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 The weight loss of raw materials during cement clinker production is often used as an 

indicator of final product quality. The raw materials are usually limestone mixed with a 

sand, clay and iron ore. The weight loss is influenced by essentials parameters such as the 

correct composition, particle size, temperature and duration of burning of the raw materials. 

It is difficult to determine experimentally the weight loss with high accuracy due to the 

interaction of its several parameters. Moreover, the determination of the weight loss is 

expensive, time-consuming, risk associated. Consequently, various intelligent models such 

as artificial neural network optimized by genetic algorithm (GA-ANN), regression tree 

ensembles (RTE), least squares support vector machines (LS-SVM), adaptive neuro-fuzzy 

inference system (ANFIS) are proposed in the present paper to predict the weight loss. The 

performance of these models is also compared. The results show that all models have great 

ability as feasible tools and as good alternatives to predict the weight loss quickly, 

efficiently and less expensive compared to experiment measurements. According to the 

values of adjusted R2 there are 99.31%, 99.06%, 98.01% and 97.17% of data can explained 

by GA-ANN, RTE, LS-SVM, ANFIS respectively with error less than 3.1%. 
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1. INTRODUCTION 

 

Cement is the most widely consumed construction material 

on the planet. The global cement production across the world 

grew from 3.3 billion tonnes in 2009 [1] to 3.6 billion tonnes 

in 2012 [2]. The cement is produced by adding small quantity 

of gypsum to cement clinker. The clinker is made by burning 

a homogeneous mixture of raw material at high temperature in 

a rotary kiln and then cooled by fresh air. The clinker 

production process [3] used up to 70% or more of the total fuel 

[4]. The quality of clinker is principally controlled by 

appropriate selection of raw materials. The main raw material 

for clinker production is usually limestone mixed with a sand, 

clay and iron ore in definite mass percentages [5].  

The weight loss of raw materials during cement clinker 

production is often used as an indicator of final product quality. 

In fact, many factors such as the chemical composition, 

particle size distributions, temperature range and burning time 

have great influence on the precise experimental determination 

of the weight loss. The weight loss is very complex, nonlinear 

phenomena and hard to quantise mathematically or even 

impossible with accuracy due to the interaction of its 

parameters [6]. Moreover, the determination of the weight loss 

is expensive, time-consuming, require chemical treatments, 

risks associated and care when taking test samples. Therefore, 

it is required and important to research an appropriate model 

to estimate the weight loss without experimental operation. In 

fact, the predicting weight loss based on its influenced factors 

data become challenging. 

In recent years, artificial intelligence (AI) is rapidly 

becoming one of the most important in predicting of complex 

phenomena. In contrary, it is difficult or even impossible to 

predict outcome with conventional statistical models [7]. The 

major advantages of using artificial intelligence is that it does 

not need the explicit knowledge behavior of phenomena and 

any kind of mathematical equation in advance [8]. The 

intelligent models need only to be trained by sufficient data 

under optimal parameters [9] to predict the target with high 

performance [10]. 

In the present study, various artificial intelligence models 

such as least squares support vector machines (LS-SVM), 

artificial neural network optimized by genetic algorithm (GA-

ANN), regression tree ensembles (RTE) and adaptive neuro-

fuzzy inference system (ANFIS) are used to predict the weight 

loss of raw materials during cement clinker production. These 

models have shown successful results in the domains of 

prediction. The ensemble boosted trees has achieved a good 

prediction performance on the bankruptcy prediction [11] and 

for the prediction of airfoil self-noise [12]. GA-ANN can be 

used quite satisfactorily to predict flatness value of hot rolled 

strips [13] and natural fractures in low permeability reservoirs 

[14]. ANFIS shows satisfactory performance in the prediction 

of half-cone geometry in dam reservoirs [15] and CO2 capture 

process [16]. LS-SVM can estimate with performance the 

Escherichia coli promoter gene sequences [17] and of barite 

deposition [18]. The remainder of this paper is organized as 

follows. Section 2 aims to provide a brief overview of models 

theory. Section 3 describes the experimental methods and 

materials used to determine the weight loss of raw materials. 

The results obtained are given, discussed and compared to 

experimental results in section 4. Finally, section 5 presents 

our conclusions.
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2. THEORY OF MODELS 

 

2.1 Adaptive neuro-fuzzy inference system (ANFIS) 

 

Adaptive neuro-fuzzy inference system (ANFIS) developed 

by Jang (1993) [19] is a very powerful approach for modelling 

complex and nonlinear relationship between input and output 

data than conventional statistical methods. It is combination of 

artificial neural network and fuzzy logic (LF) to exploit the 

advantages of both, learning capabilities of ANN and 

reasoning of fuzzy logic through the use of fuzzy rules IF–

THEN. The advantageous of ANFIS include easy 

implementation, good learning ability, short time of learning, 

soft and hard decisions [20] and strong generalization abilities 

[21]. The learning rule of ANFIS uses the hybrid method, the 

back-propagation used in the common feed-forward neural 

networks and the least square for the parameters associated 

with the input and output membership functions respectively 

[22]. There are two types of fuzzy inference system FISs 

described in the literature Mamdani and Sugeno FIS. Sugeno 

type fuzzy inference system with two fuzzy if-then rules is the 

most widely applied to generate and to facilitate learning and 

adaptation [23]. Several parameters of ANFIS such as type and 

number of membership function, maximum number of 

training epochs and type of fuzzy inference system are 

carefully chosen to achieve satisfying results. The parameters 

of ANFIS are set and adjusted during the training process. 
 

2.2 Least square support vector machine (LS-SVM) 

 

LSSVM proposed by Suykens and Vandewalle [24] is also 

one of the most powerful tools to solve nonlinear problem [25]. 

The main advantage of LSSVMs over SVMs is solving a set 

of linear equations instead of a quadratic programming. LS-

SVM uses square errors instead of nonnegative errors in the 

cost function to reduce computing complexity. Many Kernel 

functions are used and implemented in LS-SVM learning 

methods; linear, polynomial (Poly), radial basis function 

(RBF), or sigmoid-shaped function [26]. Gaussian radial basis 

kernel (RBF) is the most popular and commonly used to 

approximate the nonlinear systems [27]. The predictive of LS-

SVM is directly influence by its two main hyper-parameters 

while the other techniques require more adjustable parameters. 

Two principal hyper-parameters of LS-SVM are namely 

regularization parameter, gamma (γ) and squared bandwidth, 

sigma (σ2). These parameters are selected carefully to avoid 

overfitting and underfitting problem. Full names of authors are 

required. The middle name can be abbreviated. 

 

2.3 Genetic algorithm artificial neural network (GA-

ANN) 

 

The hybrid GA–ANN is a combination of the artificial 

neural network (ANN) and Genetic algorithm (GA). It is one 

of the most important and powerful prediction techniques [28]. 

Usually, the overfitting and the local minima in the neural 

network learning process are inevitable in the searching for 

optimal weights [29]. To obtain the global optimal solution 

and without being trapped in local minima, GA algorithm is 

used to train and to optimize the initial parameters value of 

ANN [30]. This advantage is essentially related on the good 

choice of its essential parameters. 

The basic idea of GA is to imitate the concepts of natural 

selection and genetics. It is an appropriate optimization 

technique [31] for all kinds of nonlinear optimization systems. 

The main parameters of GA are population size and generation 

number. In general, the initial population (individuals) is 

randomly chosen and then evaluated to create a new better 

population for the next generation. The new better population 

are updated and are evaluated at each generation. Three 

genetic operators, such as selection, crossover and mutation 

are applied by GA to generate new generation [32]. This 

procedure is repeated until the termination criterion is satisfied. 

The artificial neural networks (ANN) are inspired by a 

biological neural system to emulate brain functions with 

capability to learn and then to predict based on from training 

data [33]. The ANN is composed of successive layers: input 

layer, one or more hidden layers and output layer [34]. These 

layers are formed by one or more neurons which are connected 

by to every node in the next layer by the connection weight 

and biases. The Levenberg–Marquardt (LM) back propagation 

(BP) algorithm of ANN is used to iteratively adjust weight and 

biases [35] until the convergence mean square error between 

experimental and predicted values is achieved. In general, the 

purpose of the training process is found the optimum 

architecture of ANN, number of hidden layer, number of 

neurons in the hidden layer, transfer functions of both hidden 

and output layers. These parameters are chosen after a series 

of trials during training process. 

 

2.4 Regression Tree Ensembles (RTE) 

 

Regression trees are widely used in prediction fields. The 

instability of regression trees due to perturbations in the 

training introduces uncertainty in their prediction ability and 

their interpretation [36]. For increasing predictive 

performance, multiple regression trees are combined to form 

regression tree ensemble. The most popular ensembles models 

of regression trees are bagging, boosting and random forest 

that are used to increase the performance of unstable learners 

[37]. Boosting algorithm [38] method used in this paper is 

powerful learning techniques. It is a stage-wise process that 

aggregates information from several trees to minimize the loss 

function by iteratively applying. A series of weak learners 

(regression trees) are combined to achieve a final powerful 

learner. The parameters used to build RTE model are maximal 

number of decision splits, minimum number of branch node 

observations, minimum number of leaf node observations, 

ensemble-aggregation method, number of ensemble learning 

cycles and quadratic error tolerance per node. 

 

 

3. MATERIAL AND METHODS 

 

3.1 Materials and experiments 

 

The experimental study used the main following raw 

materials, limestone, sand, clay and iron ore. Four groups are 

prepared with different combination of each compound. The 

raw materials mixture composition (% by weight) of each 

group are summarised in Table 1. The compounds of each 

group are grinded and then classified into following particle 

size distribution: 71µm, 125µm, 250µm and 350µm. 

The experimental study is divided into two parts. First part, 

each group with different particle size distribution (71, 125, 

250 and 350µm) is burned at a temperature of 1000°C for 

various periods of time (5, 10, 15, 20 and 30 min) in a muffle 

furnace of laboratory as shown in Table 2. Second part, only 
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the first and the last groups with particles size of 350 µm are 

burned at several constant temperatures (600, 700, 800, 900 

and 1000°C) for 20 min as shown in Table 3. The number of 

experiments collected during the first part and second parts are 

80 and 10 experiments respectively. 

 

Table 1. Raw materials mixture composition (% by weight) 

of each group 

 
Group limestone Sand Clay Iron ore 

Group 1 100 - - - 

Group 2 85 15 - - 

Group 3 83 15 2 - 

Group 4 82.5 14.5 2 1 

 

Table 2. Each group with different particle size is burned at a 

temperature of 1000°C for various periods of time 

 
Particle size (µm) Time (min) 

5 10 15 20 30 

71 + + + + + 

125 + + + + + 

250 + + + + + 

310 + + + + + 

 

Table 3. First and the last groups with particles size of 350 

µm are burned at several constant temperatures for 20 min 

 
Group Temperature (°C) 

600 700 800 900 1000 

Group 1 + + + + + 

Group 4 + + + + + 

 

The weight loss is determined for each sample by weighing 

it before (Wi) and after (Wf) burning. It is calculated by 

dividing the difference of weight by the initial weight, then 

multiplying the result by 100 to represent it as a percentage as 

Eq. (1). 

 

100*(%)
i

fi

W

WW
WL

−
=  (1) 

 

3.2 Data acquisition 

 

The result obtained are collected in a total data table (90 

rows x 10 columns) which covers all experimental works. 

Each experiment is presented by row. The first nine columns 

are particle size, duration of burning of each sample and 

temperature. These nine columns are taken as inputs. The last 

column namely mass loss is taken as output. The total data set 

is randomly divided into two phases training and testing. The 

training phase is utilised to build the model. Once model is 

adequately trained. It is used to predict remaining (testing 

phase) of data and to evaluate the generalization capability. In 

order to suitably compare the performance of models, the same 

percentage of training and testing data are chosen. Several 

percentages of training and testing data are used in the 

literature [39, 40]. In this paper, the ratio of 2/3 of the data is 

used to train the model and remaining data (1/3) are used to 

judge the generalization capability.  

 

3.3 Model evaluation methods 

 

The performance criteria are statistically measured between 

experimental and predicted values. Some statistical methods 

are used to evaluate the performance, such as statistical error 

analysis and graphical error analysis. The statistical error 

analysis is usually root mean squared error (RMSE), the 

coefficient of determination R2, the adjusted R2 (adj), and the 

mean absolute percent error (MAPE), the scatter index (SI) 

[41]. The prediction is perfect if the values of R2 and the 

adjusted R2 are very close to 1. The model is able to predict 

with a high performance when values of RMSE and MAPE are 

found very close to zero. The performance is excellent when 

SI is less than 0.1; good if SI between 0.1 and 0.2; and poor if 

SI more than 0.3. The most popular graphical error analysis 

are cross plot and error distribution. 

 

 

4. RESULTS AND DISCUSSIONS 

 

Models used in this study can theoretically approximate any 

nonlinear by carefully adjusted its parameters. To choose 

optimal parameters for each model, many experiments are 

carried out randomly in advance to improve the generalization 

abilities. The performance of each models is judged only based 

on testing phase, because it is easy to achieve a high 

performance based on training process without any increasing 

the generalisation abilities. All models are implemented in 

Matlab 2018a. 

 

4.1 ANFIS result 

 

Choosing of optimum parameters during training phases is 

very important to get good performance. The optimum 

parameter and their values used to construct ANFIS are 

illustrated in Table 4. 

 

Table 4. Details of ANFIS model 

 
Parameter types of ANFIS Value 

Membership function FCM Clustering 

Fuzzy System Type Sugeno 

Number of rules 3 

Epoch Number 120 

 

 
 

Figure 1. Experimental weight loss versus ANFIS results for 

training phase 

 

Regression plots of experimentally measured weight loss 

values and those predicted by ANFIS for training and testing 

phases are shown in Figure 1 and Figure 2. These figures 

illustrate that experimental and predicted weight loss are well 
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correlated for both phases. It is clear that representative points 

are very close to the line of equality. The coefficient of 

determination R2 are equal to 0.9817 and 0.9727 for the 

training and testing set respectively. The good performance of 

ANFIS is also confirmed in these figures. 

 

 
 

Figure 2. Experimental weight loss versus ANFIS results for 

testing phase 

 

 
 

Figure 3. Relative error of ANFIS for training phase 

 

 
 

Figure 4. Relative error of ANFIS for testing phase 

 

Distribution of the relative errors between experimental and 

ANFIS predicted weight loss for training phase and testing 

phases are shown in Figure 3 and Figure 4. In this case, the 

majority of the data collapsed between 0% and 2% for training 

data and between 0% and 3% for testing data. The MAPE of 

training and testing data obtained are 2.73% and 3.10% 

respectively. 

It is clearly illustrated in Table 5 that ANFIS is able to 

successfully predict up to 98% of training data and 97% of 

testing data SI less than 0.1 as shown in Table 5. The results 

clearly demonstrate that the hybrid model which exploit the 

advantages learning capability of ANN and reasoning of fuzzy 

logic, could be successfully used in predicting of weight loss 

with high degree of performance. 

 

Table 5. Performance criteria for training and testing phases 

of ANFIS 

 
 R² R² adj MAPE RMSE SI 

Train 0,9817 0,9814 2,73% 1,1831 0,0321 

Test 0,9727 0,9717 3,10% 1,2825 0,0346 

 

4.2 LS-SVM result 

 

The optimum hyper-parameters of LS-SVM illustrated in 

Table 6 are selected during the learning process.  

 

Table 6. Details of LS-SVM model 

 
Parameter types of LS-SVM Value 

Kernel function RBF 

Regularization parameter (γ) 4550 

Squared bandwidth (σ2) 8115 

 

The experimental values of weight loss versus LS-SVM 

model results for training and testing phases are shown in 

Figure 5 and Figure 6, respectively. It is found that the R2 for 

the training and the testing sets are 0.9863 and 0.9808 

respectively. Also, it can be seen that the predicted weight loss 

values are quite close to the experimental values. The equality 

line of (Y=X) and fit line are superimposed. 

 

 
 

Figure 5. Experimental weight loss versus LS-SVM results 

for training phase 
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Figure 6. Experimental weight loss versus LS-SVM results 

for testing phase 

 

 
 

Figure 7. Relative error of LS-SVM for training phase 

 

 
 

Figure 8. Relative error of LS-SVM for testing phase 

 

Relative errors between the LS-SVM predications and 

corresponding experimental values of weight loss for both 

phases are shown in Figure 7 and Figure 8. These figures 

clearly illustrate the high efficiency of the predictive model. It 

is also important to observe that more than 57% of testing data 

have a relative error less 2% and 70% of training data have a 

relative error less 1%. The MAPE recorded by LSSVM for 

training and testing phases are 1.41% and 2.43%. The R2 and 

MAPE obtained validate that LSSVM model is capable to 

predict the weight loss with high performance. 

The performance criteria for training and testing phases of 

LS-SVM model are presented in Table 7. Based on R² adj and 

SI value, there are at least 98% of dataset can explain by LS-

SVM model with excellent performance and robustness. This 

is mainly due its appropriate capability for minimizing 

complexity by SVM, introducing linear equations and using 

RBF Kernel function. 

 

Table 7. Performance criteria for training and testing phaes 

of LS-SVM 

 

 R² R² adj MAPE RMSE SI 

Train 0,9863 0,9861 1,41% 0,9656 0,0262 

Test 0,9808 0,9801 2,43% 1,1153 0,0303 

 

4.3 RTE result 

 

The generalization learning capability of RTE highly 

dependent upon on the selection of its learning parameters. 

The optimum parameters of regression tree ensembles utilised 

to achieve maximum accuracy are summarized in Table 8.  

 

Table 8. Details of RTE model 

 
Parameter types of RTE Value 

Maximal number of decision splits 2 

Minimum number of branch node observations 12 

Minimum number of leaf node observations 2 

Ensemble-aggregation method LSBoost 

Number of ensemble learning cycles 200 

Quadratic error tolerance per node 10-3 

 

The experimental values of weight loss versus RTE model 

results for training and testing data are shown in Figure 9 and 

Figure 10 respectively. As shown in these figures, predicted 

weight loss for two phases using RTE are in appropriate 

agreement with experimental results. It is clear that data 

dispersion mostly lies around the line (Y=X), implying a very 

excellent closeness between the excremental and predictive 

data. The fit of data is expressed by R2, which are found to be 

0.9996 and 0.9910 for training and testing respectively. 

 

 
 

Figure 9. Experimental weight loss versus RTE results for 

training phase 
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Figure 10. Experimental weight loss versus RTE results for 

testing phase 

 

 
 

Figure 11. Relative error of RTE for training phase 

 

 
 

Figure 12. Relative error of RTE for testing phase 

 

The relative error distributions for training and testing data 

are shown in Figure 11 and Figure 12. The results predicted by 

RTE are almost obtained with error less than 1.5% for testing 

data and less than 1% for training data and even approximating 

zero, indicating really very small deviations between the 

predicted and experimental values. These figures exhibit the 

excellent performance of the RTE prediction. Thus, the high 

learning and generalisation ability of the RTA can be 

emphasised. The MAPE value are 0.58% for training and 

1.51% for testing data. Besides, practically difference between 

experimental and predicted values remain at the interval of [0, 

1.5%]. 

The performance criteria for the training and the testing data 

are presented in Table 9. The adjusted R2 value are 0.9996 for 

training data and 0.9906 indicate that only 0.04% of training 

and 0.90% of testing data are not explained by this model. The 

SI value less than 0.1 for both phases are indicative of the 

excellent accuracy. The best performance obtained by RTE 

reflect the powerful of boosting with a large tree size and 

optimum parameters used. Finally, the results justify that RTE 

is effectively used for predicting weight loss as a powerful 

technique. 

 

Table 9. Performance criteria for training and testing phases 

of RTE. 

 

 R² R² adj MAPE RMSE SI 

Train 0,9996 0,9996 0,58% 0,1722 0,0048 

Test 0,9910 0,9906 1,51% 0,6704 0,0175 

 

4.4 GA-ANN result 

 

Many experiments carried out randomly to choose optimum 

parameters which are shown in Table 10. 

 

Table 10. Details of GA-ANN model 

 
Parameter types of RTE Value 

Number of hidden layers 2 

Number of neurons in the hidden layer 12 

Activation functions in hidden layers tansig 

Activation functions in output layer purelin 

Population size 10 

Number of Generation 15 

 

 
 

Figure 13. Experimental weight loss versus GA-ANN results 

for training phase 

 

The experimental values of weight loss versus GA-ANN 

results for training and testing dataset are shown in Figure 13 

and Figure 14. These figures show the regression analysis of 

the ANFIS. The coefficient of determination R2 values for 

training and testing data are 0.9969 and 0.9933 respectively. 

The values of R2 indicate an excellent agreement between the 
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experimental and model prediction values and confirm the 

excellent predictive ability of GA-ANN model. 

 

 
 

Figure 14. Experimental weight loss versus GA-ANN results 

for testing phase 

 

 
 

Figure 15. Relative error of GA-ANN for training phase 

 

 
 

Figure 16. Relative error of GA-ANN for testing phase 

 

The relative error between experimental and GA-ANN 

predicted weight loss for training and testing phases are shown 

in Figure 15 and Figure 16. In general, the relative error 

distribution of the GA-ANN is very close to the zero line for 

both phases. It can be noted that the relative error of 60% of 

training data and 53% of testing data are less than 1%. The 

obtained MAPE for training and testing data are about 1.48% 

and 1.42% respectively. It is clear that the very low predictions 

errors are obtained by GA-ANN. 

Performance criteria for training and testing phases of GA-

ANN are summarized in Table 11. The value of adjusted R2 

means 99.69% of training and 99.33% of testing data are 

explained by GA-ANN model. It is also observed that the 

value of adjusted R2 and R2 are very close to 1 while the MAPE, 

RMSE and SI are close 0. The results show that GA-ANN has 

an excellent prediction capability. Upper predictive accuracy 

of hybrid GA-ANN can be attributed to its optimization by GA 

algorithms and strong learning ability of the ANN. 

 

Table 11. Performance criteria for training and testing phaes 

of GA-ANN 

 
 R² R² adj MAPE RMSE SI 

Train 0,9969 0,9969 1,48% 0,4757 0,0127 

Test 0,9933 0,9931 1,42% 0,4757 0,0127 

 

4.5 Comparison between the intelligent models 

 

A comparative study is conducted in terms of MAPE and 

R2, to compare the generalization capability of models is 

shown in Figure 17 and Figure 18. These figures provide a 

comparative summary of the R2 and MAPE for different 

methods. It is clear that the smallest error and highest R2 are 

obtained by GA-ANN while the highest error and smallest R2 

are obtained by ANFIS. The prediction capability of ANN 

optimized by GA as powerful optimisation technique is better 

than that of ANN used reasoning of fuzzy logic. It is evident 

that GA-ANN model has a little higher accuracy compared to 

the RTE model, it is better because it uses powerful 

optimization technique (GA) and powerful of boosting 

algorithms. Moreover, the results obtained revealed that the 

LS-SVM and ANFIS are also capable to predict weight loss 

with high accuracy. Moreover, there is no significant 

difference between LS-SVMN and ANFIS. Results obtained 

LS-SVM are expected because it can to reduce the effect of 

noise in conventional regression model and tackle the 

nonlinear of weight loss phenomena and maximize the margin. 

 

 
 

Figure 17. Comparison between models in term of R2 
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Figure 18. Comparison between models in term of MAPE 

 

 
 

Figure 19. Comparison between models in term of R2 adj 

 

 
 

Figure 20. Comparison between models in term of SI 

 

In addition, results predicted by all models are also 

compared in the terms of adjusted R2 and SI. The adjusted R2 

and SI obtained between experimental and predicted by all 

models are shown in Figure 19 and Figure 20, respectively. 

Based on the values of adjusted R2, there are only 0.69%, 

0.94%, 1.99% and 2.83% of data are not explained by GA-

ANN, RT, LS-SVM and ANFIS respectively. All values of SI 

obtained are less than 0.1 which mean that all models can 

predict weight loss with excellent performance. Lastly, all 

models proposed are promising techniques for predicting 

weight loss with high accuracy and without any sign of 

overfitting or underfitting. On the other words, all models are 

considered good alternatives to determine the weight loss. 

 

 

5. CONCLUSION 

 

The relation between the weight loss of raw materials 

during cement clinker production and its influence factors 

namely, the composition, size particles, temperature and 

duration of burning is highly nonlinear and more complicated. 

In the present paper, GA-ANN, LS-SVM, RTE and ANFIS 

models are developed for predicting the weight loss.  

The results obtained by applying all models under the 

optimum condition show a high degree of correlation between 

experimental and predict weigh loss with low errors, 

indicating that the prediction can be carried out very accurately 

in this way. The lowest error and highest R2 values are 

obtained by GA-ANN, whereas the highest error and lowest 

R2 values are obtained by ANFIS.  

The values of adjusted R2 mean that only 0.69%, 0.94%, 

1.99% and 2.83% of data are not explained by GA-ANN, RT, 

LS-SVM and ANFIS respectively. The values of MAPE of 

GA-ANN, RTE, LS-SVM and ANFIS are about 1.41%, 1.51%, 

2.43% and 3.10 % respectively. Moreover, the values of SI 

(<0.1) obtained are indicative of the excellent accuracy. 

Finally, all models proposed are mainly attractive and 

promising techniques for predicting weight loss with high 

accuracy and without any sign of overfitting or underfitting. 

On the other words, models are considered good alternatives 

to determine the weight loss quickly, efficiently and less 

expensive compared to experiment measurements, whenever 

the experiment is costly, risks associated and time consuming, 

uncomfortable. According to the values of R2, adjusted R2, 

MAPE and RMSE obtained by each model in the testing phase, 

the prediction efficiency of models increases in the order: GA-

ANN>RTE>LS-SVM>ANFIS. 
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