therefore, we do

not add branch 5 to set B.

6- We select the fourth member of set A, which is branch 1.

If it is added to set B, the stage 5 Figure 1 would be the

outcome that does not create any cycles. So we add branch

1 to set B, which means B = {4, 3, 1}.

7- We select the fifth member of set A, which is branch 2.

Adding this branch to set B will lead us to the stage 6 of

Figure 1 which generates a cycle. Thus, we do not add

branch 5 to set B.

8- Now, the final radial solution corresponding to route W

is set B = {4, 3, 1}, which is shown in the stage 7 of Figure

1.

Figure 1. Graphs of the stages to reach a radial feeding path 

for a hypothetical example 

5. FITNESS FUNCTION AND GENERATION OF

POSSIBLE SOLUTION

In the meta-heuristic algorithms, the quality of each solution 

is evaluated by a fitness function. The fitness function must be 

defined in a way that it can show how much each solution can 

satisfy the main goal and the constraints of the problem. In the 

current subject, the goal is to minimize the cost function 

defined in Eq. (1). The problem constraints are the load 

capacity constraints and the bus voltage constraints defined in 

relations 6 and 7, respectively. Therefore, the fitness function 

for each solution is defined in relation 9, which must be 

minimized by a meta-heuristic algorithm. 
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𝑓(𝑋)

= {
𝐶𝑡(𝑋) 𝑖𝑓 𝑛𝑜 𝑙𝑖𝑚𝑖𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛

𝐶𝑡(𝑋) + 𝛾 𝑖𝑓 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑙𝑖𝑚𝑖𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛
 

(9) 

 

where, X denotes a solution, that is, the path of the distribution 

network feeders and the location of the DGs. f(X) is the fitness 

function of solution X. 𝐶𝑡(𝑋)  is sum of the total costs 

introduced in Eq. (1); γ is a penalty factor (a large number). 

The “Limits” are the load capacity constraints defined in Eq. 

(6) or the bus voltage constraints defined in Eq. (7). 

The fitness function in Eq. (9) is defined so that if none of 

the load capacity constraints or the bus voltage constraints are 

violated, then the value of the fitness function is equal to 𝐶𝑡(𝑋). 
However, if one of these constraints is violated, the value of 

the fitness function is equal to 𝐶𝑡(𝑋) + 𝛾 , which is a large 

value, and therefore the meta-heuristic algorithm will not 

choose these types of solutions as the optimal solution. 

To calculate the fitness function of each solution X, the 

following steps must be taken: 

1- Determine the radial network corresponding to the part 

𝑊 of the vector X using the Kruskal's algorithm. 

2- Apply DG powers in load buses corresponding to the part 

𝐷 of the vector 𝑋. 

3- Perform the load flow. In this research, since the network 

is always radial type, the forward-backward load flow, 

which is special for radial distribution networks and has a 

high computational speed, is used. 

4- Calculate the total cost (𝐶𝑡(𝑋)) from Eq. (1) using the 

load flow results. 

5- Check the load capacity and bus voltage constraints 

according to the load flow results. 

6- Determine the value of the fitness function using Eq. (9). 

It should be noted that since all solutions are always 

produced in a way that the corresponding network would be 

radial, the radiality constraint is automatically provided. 

 

 

6. SIMULATION RESULTS  

 

In this section, the effectiveness of the proposed method is 

studied on a rural 10kV network reported in the study [21, 24]. 

Figure 2 shows the graph of available network routes. The 

network has 24 load points (transformers 10 kV/0.4 kV) and 

42 available branches for their supply from the substation 35 

kV/10.5 kV at node 1. To check the effects of DGs, four DG 

units of equal capacity are considered with a total DG capacity 

of 1.33 MVA at unity power factor. The predetermined 

locations of the DGs according to reference [16] are in nodes 

7, 8, 9 and 10. But we obtain the optimal locations of these 

DGs and compare them with the predetermined locations. The 

details of consumption at load points, length of graph branches, 

line data and load data can be obtained in tables I, II and III of 

reference [24]. Cost and complementary load data have been 

given in Table 1. 

The substation equipment and building capital cost per 

outgoing line is 75 k$. This amount is added to the costs of all 

branches directly connected to the source substation. The 

upper and lower bounds of voltages in all the buses are 

assumed to be 0.95 to 1.05 per unit respectively. The penalty 

factor in fitness function (γ) was set to 1×106. 

To verify the effectiveness of the proposed method, 

multiple simulations were performed by three GA, PSO and 

SA algorithms in Matlab environment, and the comparative 

results are presented in the remainder of this section. The 

values of some parameters used for the simulation of the 

algorithms are given in Table 2. It is mentionable that the 

population size and number of generations in GA and PSO 

algorithms and the number of iterations in SA algorithm are 

chosen large enough making sure that in all three algorithms 

the optimal solution is obtained after complete convergence. 

 

 
 

Figure 2. Graph of available supply routes for the rural 10kV 

network 

 

Table 1. Cost coefficients and complementary load data 

 
Parameter Value 

Power factor at all load points 0.9 

Load factor (α) at all load points 0.6 

Investment cost per kilometer of each branch (ck) 15000 US$/Km 

cost per unit of energy not delivered (cip) 4 US$/KWh 

cost per unit of energy lost (clp) 0.1 US$/KWh 

the capital recovery rate of the fixed cost (g) 0.1 

 

Table 2. The values of some parameters for the 

implementation of GA, PSO and SA 

 
Parameter Value 

Population size for GA and PSO 100 

Maximum generations for GA 100 

Maximum generations for PSO 200 

Number of iterations for SA 10,000 

 

6.1 Comparison between Kruskal's coding and 

traditional coding 

 

In the previous sections, the Kruskal’s algorithm was 

proposed to code the distribution network configurations to 

solve the distribution feeder routing problem. In this section, 

this proposed coding method is compared with the traditional 

coding method. Here since we just want to compare the effects 

of these coding methods on the feeder routing, in this case, we 

do not consider any distributed generator for the system. The 

results of solving the distribution feeder routing problem using 

three algorithms GA, PSO and SA with both the coding 

methods are given in Table 3; where the best values of the 

fitness function obtained from the implementation of 10 times 

simulations for random number generator seeds 0-9 for all 

three algorithms and both the coding methods are presented. 

It is observed carefully in Table 3 that in all the three 

algorithms, when using traditional coding, the value of the 

fitness function is very large, due to the fact that one or more 

of the constraints including bus voltage constraints, loading 

capacity constraints and/or radial constraint are not satisfied. 
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Therefore, the traditional coding method does not work well 

for any of the three algorithms. However, when the proposed 

Kruskal’s method is used, all three values of the fitness 

function are small, which means that the solutions obtained by 

all the three algorithms satisfy all constraints. Meanwhile, GA 

and SA methods have reached the same solution which is 

better than the solution of the PSO algorithm because the 

amount of their fitness function is lower. So, it can be 

concluded that while the use of traditional coding method with 

all the three algorithms has not even been able to achieve a 

feasible solution, the use of Kruskal's coding method looks 

very effective to solve the distribution feeder routing problem. 

Therefore, the Kruskal’s coding method is used in the rest of 

the study. 

 

Table 3. Comparison of routing results to two coding 

methods with three algorithms 

 

Algorithm 
Fitness (×104) 

Traditional coding Kruskal’s coding 

GA 107.95 3.4038 

PSO 107.67 3.5411 

SA 106.30 3.4038 

 

6.2 Comparison of the algorithms 

 

Table 4 shows the results obtained from solving the optimal 

feeder routing and DG placement problem for the following 

three scenarios and for the above-mentioned 25-bus 

distribution network with all the three algorithms. In this table, 

the best value of the fitness function obtained from the 

implementation of 10 times simulations for the random 

number generator seed 0 to 9 for each of the three PSO, GA 

and SA algorithms and with the Kruskal’s coding method is 

given. 

Scenario 1) It is assumed that there is no DG and only the 

feeder routing problem is solved. 

Scenario 2) It is assumed that DGs are installed at proposed 

locations in reference [16], i.e., at nodes 7, 8, 9, and 10, and 

only the feeder routing problem is solved. 

Scenario 3) The distribution feeder routing problem along 

with the optimal placement of the four DGs is simultaneously 

solved. 

Considering Table 4, the following points can be deduced: 

• It is observed that all values obtained for the fitness 

function in Table 4 are not very large, which means 

that according to Eq. (9), the amount of the penalty 

factor (γ) does not have any effect on the value of the 

fitness function. In other words, the value of the cost 

function is equal to the total cost. Consequently, the 

solutions obtained by Kruskal’s coding at all three 

scenarios and for all three PSO, GA, and SA 

algorithms have satisfied all the constraints. 

• By comparing the results of the second scenario with 

the third scenario, using all three algorithms, the 

amount of fitness function obtained at the third 

scenario is less (better) than the fitness value obtained 

at the second scenario. Therefore, the DG placement 

has improved the value of the objective function. 

• It can be seen that at all the three scenarios, the fitness 

function values of the solutions obtained by the GA 

are better (less) than the ones acquired by the PSO, 

and also the fitness function values of the solutions 

attained by the SA are better (less) than the ones 

achieved by the GA. Therefore, at all the three 

scenarios, the SA algorithm has found the best 

solutions. 

 

Table 4. Fitness function values of the best solutions 

obtained for different scenarios and algorithms with 

Kruskal’s coding 

 

Scenario 
Fitness function value 

PSO GA SA 

Scenario 1 (Feeder Routing with no DG) 35411 34038 34038 

Scenario 2 (Only Feeder Routing with 

DGs in predefined buses) 
14488 14357 14294 

Scenario 3 (Feeder Routing with DGs 

placement) 
13029 12971 12306 

 

6.3 Effect of DGs 

 

For further evaluations, the details of the best solutions 

obtained by the SA algorithm with Kruskal’s coding for all the 

three scenarios are given in Table 5. 

Considering Table 5, the following points can be deduced: 

• It can be seen that at all the three scenarios, the total 

cost (Ct) is equal to the value of its corresponding 

fitness function, which means that according to Eq. 

(9), the amount of the penalty factor has no effect on 

the value of the fitness function. In other words, the 

solutions obtained at all the three scenarios have 

satisfied all the constraints. 

• By comparing the results of the second and third 

scenarios with the first scenario, the presence of DGs 

at the second and third scenarios has led to a 

significant reduction in the cost of energy losses (Cl) 

and supply interruption (Ci) at the second and third 

scenarios compared to the first scenario, such that, 

the per unit total cost has dropped from 1 per unit at 

the first scenario to 0.42 per unit at the second 

scenario and to 0.36 per unit at the third scenario. 

Therefore, the existence of DGs has been very 

effective in reducing the cost of energy losses and 

supply interruption. 

• By comparing the results of the third scenario with 

the second, the total cost (Ct) has dropped from 0.42 

per unit at the second scenario, where the DGs are at 

predefined locations (nodes 7, 8, 9, and 10), to 0.36 

per unit at the third scenario, where the DGs are in 

optimal locations, and this cost reduction is mostly 

due to a reduction in the cost of supply interruption 

(Ci) at the third scenario, compared to the second one. 

Therefore, the DG placement has improved the value 

of the objective function. 

As an example, variations in the fitness values of the 

evaluated solutions as well as optimal solutions during the 

steps of the implementing the SA at the third scenario are 

shown in Figure 3 which indicates that although the values of 

the fitness functions of the evaluated solutions at the initial 

steps have large fluctuations due to the higher probability of 

accepting weaker solutions to avoid being trapped by local 

optimal solutions, but at the next steps, the solutions gradually 

converge towards a final optimal solution. It is considerable 

that the scale of the vertical axis of the graph is logarithmic. 

The optimal solution found at the third scenario is displayed in 

Figure 4. 
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Table 5. Details of the best solutions obtained using the SA algorithm and Kruskal’s coding at different scenarios 

 

item 
Scenario 1 (Feeder Routing 

with no DG) 

Scenario 2 (Only Feeder Routing 

with DGs in predefined buses) 

Scenario 3 (Feeder Routing 

with DGs placement) 

Fitness value 34038 14294 12306 

Per unit of total cost (Ct) 1 0.42 0.36 

Total cost (Ct) 34038 14294 12306 

The capital recovery cost (Cc) 4125 4113.8 4080 

the cost of supply interruption (Ci) 12063 2517.7 481 

The cost of Energy Losses (Cl) 17850 7662.7 7745 

Branches of the optimal network 

[1 2 3 5 7 9 12 14 19 21 22 24 

26 27 29 30 32 33 34 35 36 37 

39 40] 

[1 2 3 6 9 13 15 17 19 21 22 24 26 

27 29 30 32 33 35 36 37 38 41 42] 

[1 2 3 5 7 9 12 14 19 21 22 24 

26 28 29 30 32 33 35 36 37 38 

39 40] 

DG buses - [7 8 9 10] [9 13 14 15] 

 

 
 

Figure 3. Variations in the amount of fitness function during 

the steps of the SA algorithm 

 

 
 

Figure 4. The obtained optimal solution at the third scenario 

 

 

7. CONCLUSION 

 

In this paper, the problem of the optimal feeder routing 

along with DG placement was formulated as an optimization 

problem whose presented solutions by three meta-heuristic 

algorithms including PSO, GA and SA were examined. Using 

the Kruskal’s algorithm, a method for coding the distribution 

network configurations was presented by which the search 

space is restricted to radial configurations of the network. 

Numerical studies on a 10 kV distribution network with 24 

load points and 42 available branches showed that, first, while 

using a traditional coding method with any of the three 

algorithms is not even able to achieve a feasible solution, the 

use of Kruskal’s coding method proved to be highly effective 

in solving the distribution feeder routing problem. Second, the 

SA algorithm obtains the best solutions in comparison with the 

PSO and GA algorithms. Third, the presence of DGs 

massively reduces the cost of supply interruption and the cost 

of energy losses. Fourth, the DG placement reduces the total 

cost significantly. 
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