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Conventional direct power control (DPC) using two hysteresis comparators and switching 

table for a doubly fed induction generator (DFIG) integrated in a wind turbine system 

(WTS) have some drawbacks such as harmonic distortion of voltages, reduced robustness 

and powers ripples. In order to resolve these problems, a super-twisting sliding mode 

control (STSMC) scheme based on adaptive-network-based fuzzy inference system 

(ANFIS) algorithm is employed. The validity of the employed approach was tested by 

using Matlab/Simulink software. Interesting simulation results were obtained and 

remarkable advantages of the proposed strategy were exposed including simple design of 

the control system, reduced powers ripples as well as the other advantages. 
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1. INTRODUCTION

The use of doubly fed induction generator (DFIG) has 

increased tremendously due to its easy maintenance with good 

reliability, low cost, and simple construction. Various control 

strategy for DFIG have been introduced in literatures [1-4]. 

Initially for the DFIG the direct power control (DPC) scheme 

was introduced by Takahashi in 1998 [5]. DPC has various 

advantages like fast response of active and reactive powers and 

it is simple to implement. To control the frequency and output 

voltage of the drives the pulse width modulation (PWM) and 

space vector pulse width modulation (SVPWM) switching 

techniques are used [6, 7]. The SVPWM technique has the 

ability to reduce harmonic content and low switching losses 

with satisfactory performance. To reduce complex online 

computation the intelligent techniques based SVPWM are also 

used [8-10]. The DSPs, FPGA, and dSPACE are used as 

controller platform to implement the control strategy in order 

to control and regulate the DFIG [11-13]. 

DPC strategy of control implies a direct control of the active 

and reactive powers which must fall into two separate certain 

bands to be applicable. The simple objective is to control two 

quantities which are the stator active and reactive powers. In 

DPC strategy those quantities are directly controlled by 

selecting the proper vector state converter. Various research 

papers are published on DPC scheme of permanent magnet 

synchronous generator (PMSG) [14, 15] and DFIG [16-18]. 

DPC control scheme based on an estimated stator flux has 

been proposed [19]. As the stator voltage is relatively 

harmonics free, the accuracy of the stator flux estimation can 

be guaranteed. However, an unfixed switching frequency is 

considered the main drawback of conventional DPC strategy. 

DPC strategy based on super-twisting sliding mode (STSM) 

algorithm [20]. DPC control scheme based on artificial neural 

networks (ANNs) of a DFIG-based wind energy system (WES) 

[21]. A discrete sliding mode control is designed to regulate 

the real and active power of DFIG-based WES [22]. Second 

order sliding mode control (SOSMC) and fuzzy logic 

controller (FLC) are combined to control DFIG [23]. DPC 

technique of a DFIG based-wind power generation systems by 

using seven-level SVPWM strategy was presented [24].  

The original contribution is the application of the adaptive-

network-based fuzzy inference system-STSM algorithms 

(ANFIS-STSM) in the DPC control with three-phase 

induction generator and simulation investigation of this novel 

control system. In this paper, the DPC system with the 

application of the ANFIS-STSM algorithms has been 

considered. based on for a DFIG-based wind turbine system 

(WTS) by using two-level SVPWM technique. The main 

advantages of the DPC-ANFIS-STSMC scheme are the 

simplicity to implement and the reduced ripples of active and 

reactive powers compared to another control schemes. The 

ANFIS-STSMC controller is used in order to reduce the ripple 

content in reactive and active powers. 

2. MODEL OF DFIG

In order to establish vector control of DFIG, we remind here 

the modeling in the Park [25, 26]. 

Rotor flux components: 
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where, Ѱdr and Ѱqr are the two components of rotor fluxes, Lr 

is the rotor inductance, M is the mutual inductance, Idr and Iqr

are the rotor currents. 

Stator flux components: 
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where, Ѱqs and Ѱds are the stator fluxes and Ls is the stator 

inductance. 

Stator voltage components: 
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where, Vds and Vqs are the stator voltages, ωs is the electrical 

pulsation of the stator and Rs is the stator resistance. 

Rotor voltage components: 
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where, Vdr and Vqr are the rotor voltages, Rr is the rotor 

resistance.  

The stator active and reactive powers are defined as: 
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where, Ps is the active power and Qs is the reactive power. 

The electromagnetic torque can be written as follows: 
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where, Te is the electromagnetic torque. 

p is the number of pole pairs. 

The electrical model of the DFIG is completed by the 

following mechanical equation: 
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where, f is the viscous friction coefficient. 

J is the inertia. 

Tr is the load torque. 

Ω is the mechanical rotor speed. 

 

 

3. DESCRIPTION OF THE STSM ALGORITHM 

 
Super twisting sliding mode controller has been widely used 

for control nonlinear systems. This algorithm based on the 

theory of variable structure systems. However, this algorithm 

was proposed by Utkin et al., in 1999 [27]. The STSM 

algorithm maintains the advantages of the traditional SMC 

techniques. On the other hand, this algorithm is simple and 

easy to implement compared to another strategies. The output 

signal from controller of this type is comparable with the 

control signal obtained from linear proportional integral (PI) 

controllers. 

The control law of the STSM algorithm can be defined as 

follows: 
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where, K1 and K2 are the coefficients of the proportional and 

integral parts of the STSM algorithm; S is the switching 

function determined for the STSM algorithm, respectively; r 

is the exponent defined for the STSM algorithm. 

The graphical representation of the control law of the 

STSMC algorithm is shown in Figure 1. 

 

 
 

Figure 1. Block diagram of STSMC algorithm 

 

The values of the K1 and K2 of all analyzed STSMC 

algorithm and value of the exponent r have been determined 

according to the procedure presented in detail in the paper [28]. 

The value of the exponent r has an impact on the dynamics of 

the control structure with STSM algorithms. This exponent 

can have a value between zero and one. In the analyzed control 

structure, its value was assumed as 0.5. The applied tuning 

procedure allows for ensuring the stability of the control 

system [29]. 

The procedure for determining the coefficients K1 and K2 of 

the STSM algorithm is based on the analysis of equations for 

the nonlinear control system and the equations of the output 

signals. These equations in the matrix form are presented as 

follows [30]: 
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where, u is the vector of input control signals; x is the state 

vector of the system; y is the vector of output control signals; 

a(x, t), b(x, t) and c(x, t) are the vector functions. 

The second time derivative of equations for the output 

signals has the matrix form presented as follows: 
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The bounds of B(x, t) and A(x, t) of the second derivative 

of y can be labelled as AM, Am, BM and Bm, where BM and AM 

are upper bounds and Am and Bm are lower bounds. The K1 

and K2 are determined for all STSM algorithms according to 

the equations presented as follows [31]: 
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In this work, the procedure for determining the coefficients 

K1 and K2 for the STSM algorithm of the DFIG has been 

presented. The same principle has been used to determine the 

values of the K1 and K2 for the STSM algorithm of the 

magnitude of the stator reactive and active powers used in the 

DPC system with three-phase DFIG. 

 

 

4. WIND TURBINE MODEL 

 

In wind turbine, the kinetic energy of wind is converted into 

mechanical power, the mechanical torque developed by the 

wind turbine is expressed by Benbouhenni et al. [32, 33]: 
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where, Vw: The wind speed (m/s). 

R: The radius of the turbine in (m). 

Cp: The aerodynamic coefficient of power. 

λ: The tip speed ratio. 

β: The blade pitch angle in a pitch-controlled wind turbine. 

The fundamental principle of the dynamics is applied to 

know the evolution of the mechanical speed. 
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where, J and f are the system moment of inertia and the friction 

coefficient respectively. 

Figure 2 shows the mathematical model of the mechanical 

part of the wind turbine with MPPT algorithm. 

In this work, the proportional-integral (PI) of the wind speed 

MPPT algorithm is replaced by STSM algorithm, as shown in 

Figure 3. 

The output signal for the electromagnetic torque controller 

is determined by the following system of equations: 
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where, KpTe and KiTe are the coefficients of the proportional 

and integral part of the STSM electromagnetic torque 

regulator, respectively. On the other hand, the stability of the 

STSM algorithm is proven using Lyapunov stability theorem. 

The torque STSM algorithm gains (Ki and Kp) were found 

after performing simulations in Matlab/Simulink software. 

Table 1 shows the constants values.  

 

Table 1. STSM controller gaines 

 
Kp Ki r 

250000 10 0.9 

 

Figures 4-10 show the obtained simulation results. We can 

observe that the MPPT with STSMC algorithm minimize 

clearly the ripples presents in power and tip speed ration 

compared to the MPPT with conventional PI controller. 

 

 
 

Figure 2. Wind turbine model with the wind speed MPPT 

algorithm 

 

 
 

Figure 3. MPPT with STSM algorithm 

 

 
 

Figure 4. Wind speed 

 

 
 

Figure 5. Mechanical power 
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Figure 6. Rotational speed 
 

 
 

Figure 7. Coefficient power Cp 

 

 
 

Figure 8. Tip speed ration 
 

 
 

Figure 9. Zoom in the coefficient power 
 

 
 

Figure 10. Zoom in the tip speed ration 

 

 

5. TRADITIONAL DPC CONTROL 

 

Traditional DPC scheme controls independently the stator 

active and reactive powers at the same time. There are six 

switching configurations for any selected VSI output vector, 

and these six switching configurations can be applied to the 

two-level converter to generate the same output voltage vector, 

as shown in Figure 11. On the other hand, the DPC control 

goal is to regulate the reactive and active powers of the DFIG. 

The traditional DPC, which is designed to control stator 

reactive and active powers of the DFIG, is shown in Figure 12. 

The DPC performances can be ensured by using a switching 

table (Table 2) to select the switching voltage vector [34]. The 

inverter connected to the DFIG must provide the necessary 

complimentary frequency in order to maintain a constant stator 

frequency. 

  

 
Figure 11. Two-level inverter vectors representations 

 

 
 

Figure 12. Traditional DPC control 

 

Table 2. Traditional switching table of DPC strategy 

 
N 1 2 3 4 5 6 

Hq Hp 

 

1 

1 5 6 1 2 3 4 

0 7 0 7 0 7 0 

-1 3 4 5 6 1 2 

 

0 

1 6 1 2 3 4 5 

0 0 7 0 7 0 7 

-1 2 3 4 5 6 1 

 

The magnitude of stator flux, which can be estimated by: 
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The stator flux amplitude is given by: 
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where, 
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The stator flux angle is calculated by: 
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Reactive and active powers is estimated using (19) and (20) 

[35]. 
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where,  
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The reactive and active powers can be reformulated by 

inducing angle λ between the rotor and stator vectors as 

follows [36]: 
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The derivation of the active and reactive powers can give 

by: 
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A two-level hysteresis comparator is used for reactive error 

(see Figure 13). For stator active power error, the hysteresis 

comparator used is three level as shown in Figure 14. 

 

 
 

Figure 13. Reactive power hysteresis comparator 

 

 
 

Figure 14. Active power hysteresis comparator 

 

 

6. ANFIS-STSM DPC METHOD 

 

The DPC strategy of three-phase DFIG with the application 

of ANFIS-STSM algorithm is shown in Figure 15. In this 

control system, the stator reactive and stator active powers are 

controlled by the ANFIS-STSM algorithms. 

 

 
 

Figure 15. DPC system of three-phase DFIG with the application of ANFIS-STSM algorithm 

 

In the outer control loop of the stator active, the reference 

value of the magnitude of the stator active is compared with 

the estimated value. The switching function for stator active 

vector controller can be specified as follows: 

PPS srefsPs
−=  (28) 

 

The output signal from the controller of the magnitude of 

the stator active vector is determined by the following system 
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of equations: 

 

 

(29) 

 

where, K1 and K2 are the coefficients of the proportional and 

integral part of the STSM active power controller, respectively. 

In the outer control loop of the stator reactive vector, the 

reference value of the magnitude of the stator reactive vector 

is compared with the estimated value. The switching function 

for stator reactive vector controller can be specified as follows: 
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This controller determines the reference component V*dr of 

reactive power vector, which is responsible for the control of 

the magnitude of the stator reactive vector. The output signal 

from the controller of the magnitude of the stator reactive 

power vector is determined by the following system of 

equations: 
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where, K3 and K4 are the coefficients of the STSM stator 

reactive power controller, respectively. 

The reference values V*
dr and V*

qr are transformed to the α-

β coordinate system and given to the SVM, which sets the 

switching states of the three-phase VSI converter. 

The instantaneous magnitude of the stator active power 

vector and the instantaneous of the stator reactive power vector 

are determined by the active and reactive estimator. The vector 

of the rotor flux has been estimated by the current model of the 

DFIG based on the measured stator currents and measured 

voltages. 

The disadvantage of STSM algorithms of the DFIG is that 

the active power ripple, electromagnetic torque ripple, reactive 

power ripple, and harmonic distortion of stator current.  

In order to improve the STSM algorithms performances, a 

complimentary use of the ANFIS controller is proposed. The 

main goal of this work is to control independently the reactive 

and active powers both of them using the ANFIS-STSM 

algorithms. 

ANFIS algorithm is a technology based on engineering 

experience and observations. ANFIS architecture was first 

proposed by Jang [37] in 1993. This strategy is a widely 

applied artificial intelligent that combines the advantages of 

both ANN controller and fuzzy logic (FL) it is generally used 

for nonlinear and complex systems in various fields [38, 39]. 

Garcia et al. [40] designed an ANFIS based energy 

management system which consists of battery, renewable 

energy sources and hydrogen. Hysteresis comparator based on 

ANFIS controllers was proposed to control induction motor 

(IM) [41]. ANFIS controller were designed to regulate the 

speed of IM controlled by direct torque control (DTC) [42]. 

Vector control scheme based on neuro-fuzzy was proposed to 

control DFIG-based wind turbine systems [43]. A novel rotor 

current controller based on ANFIS controllers is developed to 

control DFIG [44]. The ANFIS controllers-based control 

scheme is developed for standalone operation mode of DFIG 

[45]. SMC and ANFIS controllers are combined to control the 

DFIG-based wind energy conversion systems [46]. ANFIS-

SOSMC controllers is proposed to regulate the reactive and 

active power of the DFIG [47]. A new nonlinear control has 

been proposed in this paper. This proposed nonlinear control 

is based on ANFIS algorithm and STSM control theory.  

The ANFIS-STSM algorithms is a modification of the 

STSMC algorithms, where the switching controller term 

sgn(S(x)), has been replaced by an ANFIS controller as shown 

in Figure 16. Both of them do not need advanced mathematical 

models.The DPC with ANFIS-STSM algorithms goal is to 

control the stator reactive and the active powers of the DFIG. 

The stator reactive power is controlled by the direct axis 

voltage Vdr, while the active power is controlled by the 

quadrature axis voltage Vqr . 

 

 
 

Figure 16. Block diagram of ANFIS-STSM algorithms 

 

The ANFIS rules for the proposed system are given in Table 

3 [48-50]. The membership function definition is shown in 

Figure 17. We use the next designations for membership 

functions: 

NB: Negative Big.                    

NM: Negative Middle.                

NS: Negative Small. 

PS: Positive Small.                




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+=

)sgn(2

*

*
1)sgn(

5.0

1
*

S Ps
K
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V qrd

V qrS Ps
S Ps

KV qr
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PB: Positive Big. 

EZ: Equal Zero. 

PM: Positive Middle. 

 

Table 3. ANFIS ruls 

 
e NB NM NS EZ PS PM PB 

∆e 

NB NB NB NB NB NM NS EZ 

NM NB NB NB NM NS EZ PS 

NS NB NB NM NS EZ PS PM 

EZ NB NM NS EZ PS PM PB 

PS NM NS EZ PS PM PB PB 

PM NS EZ PS PM PB PB PB 

PB EZ PS PM PB PB PB PB 

 

 

7. RESULTS AND ANALYSIS  

 

The simulation results of DPC with ANFIS-STSM 

algorithms of the DFIG are compared with conventional DPC 

control scheme. For this end, the control system was tested 

under different tests.  

The DFIG used in our study has the following parameters: 

nominal active power of the stator: Psn=1.5 MW, stator 

voltage: 380/696V, two poles, stator voltage frequency: 50Hz; 

Rs=0.012 Ω, Rr=0.021 Ω, Ls=0.0137H, Lr=0.0136H, 

Lm=0.0135H, J=1000 kg.m2 and fr=0.0024 Nm/s [51, 52]. 

 

 
a) Error 

 
b) Change in error 

 

Figure 17. Membership functions 

 

A. Reference tracking test (RTT) 

 

Figures 18-19 show the stator current THD of DFIG-based 

WTS obtained using FFT (Fast Fourier Transform) strategy 

for DPC control scheme with ANFIS-STSM algorithms 

(DPC-ANFIS-STSM) and conventional DPC respectively. It 

can be clearly observed that the THD is minimized for DPC-

ANFIS-STSM control scheme (THD=0.29%) when compared 

to traditional DPC (THD=0.88%). Table 4 shows the 

comparative analysis of THD values.  

 

Table 4. Comparative analysis of THD value 

 
 THD (%) 

DPC DPC-ANFIS-STSM 

Stator current 0.88 0.29 

 

 
 

Figure 18. Spectrum harmonic of stator current (DPC) 

 

The simulation waveforms of the reference and measured 

active power of the DFIG-based WTS are shown in Figure 20 

in order to compare the performance of the DPC system with 

application of the ANFIS-STSM algorithms with the 

performance of the conventional DPC system with application 

of the switching table. The active power tracks almost 

perfectly their reference value (Ps-ref ). On the other hand, the 

amplitudes of the oscillations of the active power are smaller 

and occur in a shorter time period in comparison with the 

oscillations obtained for the conventional DPC with hysteresis 

comparators (see Figure 23). 

For the DPC-ANFIS-STSM and conventional DPC control 

scheme, the reactive power track almost perfectly their 

reference value (see Figure 21). Moreover, the DPC-ANFIS-

STSM control scheme minimized the reactive power ripple 

compared to the conventional DPC control scheme (See 

Figure 24). 

The trajectory of the measured magnitude of the stator 

current is shown in Figure 22. It can be stated that the 

amplitudes of the stator currents depend on the state of the 

drive system and the value of the load active/reactive power of 

the DFIG-based WTS. In addition, the DPC-ANFIS-STSM 

method reduced the stator current ripple compared to the DPC 

strategy (See Figure 25). 
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Figure 19. Spectrum harmonic of stator current (DPC-

ANFIS-STSM) 

 

 
 

Figure 20. Active power (RTT) 

 

 
 

Figure 21. Reactive power (RTT) 

 

 
Figure 22. Stator current (RTT) 

 
 

Figure 23. Zoom in the active power (RTT) 

 

 
 

Figure 24. Zoom in the reactive power (RTT) 

 

 
 

Figure 25. Zoom in the stator current (RTT) 

 

B. Robustness test (RT) 

 

 
 

Figure 26. Spectrum harmonic of stator current (DPC) 
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In this section, the nominal values of Rr and Rs are 

multiplied by 2. Simulation results are presented in Figures 26-

30. As it’s shown by these figures, these variations present an 

apparent effect on stator powers and currents curves such as 

the effect appears more significant for the conventional DPC 

control scheme compared to DPC-ANFIS-STSM (See Figures 

31-33).  

 

 
 

Figure 27. Spectrum harmonic of stator current (DPC-

ANFIS-STSM) 

 

 
 

Figure 28. Active power (RT) 

 

 
 

Figure 29. Reactive power (RT) 

 

 
 

Figure 30. Stator current (RT) 

 

 
 

Figure 31. Zoom in the active power (RT) 

 

 
 

Figure 32. Zoom in the reactive power (RT) 

 

 
 

Figure 33. Zoom in the stator current (RT) 

 

The THD value of stator current in the DPC-ANFIS-STSM 

control scheme has been minimized significantly (See Figures 

26-27). Table 5 shows the comparative analysis of THD values. 

Thus, it can be concluded that the proposed DPC with ANFIS-

STSM algorithms is more robust than the conventional DPC 

control scheme. 

 

Table 5. Comparative analysis of THD value (RT) 

 
 THD (%) 

DPC DPC-ANFIS-STSM 

Stator current 1.02 0.46 
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8. CONCLUSIONS 

 

The main objective of this work was to develop an improved 

DPC control of a DFIG integrated into a wind energy system. 

The basic idea was to use ANFIS-STSM hybrid controllers 

associated with a DPC-SVM strategy. Numerical simulations 

by Matlab/ Simulink have been developed to test the 

performances provided by the techniques used. The results of 

simulation obtained show well the superiority of the proposed 

technique (DPC-ANFIS-STSM) compared to the classical one 

(DPC) especially in the attenuation of the fluctuations of the 

powers supplied and the robustness against parametric 

variations. 
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NOMENCLATURE 

 

STSM Super-twisting sliding mode 

DPC Direct power control 

DFIG  

SVPWM 

Doubly fed induction generator  

Space vector pulse width modulation 

ANFIS 

 

NPC 

ANN 

FLC 

GSC 

SOSMC 

PI 

r, s 

d, q 

SVM 

Lr, Ls 

Lm 

Rr, Rs 

ѱr, ѱs 

Is, Ir 

Vs, Vr 

Ps, Qs 

Adaptive Network-Based Fuzzy Inference 

System 

Neutral point clamped 

Artificial neural network 

Fuzzy logic controller 

Grid side converter 

Second order sliding mode controller 

Proportional-integral 

Rotor, stator 

Synchronous d-q axis 

Space vector modulation 

Stator and rotor self-inductances 

Mutual inductance 

Stator and rotor resistances 

Rotor and Stator flux vectors 

Rotor and stator current vectors 

Rotor and stator voltage vectors 

Active and reactive powers 

 

 

APPENDIX 

 

1. The coefficients of the STSM stator active/reactive 

power controllers 

 

Table 6 shows the constants values of the reactive/active 

power STSM algorithm gains (K1, K2, K3 and K4).  

 

Table 6. STSM controller gaines 

 
Reactive power Active power 

K3 K4 r K1 K2 r 

200 1000 0.5 200 1000 0.5 

 

2. Block diagram of ANFIS controller 

 

The block diagram of ANFIS controller is shown in Figure 

34. 

 

 
 

Figure 34. ANFIS controller 

 

The structure of the ANN controller is illustrated in the 

Figure 35. The block diagram of layer 1 and layer 2 is shown 

in Figure 36 and Figure 37 respectively. 

 

 
 

Figure 35. Block diagram of the ANN controller 

 

 
 

Figure 36. Layer 1 

 

 
 

Figure 37. Layer 2 
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