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This paper proposes a multi objective optimization of a power distribution system. The 

technique used here is network reconfiguration. The goal is to find an optimal 

configuration of the network which minimizes power losses while avoiding voltage drops 

and overloads online. To attain that goal, we minimize the active power losses and the 

voltage deviation at each node of the network. The minimization of the voltage deviation 

here consists in minimizing the reactive power losses online. The tool used is the GAMS 

software. The problem is solved by Mixed Integer Programming (MIP) which is a 

deterministic method. This method is implemented on two standard IEEE test power 

distribution networks 33-node and 69-node. The results obtained are satisfactory compared 

to other techniques in the literature. 
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1. INTRODUCTION

Electric energy is a product of everyday consumption which 

is characterized by a certain number of parameters such as: 

current, voltage, power, energy, consumption, etc. The role of 

power transmission and distribution lines is to transport energy 

from production sites to consumption sites, with steps to lower 

the voltage level in transformer stations. 

In the literature, several studies have been carried out on 

minimizing online power losses in a power distribution system. 

In the field of optimization, there are metaheuristic or 

approximate methods and exact or deterministic methods. 

Boum et al. [1] proposed a reconfiguration of the 33-node 

IEEE test network using the SOS algorithm. It turns out that 

the execution time is low and active power losses are 

minimized compared to other algorithms such as the genetic 

algorithm. They propose a study which is limited to the 

standard network IEEE 33-node and consequently the results 

are not reliable to conclude from the efficiency of the 

algorithm. 

Wang and Cheng [2] proposed an optimization of a 33-node 

IEEE power distribution network by reconfiguration by 

applying the Plant Growth Simulation Algorithm (PGSA). 

They do not take into account the improvement in the voltage 

profile at the network nodes. 
Nguyen and Thruong [3] proposed a CSA algorithm (Cukoo 

Search algorithm). The authors presented a reconfiguration of 

the 33-node and 69-node IEEE networks minimizing active 

power losses online and improving the voltage profile. They 

propose a method which does not clearly explain the technique 

used to minimize the voltage deviation at the level of the nodes. 

Rayapudi et al. [4] proposed an HSA (Harmony Search 

Algorithm) method and applied it on a 33-node network. The 

results show an optimal optimal reconfiguration. 

Muttaqi et al. [5] proposes an algorithm which determines 

the power losses for the different combinations of possible 

switches and selects the one which has the least power losses. 

He compares these results with those of other methods. They 

have only applied their algorithm on an IEEE 33- node 

network which is insufficient to conclude from the 

effectiveness of a method. 

Niknam [6] proposed a reconfiguration based on an 

evolutionary algorithm which is the combination of Honey 

Bee Mating Optimization and the Discrete Particle Swarm 

Optimization (DPSO) called DPSO-MBMO. This algorithm is 

implemented and compared to other methods. 

Zhen-kun et al. [7] proposed a Hybrid Particle Swarm 

Optimization which combines binary PSO and Discrete PSO. 

This technique is used for the problem of optimal 

reconfiguration. The authors first apply the binary PSO which 

selects a group of branches which should be opened. Second, 

they implement the second DPSO algorithm which selects the 

branch that should be opened in the branch group. This method 

converges quickly and has good stability. 

Li et al. [8] proposed a PSO hybrid combining the binary 

PSO and the Discrete PSO. The results obtained show that this 

algorithm is robust and converges quickly. 

Khodr et al. [9] propose a reconfiguration of the power 

distribution network formulated as a Mixed Integer Nonlinear 

Programming (MINLP) problem with a nonlinear objective 

function with binary decision variables. Difficulties 

encountered in solving nonlinear optimization problems with 

binary decision variables force the authors to use partition 

techniques such as Benders decomposition. Benders' partition 

algorithm is a two-level decomposition technique, master and 

slave, which defines an iterative procedure between two 

ordered levels for the search for the optimal solution. The 

master level in their work, represents the decision problem 

which is defined as a MINLP problem while the slave level 

deals with the operations problem, being a nonlinear OPF 

problem. This method allows us an appropriate treatment of 

the non-convexity associated with the binary variables and 

divides the total problem in two under problems easy to solve. 

The master problem determines the new network 
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configuration and the open switches. This problem is solved 

by the branch and bound method using the CPLEX solver. 

This solution obtained by CPLEX is transferred to the slave 

sub-problem which checks the technical feasibility of the 

solution of the master problem. The problem is solved using 

the CONOPT solver. They do not study the improvement of 

the tension profile. 
The reconfiguration of the power distribution network aims 

to choose a switching combination of branches of the network 

which optimizes certain performance criteria of the system 

while maintaining certain constraints. The ability to 

automatically reconfigure the network quickly and reliably is 

a key to the requirement for Smart Grid [10]. 

Hyder and Mahata [10] presents a reconfiguration of the 

distribution network using the binary programming method. 

The mathematical formulation of the problem is a quadratic 

form and solved using the QMIP (Quadratic Mixed Integer 

Programming) algorithm. This technique applies to IEEE 32 

bus, 70 bus, 135 bus standard distribution networks. The 

solver used for solving the mathematical problem is GUROBI. 

Abdulaziz et al. [11] formulate a model for planning the 

distribution of power from an electrical network to solve the 

sizing, timing and location of the distribution station and the 

problems of expansion of the supply lines simultaneously. The 

objective function of the model represents the present value of 

the investment costs and energy losses of the system which 

occur throughout the planning period. The objective function 

(cost value) is minimized with the following constraints: 

power limits, avoiding voltage drops. The resolution algorithm 

used is MILP (Mixed Integer Linear Programming). They 

must propose results which must first be validated on a 

standard IEEE network. 

Recent developments in optimal power flow (OPF) for 

radial networks open the promise of greater sophisticated 

management of power distribution networks. Such 

sophistication is necessary to effectively exploit the new 

dynamic energy resources. However, to be useful, 

optimization tools must also take into account the management 

of preexisting technologies which involve discrete decision 

variables [12]. 

Briglia et al. [12] propose methods to include discrete 

decision variables on transformer tracks and capacitor banks 

as well as ON / OFF loads. The algorithms used are MILP 

(Mixed Integer Linear Programming) with CIR (Convex 

Integer Relaxations). The simulation results obtained are 

applied to an electrical energy distribution network in Uruguay. 

Krengel et al. [13] present an approach of examining the 

city's districts as a whole in order to create a basis for 

investment decisions relating to the supply of energy to 

residential housing on the basis of an optimized conversion of 

distributed energy. Using MILP (Mixed Integer Linear 

Programming), an optimal configuration of energy conversion 

units such as heat pumps, photovoltaic systems or 

conventional heating systems is determined taking into 

account the investment as well as their costs. Operation over a 

period of 20 years. In addition, it is possible to design a district 

heating network using graph theory to take advantage of load 

balancing effects and economies of scale. The functionality of 

the model is illustrated by the analysis of a small-town district 

in Germany. 

Koutsoukis et al. [14] use a hybrid non-linear method. They 

propose a planning method for distribution networks which 

determines the optimal network reinforcement and expansion 

plan taking into account the service factors provided by 

decentralized production units. The proposed method 

calculates network investments and operational costs in order 

to meet future demand load as well as the connection of new 

loads and decentralized production units. Results on a 21-bus 

power distribution system validates the performance of the 

method. 

Borghetti [15] discusses minimum power losses, the 

problem of configuration of power distribution networks, 

including generation integrated by the MILP method. A model 

is proposed which takes into account the operating constraints 

typical of distribution networks, connection intensity limits 

and bus voltage requirements as well as the presence of 

integrated generation. The precision of the results and the 

calculation performance of the project are proposed. 

In this paper, Mixed Integer Programming is proposed to 

find an optimal configuration of a power distribution system 

that minimizes the active and reactive power losses and 

therefore the voltage deviation at the nodes of the system. 

The proposed method is very effective. It is a deterministic 

method which seeks the exact solution. This algorithm is 

implemented on two standard IEEE networks (33-node and 

69-node), which justifies the reliability of the method. The 

results obtained are better compared to other algorithms in the 

literature. 

 

 

2. PROBLEM FORMULATION 
 

Consider the single-line diagram of a line shown in Figure 

1. 

 

0 i-1 i i+1 n

P0,Q0 Pi-1,Qi-1 Pi,Qi Pi+1,Qi+1

PLi-1,QLi-1 PLi,QLi Pli+1,Qli+1 PLin,QLn

Pn,Qn

 
 

Figure 1. Single-line diagram of the line  

 

Figure 1 shows a simplified single-line diagram of a part of 

an electrical power distribution network comprising branches 

and nodes. The customers are connected at the node level and 

are represented by their active and reactive powers. 

The objective is to minimize line power losses by 

reconfiguring the distribution network. The minimization of 

the reactive power losses leads to the minimization of the 

voltage deviation at each node of the network. 

The objective function of the problem is formulated as 

follows: 

 

min min( , )1 2f fF =  (1) 

 

f1: Total active losses power (Ploss). 

f2: Total reactive losses power (Qloss). 

1 lossf P=  

2 lossf Q=  

 

We then obtain the following function F: 

 

min 1 2f fF  = +  
(2) 
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 and  are the weighting coefficients. 

 

Contraints  

 

During reconfiguration, it is necessary to avoid voltage 

drops and overloads at each node. So, you need the constraints 

for the objective function. They are: 

 

min max ; 0,1,2,..., 1i i i busV V V i N  = −  (3) 

 

max0 ; 0,1,2,..., 1i i brI I i N  = −  (4) 

 

With:  

Vi, min: Minimum value of the acceptable voltage at a node 

Vi, max: Maximum value of the acceptable voltage at a node  

Ii: Intensity of line current flowing through a branch 

Ii, max: Intensity of the maximum line current defined by 

the manufacturer 

Nbr: Number of  branch  

Nbus: Number of node 

 

For the calculation of the power flow we use the following 

relationships: 

 
2 2

1 12

i i
i i i Li

i

P Q
P P r P

V
+ +

+
= − −  (5) 
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i i
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i

P Q
V V r P x Q r x

V
+

+
= − + + +  (7) 

 

With:   

Pi: Active power at node i 

Qi: réactive power at node i 

Pi+1: Active power at node i+1 

Qi+1: Réactive power at node i+1 

ri: Resistance of the branch i 

xi: Reactance of the branch i 

Vi: RMS value of the voltage at node i 

Vi+1: RMS value of the voltage at node i i +1 

PLi+1: Active power of the load connected at node i +1 

QLi+1: Reactive power of the load connected at node i +1 

 

The total active power losses are expressed by the Eq. (8). 
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n=Nbr 

The total reactive power losses are expressed by the Eq. (9). 
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The objective of the reconfiguration is to minimize the 

active and reactive power losses of during the power transit, 

the problem is formulated as follows: 

2 2 2 21 1

2 2
0 0

min
n n

i i i i
i i

i ii i

P Q P Q
F r x

V V
 

− −

= =

+ +
= +   (10) 

 

The reconfiguration must obey the following rules: 

• All loads must be supplied with electrical energy (if 

not the majority) 

• The network configuration (power transit) must be 

radial. 

• The network is linear. 

In this study, the vector of decision variables giving the state 

of the switches is: 

 

 1 2 3 4 5... NbrY y y y y y y=  

 

After binary coding, the following state of the switches is 

obtained by branch: 

 

 1 2 3 4 5... NbrS S S S S S S=   

 

 

3. PROBLEM SOLVING ALGORITHM 

 

In this paper, the methodology for solving the problem 

involves calculating the power flow of the network. 

 

Description of the algorithm 

Step 1: Initialization 

This step defines the number of switches (branches) of the 

network and the objective functions. 

Step 2: Declaration of parameters and decision variables 

This step is used to declare the optimization parameters, 

variables and the binary branch connection decision variables. 

Step 3: Network configuration 

This step is used to configure the network and the 

characteristics of the lines and loads connected at the nodes are 

specified. 

Step 4: Calculation of the voltages at the nodes of the initial 

configuration 

After configuration, the voltages of each node are 

determined (initial configuration). 

Step 5: Calculation of the active and reactive power losses 

of the initial configuration 

Power losses are calculated using the recurrence equations 

for calculating power flow. 

Step 6: Calculation of the voltage deviation at the nodes of 

the initial configuration 

The highest voltage deviation of the network is determined. 

Step 7: Minimize active power losses 

This phase makes it possible to find the optimum of the 

objective function using Mixed Integer Programming (MIP). 

Step 8: Minimize the losses of reactive power 

This step allows you to find the optimum of the objective 

function using Mixed Integer Programming (MIP). 

Step 9: Calculation of the voltage deviation of the new 

network configuration 

The voltages are determined at the nodes of the 

configuration which minimizes the power active and reactive 

losses as well as the voltage deviation.  

Step 10: Verification of constraints 

Step 11: Show the result 
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4. RESULTS AND DISCUSSION  

 

The program is written in GAMS 23.5. The computer 

characteristics are: Processor: 1.70 GHz; RAM: 4.00 GB; OS: 

64-bit WINDOWS 10. 

In this paper, we implement our program on two standard 

IEEE test networks 33-node and 69-node. 

 

4.1 IEEE test network 33-node 
 

Presentation of the structure: 

The problem resolution flowchart is given in Figure 2. 

 

 
 

Figure 2. Problem resolution flowchart 

 

The structure of the IEEE 33 node network used is given in 

Figure 3. 

 
 

Figure 3. Structure of the IEEE 33 bus 

 

Results  

The RMS value of the voltage at node 0 of the network is 

12.66 kV. The total active and reactive powers are 3715 kW 

and 2300 kVAr respectively. These data and the characteristics 

of this network as well as the powers of the charges are taken 

in work [2]. 

In this study, binary words are read from S1 to S37 and read 

from left to right. 

The following binary code representing the state of the 

switches before reconfiguration is given in Figure 4. 

In implementing the optimization program, the optimal 

binary reconfiguration code is given in Figure 5. 

Table 1 presents the results obtained before and after 

reconfiguration. 

Figure 6 presents the voltage profile before and after 

reconfiguration by applying the proposed algorithm for IEEE 

33-node system. 

Table 2 presents a comparative study between the results of 

the proposed algorithm and those found in the literature for an 

IEEE 33-node network. 

 

Discussion 

Table 1 presents the results before and after reconfiguration 

of the IEEE 33 bus network. Before the reconfiguration, the 

open switches are: S33, S34, S35, S36, S37. The active power 

losses are equal to 211.581 kW, the reactive power losses to 

144.548 kVAr and the minimum node voltage is 0.9130 p.u 

which implies a network voltage deviation of 0.0870 p.u. After 

reconfiguration by the proposed algorithm, the open switches 

are S7, S9, S14, S32, S37 and the active power losses online 

are 136.765 kW, a reduction of 35.36%. The minimum voltage 

at the node of the network is 0.9348 p.u which implies a 

voltage deviation is 0.0652 p.u, a reduction of 25.05%. 

Figure 6 shows an improvement of the tension profile of the 

nodes after reconfiguration using the proposed method. Before 

the reconfiguration, the minimum voltage was equal to 0.9130 

p.u and after reconfiguration 0.9348 p.u. which implies a 

voltage deviation is 0.0652 p.u, a reduction of 25.05%. 

These results are compared to those of the literature in Table 

2. This comparative study shows that for the proposed 

algorithm, the minimum active power losses after 

reconfiguration are equal to 136.765 kW and the minimum 

voltage is 0.9348 p.u. These results are compared with those 

of the papers [3, 4] and are better. The results obtained by the 

HSA show that the minimum active power losses after 

reconfiguration are equal to 146.39 kW. The difference of 
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power losses with the proposed algorithm is 9.625 kW, a 

reduction of 6.57%. In addition the minimum voltage obtained 

is 0.9336 p.u which implies a difference of 0.0012 p.u with the 

proposed algorithm. The minimum active power losses 

obtained by the CSA method are equal to 138.87 kW. The 

difference of power losses with the proposed technique is 

2.105 kW, a reduction of 1.51%. The proposed method 

reduces the minimum losses by 6.57% compared to those of 

HSA and by 1.51% compared to those of CSA obtained. 

 

 
 

Figure 4. State of the switches for the 33-node system before reconfiguration 

 

 
 

Figure 5. State of the switches for the 33-node system after reconfiguration 

 

 
 

Figure 6. Voltage profile for the 33-node system before and after reconfiguration 

 

Table 1. Reconfiguration of the IEEE 33 Bus network 

 

 Before reconfiguration After reconfiguration Reduction(%) 

Open switches S33, S34, S35, S36, S37 S7, S9, S14, S32, S37 / 
Real losses power (kW) 211.581 136.765 35.36 

Reactive losses power (kVAr) 144.548 35.229 75.62 
Vmin (p.u) 0.9130 0.9348 / 
Vde(p.u) 0.0870 0.0652 25.05 

Vmin: Minimal voltage at node; Vde: Voltage deviation 

  

Table 2. Comparative study of the results of other algorithms for a network of 33 bus 
 

Methods Open switches Power loss Vde (p.u)(kW) Vmin (p.u) 

Initial S33, S34, S35, S36, S37 211.581   0.0870 0.9130 

Proposed method S7, S9, S14, S32, S37 136.765 0.0652 0.9348 

CSA [3] S7, S9, S14, S32, S37 138.87 0.0576 0.94235 

PSO [3] S7, S9, S14, S32, S37 138.87 0.0576 0.94235 

HSA [4] S7, S10, S14, S28, S36 146.39 0.0664 0.9336 

4.2 IEEE 69 bus test network 

 

Presentation of the structure  

The RMS value of the voltage at node 0 of the network is 

12.66 kV. The total active and reactive powers are respectively 

3802 kW and 3696 kVAr. The characteristics of this network 

are the same as those used in work [3]. 

Figure 7 shows the structure of the network. While table 3 

shows the different switches associated with each branch. 

 

Results  

In this study, the binary words are from S1 to S73 and read 

from left to right. The following binary code representing the 

state of the switches before reconfiguration is given in Figure 

8. In implementing the optimization program, the optimal 

binary reconfiguration code is given in Figure 9. Table 4 

presents the results obtained before and after reconfiguration. 

Figure 10 presents the voltage profile before and after 

reconfiguration by applying the proposed algorithm for IEEE 

33-node system. Table 5 presents a comparative study between 

the results of the proposed algorithm and those found in the 

literature for an IEEE 69-node network. 
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Table 3. Switches associated with each branch 

 
Bus to bus Switches  Bus to bus Switches Bus to bus Switches 

1-2 S1 26-27 S26 51-52 S51 

2-3 S2 3-28 S27 52-53 S52 

3-4 S3 28-29 S28 53-54 S53 

4-5 S4 29-30 S29 54-55 S54 

5-6 S5 30-31 S30 55-56 S55 

6-7 S6 31-32 S31 56-57 S56 

7-8 S7 32-33 S32 57-58 S57 

8-9 S8 33-34 S33 58-59 S58 

9-10 S9 34-35 S34 59-60 S59 

10-11 S10 3-36 S35 60-61 S60 

11-12 S11 36-37 S36 61-62 S61 

12-13 S12 37-38 S37 62-63 S62 

13-14 S13 38-39 S38 63-64 S63 

14-15 S14 39-40 S39 64-65 S64 

15-16 S15 40-41 S40 11-66 S65 

16-17 S16 41-42 S41 66-67 S66 

17-18 S17 42-43 S42 12-68 S67 

18-19 S18 43-44 S43 68-69 S68 

19-20 S19 44-45 S44 11-43 S69 

20-21 S20 45-46 S45 13-21 S70 

21-22 S21 4-47 S46 15-46 S71 

22-23 S22 47-48 S47 50-59 S72 

23-24 S23 48-49 S48 27-65 S73 

24-25 S24 49-50 S49   

25-26 S25 8-51 S50   

 

Table 4. Reconfiguration of the IEEE 69 Bus network 

 

 Before reconfiguration After reconfiguration Reduction(%) 

Open switches S69, S70, S71, S72, S73 S14, S57, S61, S69, S70 / 
Real losses power (kW) 224.95 97.917 56.47 

Reactive losses power (kVAr) 37.538 23.256 38.04 
Vmin (p.u) 0.9100 0.9500 / 
Vde(p.u) 0.0900 0.0500 44.44 

 

Table 5. Comparative study of the results of other algorithms for a network of 69 bus 

 
Methods Open switches Power loss Vde (p.u)(kW) Vmin (p.u) 

Initial S69, S70, S71, S72, S73 224.95  0.0900 0.9100 

Proposed method S14, S57, S61, S69, S70 97.917 0.0500 0.9500 

CSA [3] S14, S57, S61, S69, S70 98.5680 0.0505 0.9495 

PSO [3] S14, S57, S61, S69, S70 98.5680 0.0505 0.9495 

HSA [16] S13, S18, S56, S61, S69 99.35 0.0572 0.9428 

 

 

 

Figure 7. Structure of IEEE 69 bus network 
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Figure 8. State of the switches for the 69-node system before reconfiguration 

 

 
 

Figure 9. State of the switches for the 69-node system after reconfiguration 

 

Discussion  

Table 4 presents the results before and after reconfiguration 

of the IEEE 69 bus network. Before the reconfiguration, the 

open switches are: S69, S70, S71, S72, S73. The active power 

losses are equal to 224.95 kW, the reactive power losses to 

37.538 kVAr and the minimum node voltage is 0.9100 p.u 

which implies a network voltage deviation of 0.0900 p.u. After 

reconfiguration by the proposed algorithm, the open switches 

are S14, S57, S61, S69, S70 and the active power losses online 

are 97.917 kW, a reduction of 56.47%. The minimum voltage 

at the node of the network is 0.9500 p.u which implies a 

voltage deviation is 0.0500 p.u, a reduction of 44.44%. 

Figure 10 shows an improvement in the voltage profile of 

the nodes after reconfiguration using the proposed method. 

Before the reconfiguration, the minimum voltage was equal to 

0.9100 p.u and after reconfiguration 0.9500 p.u. which implies 

a voltage deviation is 0.0500 p.u, a reduction of 44.44%. 

These results are compared to those of the literature in Table 

5. This comparative study shows that for the proposed 

algorithm, the minimum active power losses after 

reconfiguration are equal to 97.917 kW and the minimum 

voltage is 0.9100 p.u. These results are compared with those 

of the papers [3, 16] and are better. The results obtained by the 

HSA show that the minimum active power losses after 

reconfiguration are equal to 99.35 kW. The difference of 

power losses with the proposed algorithm is 1.433 kW, a 

reduction of 1.44%. In addition the minimum voltage obtained 

is 0.9428 p.u which implies a difference of 0.0072 p.u with the 

proposed algorithm. The minimum active power losses 

obtained by the CSA method are equal to 98.5680 kW. The 

difference of power losses with the proposed technique is 

0.651 kW, a reduction of 0.66%. The minimum voltage 

obtained is 0.9495 p.u which implies a difference of 0.0005 

p.u with the proposed algorithm. The proposed method 

reduces the minimum power losses by 1.44% compared to 

those of the HSA obtained and by 0.66% compared to those of 

the CSA obtained.  

 

 
 

Figure 10. Profile voltage for the 69-node system before and after reconfiguration 

 

 

5. CONCLUSIONS 

 

A multi objective optimization of an electrical energy 

distribution network has been studied in this paper. An optimal 

configuration which minimizes power losses and voltage 

deviation at network nodes is proposed. The optimization 

technique used is deterministic and based on Mixed Integer 

Programming (MIP). This technique is implemented on the 

IEEE 33 bus and IEEE 69 bus standard networks. The results 

obtained show that this method is very efficient. A 

comparative study with other algorithms in the literature 

confirms the effectiveness of this approach. 
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