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Computing and logistics management systems have a wide area of applications with 

compound Poisson process Markov system with a batch servicing facility where customers 

arrive either independently or batches for service into the multi-server queues. The service 

of the customers is processed either independently or batch-wise based on the requirement 

of various sizes. The order of service has been found to follow First Come First Service 

while customers arrive according to the exponential distribution. A mathematical model is 

proposed to process customers by using generalized spectral expansion method. The 

explicit type required to service the system is measured as buffer size. For accurate 

assessment of performance, numerical results have been depicted in graphical form. 
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1. INTRODUCTION

In the present era of multi-server computers, the service 

capacity of the communication and its performance can be a 

major bottleneck in high-performance systems. As a result, its 

values are critical for the success of any application. A general 

communication system consists of the network 

interconnection [1-3] with notes where the packets are 

serviced. In order to perform parallel computations, the 

processors have to compute the packets along several 

communication lines [4]. Apart from the accuracy of 

computation, the role of communication also plays a 

significant impact in research areas of batch size service 

parallel computing systems. 

Achieving a significant level of performance has its 

challenges in modeling and design of a fault-tolerant system 

[5]. However, the fact is that the customers' expectation 

concerning the availability and this performance remains the 

same despite a vast increase in communication and 

computational services. There are plenty of problems in 

management [6, 7], computer and communications which need 

to model with a multi-server system of service of a single 

queue [8]. The instantaneous arrival and service rate may 

depend largely on the state of the environment while it may 

also depend on the number of customers present to a smaller 

extent. 

Batch Markovian Arrival Process (BMAP) in the discrete 

queuing system gained importance since it has ample 

applications in numerous fields and is used to predict 

performance measures such as congestion, management 

control models, web streaming and related fields [9-13]. 

BMAP is successfully applied for modeling aggregated 

Internet Protocol (IP) traffic [14]. Chakka and his team [15] 

contributed their work for the compound Poisson process 

(CPP) with a finite buffer of various parameters. Traffic with 

bursty nature in the fields of complex multimedia traffic 

applications such as voice over internet protocol (VOIP), 

teleconferences, web streaming have been modeled in their 

analysis.  

The literature of the batch process and servicing for Markov 

modulated Poisson process (MMCP) is proposed in the works 

author Lee [16], Goswami [17], Niu [18] studied streaming 

process analysis for video services by modeling with bursty 

nature. Choudhury [19] gave evidence that BMAP is a good 

approach to service the packets in internet traffics. Dimitriou 

[20] proposed a righteous model priority retrial queue with

negative customers, dependent arrivals and nonexpendable

service stations with two states discrete Markov modeled

Poisson process which in turn produces accurate predictions

of buffer behavior for network traffic for long-range service

[21, 22].

The spectral expansion methodology follows the steady-

state solution of a bounded ergodic Markov process which is 

irreducible. Many practical systems of Markov models have a 

finite state space. Examples of multiprocessor systems include 

the provision of a proper size finite buffer in applications 

where incoming jobs queue up and rejection of further 

incoming jobs whenever the buffer is full. 

In this paper, an efficient model generalized spectral 

expansion is applied to study for batch patterns with both finite 

and infinite queues. The mathematical developments with 

suitable formulae to study various parameters have been 

derived to explore the distributions of the length with a 

stipulated time-space.   

2. THE STEADY-STATE ANALYSIS AND QBD – M

PROCESS WITH MULTIPLE JUMPS

The multiprocessor system is modeled by generalized finite 

QBD – M (Quasi Birth and Death) process with multiple 

boundaries. Here, the parameter M refers to multiple jumps in 

the level dimension. A novel approach theory has been 

evaluated for the steady-state analysis of the system. Unlike 
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other possible solutions, spectral expansion gives more 

accurate/sophisticated results within the stipulated time and 

does not depend on any other factors whereas other methods 

such as Matrix geometric method may be dependent on 

accuracy levels on several iterations or other factors. The 

evaluation of Eigenvalues and eigenvectors are the sensitive 

points for measuring the performance of the system in the 

spectral expansion method. 

 

 
Figure 1. Multi server system with breakdowns, repairs and rebooting delays 

 

The work carried out here clearly depict batch arrivals and 

batch servicing queuing system where the service channel 

deals with providing multiservice. It has been assumed that 

these servers are subject to breakdowns independently or as a 

cluster. The servers have been repaired either independently or 

globally based on the nature of the constraints. The arrivals of 

the customers may follow independent rate or batch-wise 

while the arrivals follow the compound Poisson process with 

a batch size of random variable. The system considered the 

packet arrivals according to a Poisson process with rate σi, 

where i represent the size of the packets. The service times are 

drawn with a Poisson distribution µi where i represent the size 

of the packets. The servers are prone to breakdown when the 

servicing packets either move to other service stations if it is 

available or shifted to queue. The servers sit ideally if the 

queue is empty and one of the servers selected randomly if 

packets arrive. Figure 1 presents the schematic representation 

of the system, where customers arrive from one end and these 

are serviced by parallel pressers. 

The QBD process with M jumps is a Markov process that 

represents a two-dimensional finite lattice strip. The multi-step 

jumps leads to a Markov process X={[I(t), J(t)]; t0}, on the 

state space {0, 1, …., N} * {0, 1,…..,}, where the variable 

J(t)can jump by arbitrary level j+y, and jump down to the level 

j-z, but the jump levels of the system must be bounded in either 

upward or downward direction. The finite level of transaction 

matrices takes the following form: 

 

➢ Aj − purely lateral transitions −from state (i, j) to state (k, 

j), (0i, kN; ik; j=0,1,2,... ); 

➢ Bj,s − bounded s-step upward transitions − from state (i, 

j) to state (k, j+s), (0i, kN; 1sz; y1; j=1,2,…..); 

➢ Cj,s − bounded s-step downward transitions − from state 

(i, j) to state (k, j-s), (0i, kN ; 1sz; z1; j=1,2,….. ). 

Cj,s=0 for js. 

Aj, Bj,s (s=1, 2,…., y) and Cj,s (s=1, 2,…., z) are the transition 

rate matrices associated with above mentioned system 

respectively.  

Further the lateral transition matrix for 0jk; can be 

simplified as: 

 

𝐴𝑗(𝑖, 𝑘) = {
𝐴𝑗(𝑖, 𝑘)𝑓𝑜𝑟 0 ≤ 𝑖, 𝑘 ≤ 𝑁𝑤ℎ𝑒𝑛𝑖 ≠ 𝑗

𝐴𝑗(𝑖, 𝑘) − 𝑍𝑤ℎ𝑒𝑛𝑖 = 𝑘
 (1) 

 

where, 

 

𝑍 = ∑ 𝐴𝑗(𝑖, 𝑙) −
𝑁

𝑙=0
∑ ∑ 𝐵𝑗,𝑠(𝑖, 𝑙)

𝑁

𝑙=0

𝑦

𝑠=1

− ∑ ∑ 𝐶𝑗,𝑠(𝑖, 𝑙)
𝑁

𝑙=0

𝑧

𝑠=1
 

 

 

It is assumed that there is a threshold M, My such that 

 

Aj = A, j ≥ M; Bj,s = Bs, j ≥ M - z1 ; Cj,s = Cs, j ≥ M  (2) 

 

This applied for all possible values of s.  

The arrival and service processes are modeled for a 

continuous-time, irreducible Markov phase process with N 

states that is irreducible. Let Q be the generator matrix of this 

Markov process. The off diagonal element Q(i, k)=qi,k (i≠k) 

represents the instantaneous transition rate from phase i to 

phase k, and the iih diagonal element Q(i,i) = -qi,= 
,1

N

i mm
q

=
with qi,i=0 with i=1,2,….N, and it is given by: 

 

1 1,2 1,

2,1 2 2,

,1 ,2

N

N

N N N

q q q

q q q
Q

q q q

− 
 

−
 =
 
 

− 

 (3) 

 

Let r=[r1,  r2,….,  rN] be the vector of equilibrium 

probabilities of the modulating phases. Then, r is uniquely 

determined by the equations: 
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rQ = 0; re = 1 (4) 

 

e represents the column vector with N elements, whose 

values are one. Several generalizations and extensions of the 

model described above are possible. The transition matrices 

can help in generating equations. Equations (3) and (4) can be 

expressed as Aj , Bj,s , Cj,s.  

The steady-state probabilities have to be determined. The 

objective of the presented analysis is to determine the steady-

state probability Pi,j for the state (i, j) in terms of the known 

parameters as: 

 

, { ( ) , ( ) }; 0,1,2,.....i j
t

P Lt P I t i J t j i
→

= = = =  (5) 

 

The important task is to determine these probabilities in 

terms of known parameters of the system. 

The row vector vj can be defined as: 

 

0, 1, ,( , , ) 0,1,2,j j j N jv p p p j= =  (6) 

 

If the process is irreducible and ergodic, then the balance 

equations corresponding to the state probabilities have a 

unique normalized solution. 

The total sum of all probabilities is always one.  

 

0
1.0jj

V e


=
=  (7) 

 

The balance equations for j = 0, 1, . . . , M − 1 are: 

 

𝑣𝑗𝐴𝑗 + ∑ 𝑣𝑗−𝑠𝐵𝑗−𝑠,𝑠

𝑦

𝑠=1
+ ∑ 𝑣𝑗+𝑠𝐶𝑗+𝑠,𝑠

𝑧

𝑠=1
= 0 (8) 

 

It is assumed that Vj-s=0 if j<s. The corresponding j-

independent set for j≥M is represented in mathematical form 

as equation (8) 

 

𝑣𝑗𝐴 + ∑ 𝑣𝑗−𝑠𝐵𝑠

𝑦

𝑠=1
+ ∑ 𝑣𝑗+𝑠𝐶𝑠

𝑧

𝑠=1
= 0 (9) 

 

Equation (7) can be rewritten in vector difference form of 

order z=y+zs, with constant coefficients: 

 

10
0;

z

j k kk
V Q j M z+=

=  −  (10) 

 

Here 

 

𝑄𝑘 = 𝐵𝑦−𝑘for k  ≤z-1; 𝑄𝑦 = 𝐴 and 𝑄𝑘 = 𝐶𝑘−𝑦fory ≤  k  ≤ z. 

 

The corresponding matrix polynomial is 

 

0
( )

z k

kk
Q Q 

=
=  (11) 

 

For the computational process, eigen value-eigenvector 

problem of degree t of a polynomial can be transformed into a 

linear one. If Qz is non-singular, equation (9) leads to the form. 

 
1

0
[ ] 0

z k z

kk
T I  

−

=
+ =  (12) 

 

where, Tk=QkQ
-1 

z Now introducing the vectors k=k, k=1, 

2,...., y–1, the equivalent linear form can be obtained. 

 

0

1

1 1 1 1

1

0

[ .... ] [ .... ]z z

z

T

I T

I T

      − −

−

− 
 

−
  =
 
 

− 

 
(13) 

 

With the help of eigenvalues and left eigenvectors, the 

normalized solution of equation (9) can be expressed in the 

form. 

 
1

1

1 1 10
; , , 1, 2,....

c j M z

j k kk
V a j M z M z M z 

− − +

=
= = − − + − +  (14) 

 

λk represents all the eigenvalues of Q(λ) strictly inside the 

unit disk φk are their corresponding independent eigenvectors, 

and ak are the arbitrary constants. The latter constants are 

determined with the aid of the state-dependent balance 

equations, that is for j≤M−1, and the normalization equation.  

 

2.1 Stability of the system 

 

It is important to ensure the stability of the system. The 

system is stable if it follows the given condition and has the 

feasible solution. Let us consider the row vector, V=(q0, 

q1,….,qN) where qi 0; i=0, 1,…., N. The necessary condition 

for the stability of the system with the balance equations (8) 

and (9) can be expressed in the following form: 

 
1 2

1 1
[ ( ) ( ); 1;

z zA B C

s s s ss s
V A D B D C D Ve

= =
− + − + − =   (15) 

 

where, DA, Ds
B and Ds

C are the diagonal matrices whose ith 

diagonal element is the sum of its corresponding row of the 

respective matrices.   

The inequality condition for the stable of the system is 

expressed as: 

 

1 2

1 1
[ ] [ ]

z z

s ss s
V sB e V sC e

= =
   (16) 

 

 

3. NUMERICAL RESULTS 

 
3.1 Results with batch services  

 

In this section, the results obtained have been picturized in 

graphical form. The performance measures have been 

considered where customers arrive either independent or 

batches. The size of the batch may be 2, 3, 4 or a higher 

number. Similarly, the services of the customers are done 

either independently or with batches. In this paper, an efficient 

algorithm is developed to generate the simulation results in 

spectral expansion. If the transient state of the system is 

unstable, the performance measures are complicated to 

analyze. In such cases, the performance measures for steady-

state aspects have been taken into consideration. During the 

process of computation of performance measures in this work, 

the parameters, unless otherwise not mentioned are taken as 

ξ=0.1, η=0.1, ξ0=0.05, ηn=0.1, μ=1.5 and the number of servers 

is fixed have been fixed as 10. 

Figure 2 presents the result for mean queue length with 

independent arrivals of the customers by taking the arrivals of 

batch size 3 is 0.25. Here, batch size 2 customer's arrival rate 
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is fixed with 0.2, 0.5 and 0.8. Results are presented in 

graphical form. It is observed that the length of the queue is 

proportionately increased with customer arrivals. Figure 3 is 

similar to Figure 2 and the results are presented for mean 

queue length with the mean arrival rate of batch size 3. In this 

graph, independent arrivals of the customers are placed with 

6.0 and results are presented for batch size 2 by taking 0.2, 0.3 

and 0.5. It can be observed that queue length increases rapidly 

as the arrivals of the customers come up to 3 folds. 

 

 
 

Figure 2. Waiting time versus arrivals of the customers with 

0.1 batch size 3 customers 

 
 

Figure 3. Waiting time versus batch arrivals of the customers 

with 6 independent arrivals 

 

 
 

Figure 4. Queue size versus independent service of the 

customers 

 

Figures 4 and 5 present the results for waiting time with 

mean service rates. With these results, it is observed that the 

waiting time inversely decreases concerning service rates. 

Figure 4 presents the results for the independent service rate 

by setting independent arrival rate σ=1, 3, 5. Here, batch size 

2 customer arrivals fixed with 0.5 and batch size 3 with 0.2. 

Whereas in Figure 5, the independent service rate is fixed at 

0.25 and results are presented for batch size 2 service rate of 

the customers. Figures 6 and 7 present the results for mean 

queue length for waiting time with independent arrivals and 

mean arrivals of batch size 2 respectively. In Figure 6 the batch 

size 2 is fixed as 0.5 and single service rate as 1.5. In Figure 7, 

the service rate is taken as 2 with independent service rate 1.5 

and batch 2 service rates with 0.3. 

 

 
 

Figure 5. Waiting time versus multiple service rate arrivals 

 
 

Figure 6. Waiting time versus multiple service rate arrivals 

 
 

Figure 7. Waiting time versus independent arrivals with 

different levels of batch size arrivals of 2 

 

3.1 Results with independent service 

 

The results are presented with independent arrival and batch 
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size 2, the service of the customer performed independently 

and batch service restricted. As mentioned earlier, the various 

parameters have been considered and results are presented in 

graphical form. Figures 8 and 9 present the results for waiting 

time with different arrival rates. Figure 8 presents results for 

independent arrivals with batch sizes 0.2, 0.3, and 0.5, whereas, 

in Figure 9, customers arrive as batches with size 2.  

 

 
 

Figure 8. Waiting time versus arrivals of the customers with 

0.1 batch size 3 customers 

 

 
 

Figure 9. Waiting time versus batch arrivals of the customers 

with 6 independent arrivals 

 

 
 

Figure 10. Queue size versus independent service of the 

customers 

 

In Figure 9, independent arrivals of the customers are fixed 

with σ=2, 5, 6 and batch size 2 with 0.25. Figures 10 and 11 

present the result for mean service rates with different arrivals. 

In Figure 10, the batch size 2 is fixed with 0.25 by considering 

independent arrivals 2, 5, and 6 and in Figure 11, batch size 2 

is fixed with 0.2, 0.3, and 0.5 along with independent arrivals 

6. Figure 12 presents the result for queue length with customer 

arrival with variable service rates proportionate to independent 

arrivals with a rate of 0.75. With this graph, it is observed that 

queue length increases linearly to the arrivals.  

 

 
 

Figure 11. Waiting time versus multiple service rate arrivals 

 
Figure 12. Waiting time versus multiple service rate arrivals 

 

 

4. CONCLUSIONS 

 

An efficient model has been designed that takes into 

consideration a large number of parameters and assesses the 

manner in which waiting rate changes depending on a number 

of servers. With most of the real-world applications being 

dynamic, the designed model takes into consideration the 

arrival rate and predicts the average waiting time of. This, in 

turn, could help in predicting the need for increase or decrease 

in servers in a system thereby minimizing both the waiting as 

well as the idle times. The cases have been predicted both for 

independent arrivals and arrivals in batches. Another novelty 

in this technique lies in the fact that variations have been 

predicted with changes in batch size. Results clearly indicate 

the variations in mean service time with respect to batches. 

Taking this view into perspective, a dynamic model can be 

introduced for a given application that automatically increases 

the number of servers during peak periods and reduces the 

same during lean periods.
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