
  

  

Supply-Demand Prediction of DiDi Based on Points of Interests Selection in Extreme 

Gradient Boosting Algorithm 

 

 

Yonghong Tian1*, Zeyu Li2, Yue Zhang1, Qi Wu1 

 

 

1 College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China 
2 School of Computer Science and Technology, Xidian University, Xi'an 710071, China 

 

Corresponding Author Email: tyh@imut.edu.cn 

 

https://doi.org/10.18280/ria.340115 

  

ABSTRACT 

   

Received: 5 August 2019 

Accepted: 10 November 2019 

 In recent years, DiDi, an online car-hailing (OCH) service provider, has emerged as a leader 

in the sharing economy. To improve user experience, the company must minimize the 

waiting time and optimize car utilization based on accurate estimation of supply-demand 

gap. This paper aims to develop a desirable model to select the most significant factors for 

OCH supply-demand estimation. Firstly, the correlation between the points of interest 

(POIs) and the supply-demand gap was proved through statistical analysis. Next, the 

number and type of POIs were found to have a slight impact on the estimation results. On 

this basis, the authors put forward a method called POI principal component extraction 

based on supply-demand gap (PPCE-SDG) to select the most significant POIs. The PPCE-

SDG involves four steps: k-means clustering (KMC) of blocks based on supply-demand 

gap; creating a data vector of POIs after counting the POIs in each cluster; extracting the 

significant POIs through principal component analysis (PCA) of the data vector; importing 

the extracted POIs to extreme gradient boosting (XGBoost) for OCH supply-demand 

prediction. Finally, the POIs selected by the PPCE-SDG were proved superior than those 

collected by other methods in OCH supply-demand estimation, indicating that our model is 

a desirable tool for significant POIs selection. The research results lay a good basis for the 

optimization of OCH services. 
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1. INTRODUCTION 

 

Recent years has seen an explosion of services that facilitate 

sharing economy. Take the field of transport for example. 

Leading online car-hailing (OCH) service providers (e.g. Uber, 

DiDi and Lyft) have developed popular mobile apps to provide 

on-demand transport services. Compared with traditional 

transport means like metro and buses, the OCH offers a 

convenient and flexible travel mode for passengers. The OCH 

apps incentivize private car owners who agree to provide car-

hailing services, which promotes the sharing economy and 

enlarges urban transport capacity.  

Currently, a large number of OCH orders are generated 

every day, fulfilling the travel demand of millions of 

passengers. The frequent uses of OCH services expose two 

problems: For one thing, some drivers find it hard to receive 

any order, because few people nearby use car-hailing apps; for 

another, it is extremely difficult to get a ride in bad weather or 

rush hours, due to the short supply in the surrounding areas. 

To solve the problems, OCH service providers must schedule 

the drivers reasonably to minimize the waiting time of 

passengers and maximize the use of drivers. The effectiveness 

of scheduling hinges on supply-demand estimation.  

The OCH supply-demand is influenced by various factors, 

including but not limited to weather, time and traffic condition 

[1]. The analysis of these factors is the first step to setting up 

an estimation model of OCH supply-demand. To collect the 

necessary data for the analysis, the points of interest (POIs) in 

each block of the target city should be observed on a daily 

basis. After all, the POIs are the common destinations of 

passenger flows in urban areas. However, the POIs, being 

numerical identifiers, offer a limited amount of information. It 

is an arduous task to select those suitable for supply-demand 

estimation out of the various POIs. 

To select the few significant POIs, this paper proposes a 

method called POI principal component extraction based on 

supply-demand gap (PPCE-SDG). Firstly, the k-means 

clustering (KMC) was adopted to cluster the blocks in the 

target city based on the supply-demand gap. Next, the POIs in 

each cluster were counted, and a data vector was obtained for 

the POIs. Then, the data vector was subjected to principal 

component analysis (PCA) to extract the POIs. Finally, the 

effectiveness of the PPCE-SDG in OCH supply-demand 

estimation was verified through experiments under the end-to-

end framework of extreme gradient boosting (XGBoost) [2], 

using the public dataset released by DiDi. The dataset, as the 

result of Di-Tech Algorithm Challenge, contains 11,467,117 

OCH orders over 7 weeks across 58 blocks in Hangzhou, 

China. The dataset was supplemented by a number of other 

features like the POI distribution in each block, weather 

(temperature and PM2.5), and the number of segments under 

each congestion level in each block. 

The main contributions of our research are about the 

influence of POIs over OCH supply-demand: 

(1) The POIs are correlated with OCH supply-demand. The 

POI-based models are more accurate than the models without 

POIs in the estimation of OCH supply-demand. Two blocks 

with similar POIs tend to bear high resemblance in OCH 
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supply-demand. 

(2) Different types of POIs exert different impacts on OCH 

supply-demand. The estimation accuracy varies with the types 

of POIs, even if the number of POIs remains constant. With 

the rising number of POIs in the same type, the estimation 

accuracy first increases and then declines. Hence, the POIs 

must be selected carefully to estimate OCH supply-demand 

accurately. 

(3) A few POIs play decisive roles in the estimation of OCH 

supply-demand. The influence of all POIs largely comes from 

the primary POIs extracted through the PCA. Besides, 90% of 

the improvement in estimation accuracy is attributable to the 

four most significant POIs. 

(4) After clarifying the influence of POIs over OCH supply-

demand, it is possible to predict the exact number of 

passengers in need of OCH services and the number of drivers 

available in each block, and strike a balance between supply 

and demand in advance through car dispatching, price 

adjustment and pick-up location recommendation. 

The remainder of this paper is organized as follows: Section 

2 reviews the previous studies on OCH supply-demand and 

POIs; Section 3 describes the research dataset and introduces 

the verification framework; Section 4 analyzes the impacts of 

POIs on OCH supply-demand, and selects the most significant 

POIs; Section 5 sets up the PPCE-SDG model; Section 6 

verifies the proposed model through experiments; Section 7 

puts forward the conclusions. 

 

 

2. LITERATURE REVIEW 

 

The existing studies on OCH supply-demand mostly focus 

on a specific aspect of the problem. For instance, Saadi et al. 

[3] compared several machine learning approaches in the 

prediction of OCH supply-demand. Chang et al. [4] and Yan 

et al. [5] forecasted the hotspots of OCH service users. 

Phithakkitnukoon et al. [6] identified and projected the 

positions of vacant taxis on the OCH platform. 

There are many factors that affect the OCH supply-demand, 

such as POIs, weather and traffic condition. The OCH demand 

is high in a block with many POIs (e.g. malls and restaurants); 

more people will resort to OCH services in bad weather; traffic 

jam dampens the interest in OCH services. Many scholars [7-

10] have designed excellent path planning models that 

recommend the best itinerary to drivers, yet failed to assess the 

contribution of POIs to OCH supply-demand. Chen et al. [2] 

noticed the relationship between POIs and supply-demand gap, 

but did not clearly demonstrate the relationship. 

The current estimation methods for OCH supply-demand 

are bottlenecked by the lack of information or the absence of 

the POIs. As a location information, the POIs are an essential 

cause of the gap between supply and demand. The OCH 

demand may be affected differently by POIs  from different 

categories: malls have a positive impact on the demand, while 

congestion exerts a negative impact. Therefore, this paper 

probes deep into the impacts of the POIs on OCH supply-

demand. 

 

 

3. PRELIMINARIES 

 

3.1 Dataset description 

 

Our dataset was released by DiDi after the Di-Tech 

Algorithm Challenge. The dataset contains 11,467,117 OCH 

orders over 7 weeks across 58 blocks in Hangzhou, China, and 

was supplemented by features like the POI distribution in each 

block, weather (temperature and PM2.5), and the number of 

segments under each congestion level in each block. The 

weather and traffic conditions could be directly imported to 

the XGBoost, but the semi-structured POIs must be pre-

processed before use. 

There are 173 types of POIs in the dataset. But it is unclear 

which POI types belong to which block. To make matters 

worse, the distribution and number of POIs differ from block 

to block. Here, the 173 types are numbered from 1# to 173#, 

respectively, and the number and types of POIs were counted 

for each block. 

The data on the 24 days from February 23rd to March 17th 

were allocated to the training set. For each block, one training 

sample was generated every 10min from 0:00 to 24:00 on each 

of the 24 days, that is, each day was divided into 144 slices. 

Thus, a total of 200,448 training sample were obtained. The 

data on the 28 days from March 25th to April 31st were 

allocated to the test set. For each block, one test sample was 

generated every 10min from 0:00 to 24:00 on each of the 28 

days. Thus, the test set contains a total of 58,464 test samples. 

 

3.2 Verification framework 

 

The XGBoost, an integrated learning framework good at 

classification and regression, was employed to verify our 

model. This machine learning (ML) algorithm was improved 

from gradient boosted decision tree (GBDT) [11]. As the name 

suggests, the GBDT integrates the decision tree and gradient 

boosting. The XGBoost selects the optimal decision tree by 

scoring the tree structure and leaf nodes. Unlike the GBDT, 

the XGBoost optimizes the loss through second-order Taylor 

expansion, and prevents overfitting with additional 

regularization terms. With high efficiency and good ability of 

parallel processing, the XGBoost is very suitable to handle big 

data problems. The pseudocode of the XGBoost is given 

below. 

 

Algorithm: XGBoost 

Inputs: I, instance set of the current node 

           d, feature dimension 
gain 0  

,i ii I i I
G g H h

 
    

for k=1 to m do 

   
0, 0L LG H 

 

    
for   ( ,  )dojkj in sorted I by x

 

       
,L L j L L jG G g H H h +  +

 

       
,R L R LG G G H H H −  −

 

        

2 2 2

max( , )L R

L R

G G G
score score

H H H  
 + −

+ + +
 

    end 

end 

Output: Split with max. score 
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4. POIS ANALYSIS  

 

4.1 Impacts of POIs on OCH supply-demand 

 

Observations show that the OCH supply-demand is directly 

affected by time, weather and traffic condition. In general, it is 

difficult to receive OCH services in the rush hours on 

workdays, during the holidays or under bad weather. 

Meanwhile, fewer passengers have OCH demand under 

congestion and good weather. Nonetheless, the estimation of 

OCH supply-demand often ignores an important factor: the 

POIs. 

Here, a set of five POIs and another set of ten POIs are 

established, and applied to estimate the OCH supply-demand. 

The estimation effects were compared with that of a dataset 

with zero POI. As shown in Table 1, the estimation based on 

POI sets were much better than that based on the dataset 

without POI, as measured by minimum, mean, maximum and 

standard deviation. This means the addition of POIs benefits 

the estimation of OCH supply-demand.  

 

Table 1. Estimation effects with different number of POIs 

 
Number of POIs 

Metric 

0 5 10 

Minimum 0.59032 0.63359 0.63549 

Mean 0.58839 0.63654 0.63787 

Maximum 0.59261 0.63932 0.64019 

Standard deviation 0.00624 0.00287 0.00235 

 

To further disclose the impacts of POIs on OCH supply-

demand, the mean supply-demand gap of each 10min in each 

block was calculated based on the training set, creating a 114-

dimensional data vector of the supply-demand gap. Each 

dimension corresponds to one of the 144 time slices of each 

day. Another 114-dimensional data vector was created to 

reflect the variation in the supply-demand gap between 

workdays and holidays. The two vectors were combined into 

a 288-dimensional data vector. 

Next, the KMC was introduced to cluster the data in 288 

dimensions. In this way, the 58 blocks were allocated to five 

clusters, denoted as 0, 1, 2, 3 and 4, in turn. The five cluster 

centers of supply-demand gap were confirmed by the k-

means-plus-plus clustering (KM++C). Extended from the 

KMC [12, 13], the KM++C overcomes an inherent defect of 

the KMC (the clustering effect heavily depends on the initial 

cluster centers, because the similarity is measured by 

Euclidean distance), and enhances the inter-cluster difference. 

The clustering results show that the 5 samples at cluster 

centers are highly representative, and the five clusters 

distinguish the 58 blocks well.   

After that, the authors analyzed the intra- and inter-cluster 

similarities of POIs. The divergence of POIs between clusters 

is mainly reflected in quantity. Thus, the intra- and inter-

cluster similarities were both measured by Euclidean distance. 

The Euclidean distance is negatively correlated with the two 

similarities. The Euclidean distances of clusters 0-3 were 

computed, for clusters 1 and 4 contain too few samples. The 

calculated results are listed in Table 2, where the numbers are 

the proportions of POIs falling in the range of Euclidean 

distance. Obviously, the intra-cluster similarities of POIs were 

all greater than the inter-cluster similarities, indicating that the 

POIs are closely correlated with OCH supply-demand gap. 

 

Table 2. Intra- and inter-cluster similarities 

 
Euclidean distance 

Cluster 
0.000001 0.0000015 0.000002 0.0000025 0.000003 

Intra-cluster similarities 0 0.0085 0.1974 0.6131 0.8895 

Cluster 0 0 0 0 0.4667 0.83 

Cluster 2 0 0 0 1 1 

Cluster 3      

Inter-cluster similarities 0 0 0.1354 0.4323 0.7813 

Clusters 0, 2 0 0 0.0625 0.4028 0.8611 

Clusters 0, 3 0 0 0 0.25 0.75 

Clusters 2, 3 0.000001 0.0000015 0.000002 0.0000025 0.000003 

4.2 Contributions of POIs to OCH supply-demand 

estimation 

 

This subsection mainly explores how the number and type 

of POIs contribute to the estimation of OCH supply-demand. 

For this purpose, four sets of POIs were constructed, each of 

which contains 8 subsets. The number of POIs in the 8 subsets 

is 5, 10, 15, 20, 30, 50, 75 and 100, respectively. The four sets 

have different combinations of POI types. Then, the four sets 

of POIs were separately imported to the XGBoost for 

estimation of OCH supply-demand. The estimation accuracies 

are compared in Figure 1. 

As shown in Figure 1, the estimation accuracy generally 

improved with the growing number of POIs. However, a large 

number of POIs did not necessarily lead to a high estimation 

accuracy. For example, the highest accuracy was not obtained 

in the case of 100 POIs. Besides, the increase in the number of 

POIs prolonged the estimation duration. Therefore, the 

number of POIs is not a decisive factor of OCH supply-

demand estimation. 

 
 

Figure 1. Estimation accuracies of different sets of POIs 
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From Figures 1(a), (b), (c) and (d), it can be seen that the 

estimation accuracy varied slightly between different 

combinations of POI types, when the number of POI were the 

same. This means the type of POIs is not a decisive factor of 

OCH supply-demand estimation, too. 

Overall, the estimation of OCH supply-demand is greatly 

affected by the combined effects of the number and type of 

POIs. This calls for the selection of a few significant POIs 

before estimating OCH supply-demand. 

 

 

5. MODEL CONSTRUCTION 

 

This sections designs the PPCE-SDG model to extract the 

significant POIs from the 173 types of POIs distributed in the 

58 blocks. After the blocks were clustered by the KMC, the  

PCA was performed to calculate the absolute eigenvalue of 

each POI. The PCA is a popular way to reduce data 

dimensionality. It transforms the original data into a set of 

linearly independent representations. Next, the significant 

POIs were selected based on the absolute eigenvalues. The 

PPCE-SDG  is a data-centered  logical model that makes strict 

calculation and derivation in each step. The model can be 

seamlessly coupled with XGBoost.  The pseudocode of the 

PPCE-SDG is given in Algorithm 1. 

 

Algorithm 1. PPCE-SDG 

Inputs: 

G: the set of supply-demand gaps 

P: the set of POIs 

B: the set of blocks 

T: the set of training days 

Output: 

The selected POIs 

1: Start: 

2: for each block bi in B do 

3: for each time slice tj in T do  

4: bi. calculate ( ( ),

1
i jgap

T
  )  //calculate the mean gap in 

the same time slice of T 

5:    end for 

6: end for 

7: gap vector = statistic (B. calculate (
∑𝐺

𝑇
 ) ) //integrate the 

mean gap into a gap vector 

8: center points = k-means+(gap vector) //use KM++C to 

confirm center points 

9: clusters = KMC (center points, B) //use KMC to cluster 

the blocks 

10: for each cluster ck in clusters do 

11: for each POI pm in ck do 

12: ck. calculate ( ( )
k

mp
B

1  ) //calculate the mean of a type 

POI in each cluster 

13:    end for 

14: end for 

15: POI vector=statistic (cluster. Calculate (PB
∑𝐺

𝐵
 )) // 

integrate the mean POI into a POI vector 

16: POI eigenvalue=PCA (POI vector) // use PCA to 

calculate the eigenvalues of each POI type 

17: sort <˗ Max (POI eigenvalues) 

18: return selected POIs 

19: End 

 

6. EXPERIMENTAL VERIFICATION 

 

To verify its effectiveness, the proposed PPCE-SDG was 

applied to predict the OCH supply-demand with POIs of 

different contributions, and then compared with XGBoost 

feature selection method (XFSM) and GBDT feature selection 

method (GFSM) through experiments on the above-mentioned 

dataset. Each experiment was carried out 50 times and the 

mean of the ten best results were adopted for analysis. 

Before the experiments, the supply-demand gap was 

defined as follows: On the d-th day, the supply-demand gap in 

the interval [t, t+C) of a block equals the total number of 

invalid orders in the interval. Here, the constant C is set to 10, 

and the gap is denoted as gap𝑎
𝑑,𝑡

. 

 

6.1 Performance metrics 

 

The performance of the PPCE-SDG, the XFSM and the 

GFSM was measured by four metrics, namely, the mean 

absolute error (MAE), the root mean squared error (RMSE), 

the accuracy and the F1. The four metrics can be respectively 

calculated by: 

 

( )

, ,

, ,

1 d t d t

a a

a d t T

MAE gap pred
T 

= −  (1) 

 

( )

, ,

, ,

1 d t d t

a a

a d t T

RMSE gap pred
T 

= −  (2) 

 

H
Accuracy

N
=  (3) 

 

where, H is the hit number; N is the total number. 

 

1

2 Pr

Pr Re

ecision
F

ecision call


=

+
 (4) 

 

where, Precision is the degree of prediction accuracy; Recall 

is the measure of completeness. 

 

6.2 Results analysis 

 

To measure its effectiveness, the PPCE-SDG was adopted 

for POI selection from three sets of POIs on three contribution 

levels: maximum contribution (Max), medium contribution 

(Med) and minimal contribution (Min). The top 10 POI that 

contribute the most to OCH supply-demand estimation were 

selected and imported to XGBoost for prediction. Figure 2 

compares the estimation accuracies under the three POI sets. 

As shown in Figure 2, the estimation accuracy was much 

higher under the Max set than that under the Med set, which 

was in turn far greater than that under the Min set. The results 

prove that the PPCE-SDG can extract the most significant 

POIs. However, once the number of POIs reached four, the 

estimation accuracy was basically stable, indicating that a few 

POIs make most of the contribution. In fact, a small number of 

POIs means a high efficiency of estimation. Hence, the above 

results fully demonstrate the effectiveness of the PPCE-SDG 

in POI selection. 
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Figure 2. The estimation accuracies under the three POI sets 

 

Next, the PPCE-SDG, XFSM and GFSM were separately 

applied to select the four POIs that contribute the most to OCH 

supply-demand estimation. The parameters of XFSM and 

GFSM were fine-tuned through grid search. For comparison, 

four POIs (Random) were randomly selected from our dataset. 

The selected POIs were imported in turn to XGBoost for OCH 

supply-demand estimation. The estimation effects under the 

four sets of POIs are compared in Table 3. 

 

Table 3. The estimation effects under the four sets of POIs 

 
POI sets Performance metrics 

MAE RMSE F1 

XFSM 3.47 14.88 0.67 

GFSM 3.62 15.71 0.66 

PPCE-SGD 3.41 14.33 0.68 

Random 3.64 15.82 0.66 

 

As shown in Table 3, the POIs identified by the PPCE-SDG 

achieved the smallest MAE and RMSE,  and the highest F1 

among the four sets of POIs. The results manifest that the 

PPCE-SDG is superior in selecting the suitable POIs for the 

estimation of OCH supply-demand. The superiority of our 

model over XFSM and GFSM is attributable to the fact that 

our model can extract a few significant POIs and import them 

directly to the XGBoost, while the latter two need to calculate 

the information gain of each POI. 

 

 

7. CONCLUSIONS 

 

This paper puts forward an effective model called PPCE-

SDG to select the significant POIs for the estimation of OCH 

supply-demand. Firstly, the correlation between the POIs and 

the OCH supply-demand gap was proved through statistical 

analysis. Next, the number and type of POIs were found to 

have a slight impact on the estimation results. On this basis, 

the PPCE-SDG was explained in details: the KMC was 

adopted to cluster the blocks in the target city based on supply-

demand gap; the POIs in each cluster were counted, creating a 

data vector of POIs; the PCA was performed on the data vector 

to extract the POIs; the POIs were imported to the XGBoost to 

predict OCH supply-demand. Finally, the POIs selected by the 

PPCE-SDG were proved superior than those collected by other 

methods in OCH supply-demand estimation. The research 

results lay a good basis for the optimization of OCH services. 
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