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 Office and industrial buildings are characterized by very regular occupation patterns and 

even building systems are normally scheduled (unless they are controlled by energy 

management systems). So, under these conditions, either at a detail scale (single office) or 

at a global scale, variations in energy usage (for both HVAC and lighting) may have a strong 

relation with outdoor conditions. Modelling and forecasting energy use in such large 

buildings may be essential to prevent energy shortage and black-outs, as well as to take 

action in terms of adaptive measures to ensure occupants’ comfort conditions. As the 

number of smart devices to monitor outdoor weather and air quality conditions is constantly 

increasing, it might be useful to investigate whether parameters derived from such 

monitoring stations might be used as proxy variables to predict indoor conditions and, above 

all, energy consumptions. In order to create a dataset to test forecasting models, different 

office and industrial buildings have been simulated under dynamic conditions by means of 

the Energy Plus tool as a function of different climatic data. Then, machine learning 

algorithms (mostly based on artificial neural networks) were used to predict both energy 

consumptions and indoor environment conditions as a function outdoor parameters. A study 

of the short term and long term reliability of prediction models is finally presented.  
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1. INTRODUCTION 

 

When dealing with energy issues, and the limitation of its 

uses in order to reduce negative effects on global warming, a 

typical aspect that is pointed out is the role played by the 

building sector. A frequently mentioned figure states that 

buildings are responsible for 40 % of total energy consumption, 

mostly because of poor insulation and inefficient heating and 

cooling systems. However, recent statistical data referred to 

USA [1] show that about 20 % of total energy uses is due to 

residential sector, 18 % to commercial sector, and 32% to 

industrial sector, with the remaining part due to transportation. 

Clearly, a better understanding of the share of the different 

energy uses per each sector may also contribute to define 

improvement margins and the more appropriate strategies to 

intervene. Thus, while in the residential sector about 50 % is 

due to HVAC, 20 % to water heating and the remaining part 

to lighting and appliances, in commercial buildings the HVAC 

share drops to 45 %, water heating to 7%, but lighting takes up 

to 10% and all the other uses (including appliances, computers, 

etc.) take the remaining part. In the industrial sector the 

situation is much more complex, as energy is largely used in 

the production process, as well as, for space heating in 

buildings, operating industrial motors and machinery, lights, 

computers, and office equipment and for facility heating, 

cooling, and ventilation equipment. Due to the extreme 

variability of the situations it is hard to find statistical data 

pertaining the share of the different uses.  

The availability of smart metering systems and other ICT-

based solutions has been rising in the last years, so that the 

most recent commercial and industrial buildings are now 

controlled by some building energy management system 

(BEMS) which not only provides indoor thermal comfort but 

also creates a safe and healthy environment while reducing 

energy consumptions [2-3]. In addition, such systems also 

collect a huge amount of data which can be used to further 

improve control algorithms [4-5], optimize manufacturing 

processes [6-7], even though more frequently they are 

employed for forecasting purposes [8]. In fact, energy 

forecasting is useful under many respects, but the most 

widespread involve the possibility to enact electricity load 

reduction strategies (e.g. peak shaving [9]), as well as to 

manage district-scale power grids [10], or systems with 

multiple sources and storage systems [11]. 

In terms of forecasting methods, a wide range of solutions 

is now available [8], spanning from engineering methods to 

artificial-intelligence (AI), (or “black-box”) methods. In the 

first case, all the physical aspects of the problem are modelled, 

the problem has a clear inner logic (hence the name of “white 

box” approach), but an overwhelming number of parameters 

is needed. In the latter, the system is treated by neglecting the 

explicit relationship between the different parameters (hence 

the name of “black box” approach), but the list of input 

parameters may be considerably shorter. Finally, hybrid (or 

“grey-box”) approaches combine the previous methods in an 

attempt to overcome their intrinsic limitations. However, as 

stated before, the large availability of datasets collected by 

monitoring systems and other IoT devices, inherently favors 

the use of black box approaches which benefit of long time-

series of a limited number of parameters which can 

conveniently use to train the system and predict the desired 

variables (energy consumptions) with the desired timestep.  
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Among the black-box methods, Artificial Neural Networks 

(ANN) are the most frequently used, followed by regression 

methods, and Support Vector Machine (SVM) [12]. The 

success of ANNs relies on five distinctive features: learning, 

self-adaptive, fault tolerance, flexibility and real time response. 

In addition, ANNs can manage complex problems because of 

their strong nonlinear mapping ability. Neural network models 

can realize any nonlinear mapping between the input and 

output, and there is no need to know the mathematical equation 

describing the load and the influence factors in advance. Thus, 

it has been popularly applied to predict building energy 

consumption. 

Unlike residential buildings, commercial and industrial 

buildings often rely on multiple power sources for the same 

application, resulting from co-generation plants, photovoltaic 

installations, and so on. Thus, in order to fully take advantage 

of the potential of each source, load forecast becomes essential. 

The temporal horizon of the forecast may be at short- [13], 

medium-[14], or long-term [15], and the number of possible 

approaches may be very large [8]. 

Within the Italian National Operative Project SE4I, a smart 

lighting pole is going to be developed, including 

environmental monitoring features (like temperature, relative 

humidity, illuminance, and gas and particle concentration). 

Such data are expected to be used to feed prediction models of 

both energy consumptions and indoor environment conditions 

for buildings fully equipped with indoor sensors and 

monitoring tools, as well as for buildings not yet equipped 

(defining a sort of “virtual sensors”).  

The present paper, aims at investigating the achievable 

accuracy in the worst case scenario, in which only outdoor data 

are available, taking advantage of the more repetitive energy 

use pattern which can be observed in commercial and 

industrial buildings. Analyzed prediction tools included 

machine learning methods based on ANN and Nonlinear 

Autoregressive model, with Exogenous Input (NARX). The 

latter, predicts the current value of a time series based on both 

the past values of the same series (the energy consumptions) 

and current and past values of the driving (exogenous) series, 

that is the externally determined series that influences the 

series of interest (the weather data). Finally, in order to test the 

models under varied conditions, time series of energy loads 

and indoor parameters were obtained from the Energy Plus 

software, using models of different buildings under varied use 

conditions, together with the respective weather data used as 

inputs. 

 

 

2. METHODS 

 

2.1 Building models and energyplus simulations 

 

In order to test the procedure, two different building models 

were analyzed, and for each model, two different occupancy 

patterns were considered.  

The first model was an office type building, 20 m by 10 m, 

having a 3 m height, and located at an intermediate floor. The 

longest facades were exposed to South and North and had 8 

windows (1.5 m by 1.2 m) on each long side and 3 on each 

short side. U factor was 0.642 W/m2K for walls, and 2.735 

W/m2K for windows. In the first occupation pattern the 

building was considered to be occupied by 20 persons, from 8 

am to 8 pm, Monday to Friday. During this time a constant 

load of 2 kW was assumed for equipment, and 800 W max for 

lighting (dimmable as a function of natural lighting in order to 

keep a constant illuminance level of 100 lx at the center of the 

room). In the remaining time, a constant power of 25 W for 

lighting and 25 W for equipment were considered. In the 

second occupancy pattern, the building was considered to be 

occupied by 20 persons, from 8 am to 2 pm, and by 10 persons 

from 2 pm to 8 pm, Monday to Friday, and by 10 persons from 

8 pm to 2 pm during weekends. Equipment and lighting loads 

were varied proportionally according to the occupation rate. In 

all the cases ventilation was assumed as 0.1 volumes per hour, 

during the occupancy hours, the heating system was assumed 

to be turned on November 15th to March 31st, with a setpoint 

temperature of 20°C, and a setback temperature of 16°C. From 

June 15th to September 15th the cooling was turned on with a 

setpoint temperature of 26 °C and a setback temperature of 

30°C. 

The second model was an industrial type building, 30 m by 

20 m, having a 5 m height. The longest facades were exposed 

to South and North and had 15 windows (1.5 m by 1.2 m) on 

each side. U factor was 0.934 W/m2K for walls, 0.615 W/m2K 

for the ceiling, and 2.735 W/m2K for windows.  In the first 

occupancy pattern the building was supposed to be occupied 

by 50 persons, from 8 am to 8 pm, and by 25 persons in the 

rest of the day, with no variation during weekends. Ventilation 

was assumed as 0.3 volumes per hour. During this time a 

constant load of 8 kW was assumed for equipment during the 

day, and halved during the night. For lighting the power was 

2.5 kW during the day (dimmable as a function of natural 

lighting in order to keep a constant illuminance level of 150 lx 

at the center of the room) and 1.25 kW during the night.  In the 

second occupancy pattern the building was supposed to be 

occupied by 15 persons during the whole day, with no 

variation during weekends. Ventilation was assumed as 0.1 

volumes per hour. A constant load of 2 kW was assumed for 

equipment, while for lighting the power was 2.5 kW during the 

day (dimmable as a function of natural lighting in order to keep 

a constant illuminance level of 150 lx at the center of the room) 

and 1.25 kW during the night. The heating system was turned 

on November 15th till March 31st, with a setpoint temperature 

of 18°C. From June 15th to September 15th the cooling was 

turned on with a setpoint temperature of 26 °C. 

All the simulations to collect the time series to be analyzed 

were carried out using EnergyPlys v. 8.9 software. In order to 

determine the heating and cooling energy consumptions in a 

simple and straightforward way, and also avoid making 

assumptions on more detailed plant characteristics, an 

“IdealLoadAirSystem” with no outdoor air was considered. 

This EnergyPlus object returns both the heating and cooling 

energy required to meet the temperature set-points that have 

been provided. Such loads were then converted into electric 

energy by conventionally assuming that a HVAC system with 

a COP equal to three (both for heating and cooling) provided 

them. 

Among the different output variables that can be returned 

by the software, hourly values of those more likely to be 

monitored by the smart pole were considered. Thus, outdoor 

air temperature, relative humidity, wind speed, and global 

horizontal illuminance levels were used. With reference to the 

indoor environment, only indoor air temperature and carbon 

dioxide (CO2) concentration were collected, together with 

energy consumptions taken as a whole and subdivided as a 

function of the typology.  

With reference to the weather conditions, all the analyses 

were carried out using the climate data for Bari/Palese 
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Macchie. Data were taken from the IWEC2 (International 

Weather for Energy Calculations) database developed by 

ASHRAE within the Research Project RP-1477, 

“Development of 3012 Typical Year Weather Files for 

International Locations” [17], and from the Italian IGDG 

dataset. In this way, two years were available in order to better 

test the predictive accuracy of the models.  

 

 

 
 

Figure 1. 3D models of the analyzed spaces representing an 

office and an industrial building 

 

2.2 Machine learning methods 

 

The ANN was implemented using the neural network 

toolbox in Matlab [18]. To learn the parameters of the ANN 

(i.e. the weights between neurons and biases) the network 

training was carried out by means of a Bayesian regularization 

algorithm. A two-layer feed-forward network with sigmoid 

hidden neurons and linear output neurons was used. The 

estimation of the number of neurons in each layer is one of the 

most difficult tasks, which is generally carried out using a trial 

and error procedure. In this case, 10 neurons were used as a 

starting point, but they were subsequently reduced to 8, after 

some testing. Daily values of partial and total energy 

consumption were used as target values. Hourly values were 

not considered at this stage as the fluctuations were too large, 

and, considering the availability of only outdoor parameters, it 

seemed preferable to focus only on daily data. Similarly, daily 

averages of the outdoor temperature, relative humidity, wind 

speed, total horizontal illuminance (beam+diffuse) were 

calculated and used as input parameters, together with the day 

of the week, the day of the year, and the possibility to have the 

heating and cooling system turned on or not. The latter 

parameters proved very important in order to correctly 

estimate aggregate (total) energy consumptions.  

In a first “static” test, the ANN was trained by taking into 

account the results obtained using one of the two reference 

years, and subdividing the sample into three parts, randomly 

extracted, corresponding to 70% for the training, 15 % for the 

validation, and 15 % for the testing. To estimate the ANN 

performance, traditional metrics like root mean square error 

(RMSE) and regression coefficient R were used. However, 

with reference to the specific case, an extended testing was 

performed by taking into account a whole second year of 

simulations (obtained using the second weather file), and by 

measuring the RMSE in this second case. As shown in Figure 

2, the mean outdoor temperatures referred to the same day may 

differ quite significantly, thus providing a good reference of 

the reliability of the predictive accuracy of the ANN. Finally, 

all the performance calculations were made both with and 

without indoor temperature as input parameter, to better 

understand the importance of this additional information. 

As anticipated, the same analysis was carried out, at least in 

exploratory form, also by means of a NARX model, while 

keeping the same basic settings in terms of training set and 

method (Bayesian regularization). The delay in the network 

(the number of samples taken into account to predict each 

value) was set to 3, and the number of neurons was kept at 8, 

as it proved also for ANN to be a good choice. 

Once the preliminary investigation was carried out, so that 

the best set of input parameters was selected, a final 

“incremental” test was designed in order to simulate actual 

working conditions of the predictive network. In fact, under 

real world conditions the amount of data to be used for training 

is going to increase continuously, with the ANN dynamically 

re-training as soon as new data are available. So, in order to 

broaden the time horizon, a third year was added to the 

simulation by repeating the EnergyPlus calculations using a 

different weather file, relative to the closest station, namely 

that of the city of Brindisi, 120 km south of Bari. At this point, 

in order to limit the calculation burden, the ANN was re-

trained every week, gradually increasing the input dataset, and 

testing its performance on the subsequent week. RMSE was 

calculated every time in order to understand also the training 

time after which the ANN starts providing reliable results. 

 

 
 

Figure 2. Scatterplot of the mean daily outdoor temperatures 

resulting from the two datasets referred to the city of Bari 

used to train and test the ANN 

 

 

3. RESULTS 

 

3.1 Office building 

 

3.1.1 Occupancy pattern #1 

The office building is characterized by a markedly 

periodical behavior. Results of the training and testing sets 

demonstrated the good accuracy that the ANN is able to 

provide in predicting daily consumptions. Weekly cycles were 

well respected, and peaks and sudden fluctuations due to 

outdoor conditions found a good match in predicted values. In 

quantitative terms, during the testing on the first year RMSE 

on daily consumptions was 1.8 kWh and 1.5 kWh, respectively 

for the input set with and without indoor temperature. 

However, when the whole second year was considered (Figure 

3), RMSE increased to 1.9 kWh for the input data with indoor 

temperature, and to 2.7 kWh for the set without it. The largest 

errors appeared in the reduced input dataset during the cooling 

season, while both datasets had a few problems at the 
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beginning of the heating season in autumn. The analysis with 

the NARX method (Figure 4), yielded a significantly worse 

performance, with RMSE raising to about 4.4 kWh when 

applied to the “second” test year, independent of the input data 

set used.  

 

3.1.2 Occupancy pattern #2 

When the 2nd occupancy pattern was used, results were 

better than those obtained with the first one. In quantitative 

terms, during the testing on the first year RMSE was 1.0 kWh 

and 1.2 kWh, respectively for the input set with and without 

indoor temperature. However, when the second year was 

considered (Figure 5), RMSE increased to 1.1 kWh for the 

input data with indoor temperature, and to 2.5 kWh for the set 

without it. The agreement was very good, with the largest 

variations taking place during the cooling season. Again. the 

use of the NARX method provided significantly worse 

performance with errors between 4.1 and 4.9 kWh, depending 

on the input dataset. 

 

 
 

Figure 3. Plot of simulated and predicted values of daily 

consumptions for office building (1st occupancy pattern) 

during 2nd year 

 

 
 

Figure 4. Plot of simulated and predicted values of daily 

consumptions for office building with NARX method during 

the 2nd year 

 

 
 

Figure 5. Plot of simulated and predicted values of daily 

consumptions for office building (2nd occupancy pattern) 

during 2nd year 

 

 

3.2 Industrial building 

 

3.2.1 Occupancy pattern #1 

The industrial building offered a completely different 

pattern of energy use, showing no variation between weekdays 

and weekends in terms of equipment, thus providing a constant 

term which somewhat stabilized fluctuations particularly 

during intermediate seasons (Figure 6). Given the volume of 

the space and the high ventilation rate, significant heating and, 

particularly, cooling loads, were observed despite the reduced 

setpoint temperature in winter. Cooling loads, were clearly 

influenced by the internal gains due to equipment and lighting. 

During the testing on the first year RMSE for daily 

consumptions was 6.0 kWh and 3.9 kWh, respectively for the 

input set with and without indoor temperature. However, when 

the second year was considered, RMSE increased to 17.1 kWh 

for the input data with indoor temperature, and to 15.5 kWh 

for the set without it (Figure 6a). The largest errors clearly 

appeared during the cooling season, with the ANN 

overestimating target data by 40% if the constant equipment 

load was included, but the relative variation skyrocketed if the 

equipment term was not included. So, in order to better 

understand the nature of the problem, in the subsequent 

analyses the equipment load was not included in the energy 

demand (which is actually more realistic as in an industrial site 

it will likely have a separate metering system). A detailed 

comparison between simulated and predicted values showed 

some odd behaviors like those appearing around day 240. 

Among input data, only wind speed was unusually high during 

those days, so training was repeated after excluding that 

parameter from the dataset. The test over the second year 

yielded a RMSE of 10.0 kWh when using indoor temperature 

and of 12.4 kWh when it was excluded.  

A further improvement was obtained by including in the 

input dataset the energy consumption of the previous day, 

which yielded a RMSE equal to 7.8 kWh and 8.2 kWh, 

respectively with and without indoor temperature. A few 

significant inaccuracies remained between day 40 and day 50, 

when outdoor temperatures were at a minimum. Attempts to 

replace illuminance with radiation per area (assuming that a 

more expensive sensor might be used on the smart pole), only 

returned a small improvement with RMSE dropping to 6.5 

kWh, but errors still appeared in the same days. 

 Even in this case, use of NARX method did not yield any 

improvement but, conversely, returned a significantly 

worsened performance with RMSE raising to 12.4 kWh and to 

16.6 respectively when indoor temperature was included or not 

in the input dataset.  

 

3.2.2 Occupancy pattern #2 

The second occupancy pattern was characterized by 

significantly lower equipment loads (and, hence, internal 

gains). Thus, this time heating loads largely prevailed over 

cooling loads. Use of the standard set of input parameters 

showed the same limitations already observed in the first 

occupancy pattern. In fact, RMSE was 12.6 kWh when using 

indoor temperature and 12.1 kWh when it was excluded. 

Replacement of wind speed with day-before energy 

consumptions caused, as already observed, a large 

improvement in prediction accuracy, as the RMSE dropped to 

5.8 kWh when using indoor temperature, and to 6.8 kWh when 

it was excluded. Replacement of illuminance values with solar 

radiation rate per area barely affected the results, with no 

significant variation in RMSE values.  
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Application of the NARX method yielded a RMSE of 14.7 

kWh and 13.8 kWh respectively with and without indoor 

temperature included among input data. 

 

 
(a) 

 
(b) 

 

Figure 6. Plot of simulated and predicted values of daily 

consumptions in industrial building (1st occupancy pattern) 

using: a) ANN with original set of input data; b) ANN with 

modified input data, removing wind speed and including 

previous-day consumptions 

 

 
 

Figure 7. Plot of simulated and predicted values of daily 

energy consumptions in industrial building (2nd occupancy 

pattern) using: ANN with modified set of input data, 

removing wind speed and including previous-day energy 

consumptions 

 

3.3 Incremental-training analysis 

 

As anticipated, the final test was carried out by replicating 

the actual incremental behavior of the forecasting system, by 

means of weekly updates of the input data set. For this purpose, 

the input dataset was kept to a minimum by excluding wind 

speed and indoor temperature, while day-before consumptions 

were included as they proved to be important in the previous 

discussion. With reference to the office building, with the first 

occupancy pattern, the analysis showed (Figure 8a) that during 

the first year several inaccuracies occurred with RMSE 

calculated on a weekly basis, often higher that 5 kWh, 

resulting in very large relative errors. However, during the 

subsequent years the prediction performance was generally 

good, with only occasional problems, resulting in a RMSE of 

1.8 kWh averaged over the third year (showing a substantial 

improvement when compared with the “static” value obtained 

under the same conditions for the 2nd year).  

When the second occupancy pattern was considered, the 

same positive trend was observed (Figure 8b), with RMSE 

calculated on a weekly basis slowly decreasing, yielding even 

after the first nine months good results, with only occasional 

peaks exceeding 4 kWh. On a yearly basis, RMSE in the third 

year was 1.2 kWh, against a value of 1.8 kWh obtained in the 

second year. If compared with the RMSE resulting from the 

“static” test without indoor temperature (which was 2.5 kWh) 

a clear advantage appears. 

The incremental training yielded even larger improvements 

when applied to the industrial building. In fact, with reference 

to the first occupancy pattern (Figure 9a), while the static 

analysis showed RMSE values around 8 kWh (with little 

variations depending on the indoor temperature inclusion in 

the dataset), the incremental training clearly showed its 

benefits reducing RMSE to 7.3 kWh during the second year, 

and to 4.5 kWh during the third, with weekly values showing 

larger, but steadily decreasing, fluctuations which kept 

exceeding the 5 kWh limit during the cooling season, but, 

given the higher absolute values of the target, resulted in 

smaller relative errors. 

Finally, with reference to the second occupancy pattern, 

which was characterized by milder cooling consumptions and 

higher heating consumptions, the adaptive training also 

yielded several benefits (Figure 9b). In fact, the decreasing 

trend in RMSE calculated on a weekly basis was clearly 

visible, with values exceeding 5 kWh in a few occasions 

mostly during the winter season, resulting in a mean percent 

error of 8.6%. The yearly averaged RMSE was 5.6 kWh during 

the second year (the corresponding static value was 6.8 kWh), 

and it further dropped to 4.1 kWh during the third year. 

 

 
(a) First occupancy pattern 

 
(b) Second occupancy pattern 

 

Figure 8. Plot of weekly averaged RMS errors calculated 

during the adaptive training process with reference to office 

building under  
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(a) First occupancy pattern 

(b) Second occupancy pattern 

 

Figure 9. Plot of weekly averaged RMS errors calculated 

during the adaptive training process with reference to office 

building under  

 

 

4. CONCLUSIONS 

 

The potential of machine learning techniques to predict 

energy consumption in office and industrial buildings was 

investigated in this paper. Target data were obtained by means 

of dynamic energy simulation for several buildings, using the 

EnergyPlus software. Among the different techniques, a two-

layer feed-forward artificial neural network was investigated, 

together with another one using a non-linear autoregressive 

model with exogenous input. Among them, the first one 

showed clearly better performance in term of predictive 

accuracy, with a more stable behavior and considerably 

reduced day-by-day fluctuations. 

In terms of input parameters, the analysis showed that the 

availability of indoor temperature typically improves the 

prediction accuracy when heating and cooling loads are 

involved. Among the outdoor parameters wind speed proved 

scarcely effective and was consequently removed from the 

final dataset. Conversely, previous-day energy consumption 

proved to be an essential input in order to improve accuracy, 

particularly for the industrial building where the magnitude of 

the heating and cooling loads was quite large and the 

availability of that additional parameter contributed to better 

adapt temperature variations to energy consumptions.  

Finally, a simulation of the actual incremental training 

process was carried out, assuming that the ANN is re-trained 

every week. Results showed the best performance in all the 

cases, also using the input dataset without indoor temperature, 

with the performance of the network reaching acceptable 

levels after the first year, and significantly improving, nearly 

halving the RMS error, after the second one.  

Further investigations are under way in order to investigate 

the potential of other prediction methods and, possibly, extend 

the ANN to also predict hourly values instead of daily values. 
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