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In engineering practice, to make sure that a project can achieve safe operation while 

minimizing the overall cost during the whole life cycle, the supervisor of the project 

generally needs to make optimal decisions for the Life Cycle Cost (LCC) of the project. 

To this end, this paper adopted Genetic Algorithms (GA) and LCC theory to propose and 

implement a kind of optimization algorithms suitable for solving maintenance scheme 

problems. Combining with the selection of three actual maintenance scenarios of “take no 

maintenance measure/preventive maintenance measures only”, “take major maintenance 

measures”, and “take major maintenance measures and preventive maintenance 

measures”, the proposed algorithm adopted real number coding to give optimization 

solutions from two perspectives of “control service life and calculate cost” and “control 

cost and calculate service life”; moreover, the paper conducted a comparative analysis on 

the maintenance schemes of reinforced concrete bridge decks using Matlab and verified 

the reliability and efficiency of the proposed algorithm. 
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1. INTRODUCTION

At present, a large number of highway and bridge projects 

in China are suffering from structural defects and structural 

aging problems, urgently need to be repaired, strengthened, 

reconstructed, or even demolished and rebuilt. However, a 

country’s financial resources are often limited, so it is 

necessary for us to reasonably allocate and make good use of 

the funds, and adopt appropriate solutions at the right time, so 

as to achieve the goal of saving the cost to the greatest extent. 

For a long time, a lot of researches have been done at home 

and abroad on bridge structure optimization schemes and the 

economy of the corresponding maintenance schemes. The 

theory of Life Cycle Cost (LCC) was first applied to 

procurement of expensive military equipment in the United 

States and then introduced to the field of engineering, its 

purpose is to manage the decision-making at various stages in 

the life cycle of engineering projects. The US Federal 

Highway Administration (FHWA) was the first to introduce 

the application of LCC theory in bridge engineering [1]. Then 

Hawk proposed a LCC analysis method suitable for bridge 

structures [2]; and Scott et al. conducted an in-depth study on 

decision-making and economic analysis of bridge decks [3-5]. 

At present, commonly-used optimization methods include 

mathematical planning methods and artificial intelligence 

optimization methods, wherein the mathematical planning 

methods generally have the characteristics of unstable solution 

and slow operation speed [6], and the artificial intelligence 

optimization methods include Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO), and Artificial Bee 

Colony (ABC) algorithm, etc. [7-8]. Holland first applied GA 

to the optimization and selection of plans, and then GA has 

become a typical heuristic random search algorithm [9-11]. He 

Hongming used Neural Network (NN) to study the evaluation, 

prediction and maintenance decision of the deterioration of 

existing reinforced concrete structures [12-15]. Based on the 

specified service level, Liu Xingwang adopted GA as the tool 

to optimize the pavement maintenance decision-making 

scheme, and introduced LCC theory and GA to the 

optimization of the maintenance scheme of the bridge decks 

[16-18]. 

From the comparison of previous studies, we can know that, 

how to establish suitable models for specific engineering 

problems and improve the efficiency and accuracy of 

calculation are the key issues that need to be solved at present. 

Due to its parallel and global optimization characteristics, GA 

is more suitable for optimizing decisions. Based on the LCC 

theory, with MATLAB as the development platform, this 

paper combines with GA to compile algorithm that is suitable 

for the cost optimization of the maintenance schemes for 

reinforced concrete bridge decks, and verifies the reliability 

and efficiency of the proposed algorithm with actual examples. 

2. LCC ANALYSIS OF THE EXAMPLE PROJECT

2.1 Description of the problem 

LCC analysis is the basis of engineering projects and 

scheme optimization, this paper took the reinforced concrete 

bridge deck as the research object, the initial reliability was set 

to be β=8.0, the degradation start time was set as T1=15, and 
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the minimum reliability index was β*=4.2. Considering the 

optimization calculation of LCC, three basic maintenance 

scenarios were set up through GA, respectively are: take no 

maintenance measure/preventive maintenance measures only, 

take major maintenance measures, and take major 

maintenance measures and preventive maintenance measures. 

The expected target and output were the optimal cost and 

service life under the constraints of the three scenarios. 

The calculation formula for the LCC of the example 

engineering project over the entire life cycle [16] is as follows: 

 

𝐿𝐶𝐶(𝑇) = 𝐶𝑐 + 𝐶𝐼𝑁(𝑇) + 𝐶𝑀(𝑇) + 𝐶𝑅(𝑇) + 𝐶𝐹(𝑇) (1) 

 

where, Cc is the initial cost; CIN(T) is the test cost; CM(T) is the 

routine maintenance cost; CR(T) is the maintenance cost and 

the loss cost caused by the maintenance; CF(T) is the failure 

cost, namely the loss caused by failure.  

 

2.2 Determination of parameters 

 

2.2.1 Initial cost Cc 

Since the initial cost won’t affect the choice of scheme, to 

simplify the process of comparative analysis, Cc was set to be 

a constant. 

 

2.2.2 Routine test maintenance cost CIN,M(t) 

To facilitate computation, the routine test cost CIN(T) and 

the routine maintenance cost CM(T) are generally combined 

together as the routine test & maintenance cost CIN,M(t), which 

is calculated in years. 

 

𝐶𝐼𝑁,𝑀(𝑡) = 0.02(1 + 0.05𝑡)𝐶𝑐, (𝑡 < 𝑇1) (2) 

 

𝐶𝐼𝑁,𝑀(𝑡) = 0.02 [1 + 0.05𝑡 +

0.5
[𝛼1+𝛼

′(𝑡−𝑇1)](𝑡−𝑇1)
0.8

𝛽∗
] 𝐶𝑐, (𝑡 ≥ 𝑇1) 

(3) 

 

where, T1 is the start time of initial degradation, its value took 

15 in this paper; α1 is the degradation rate at the start time of 

initial degradation, its value took 0.01 in this paper; α' is the 

increase coefficient of the degradation rate, it’s a variate [16]. 

 

2.2.3 Maintenance cost 

According to LCC theory, the maintenance cost is divided 

into two parts, namely the preventive maintenance cost CR,PM 

and the reinforcement maintenance cost CR,EM. Considering 

the actual situation of the example, the two parts of the 

maintenance cost are:  

 

𝐶𝑅,𝑃𝑀 = 0.1𝐶𝐶 + 𝐶𝐶 × (
𝛥𝐴

0.05
)
2

 (4) 

 

𝐶𝑅,𝐸𝑀 = 𝐶𝑅,𝐸𝑀(𝛥𝛽) (5) 

 

where, 𝛥𝐴 is the difference in the degradation rate before and 

after the maintenance; 𝛥𝛽 is the difference in the reliability 

index before and after the maintenance. 

 

2.2.4 Structural failure loss CF(t) 

Structural failure loss is usually related to the failure level, 

the classification method of failure level adopted in this paper 

is shown in Table 1, and the corresponding calculation formula 

for failure loss is shown as Formula 7. 

Table 1. Reliability indexes of failure levels 

 

Structural 

failure level di 

Intact 

(i=1)  

Slight 

(i=2) 

Medium 

(i=3) 

Serious 

(i=3) 

Very 

serious 

(i=5) 

Reliability index β-2.0 β-1.5 β-1.0 β-0.5 β 

Direct loss 

coefficient kCF1 
0.01 0.20 0.50 1.0 2.0 

Ratio of direct 

loss to indirect 

loss kF 

0.1 0.5 5.0 50.0 500.0 

 

Structural failure loss CF(t) can be calculated as follows: 

 

𝐶𝐹(𝑡) =∑{𝑝𝑓
𝑖 (𝑡)

5

𝑖=1

× 𝐶𝑐 × 𝑘
𝑖
𝐶𝐹1(1 + 𝑘

𝑖
𝐹)} (6) 

 

where, 𝑝𝑓
𝑖 (𝑡) is the failure probability of the structure, and its 

calculation formula [16] is: 

 

𝑝𝑓 =
1

2
(1 + 𝛼1𝛽 + 𝛼2𝛽

2 + 𝛼3𝛽
3 + 𝛼4𝛽

4 + 𝛼5𝛽
5

+ 𝛼6𝛽
6)−16 

(7) 

 

where,  

α1=0.049867374; α2=0.0211410061; α3=0.0032776263; 

α4=0.00003800036; α5=0.0000488906; α6=0.000005383. 

 

2.2.5 The overall objective of the example project 

The overall objective of the example project took account 

both economy and safety issues, that is, achieve maximum 

expected service life while the structure satisfies the constrain 

of safe operation; or achieve minimum expected project cost 

under the condition that the benefits of the project can hardly 

be estimated accurately. 

The overall objective of the example project can be 

expressed as: 

 

𝑀𝑎𝑥{𝐸[𝑈(𝑇)] − 𝐸[𝐿𝐶𝐶(𝑇)]} or 𝑀𝑖𝑛 𝐸[𝐿𝐶𝐶(𝑇)] (8) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝛽 ≥ 𝛽∗ 𝑜𝑟 𝑝𝑠 ≥ 𝑝𝑠
∗ (9) 

 

where, 𝐸[𝑈(𝑇)] is the sum of expected benefits within the life 

cycle (T) of the project; 𝛽  is the structural reliability index 

(within service life); 𝛽∗ is the limit of target reliability index 

(the lowest target reliability index during the trial period); 𝑝𝑠 
is the structural reliability (within service life); 𝑝𝑠

∗ is the limit 

of target reliability (the lowest target reliability during the trial 

period); 

In this paper, the overall objective of the example project 

was set as a constraint for the optimization of the scheme. The 

scheme optimization was conducted from two aspects of 

“satisfying a certain service life and calculating the minimum 

cost” and “satisfying a certain cost and calculating the longest 

service life”. 

 

 

3. MODEL FOR GA 

 

3.1 Individual coding 

 

This paper adopted real number coding [19-22], each gene 

was represented by a character set and composed of I (number 

of maintenance measures) strings (sub-genes), as shown in 
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Figure 1, J1 represents the set of reinforcement measures, the 

numbers 1-6 represent the reinforcement measures, as shown 

in Formula 10; J2 represents the set of maintenance measures, 

the numbers 1-4 represent the maintenance measures, as 

shown in Formula 11. 

 

 
 

Figure 1. Gene coding 

 

𝐽1 =

{
  
 

  
 
1 − Reinforce in the 30𝑡ℎ year

2 − Reinforce in the 40𝑡ℎ year

3 − Reinforce in the 50𝑡ℎ year

4 − Reinforce in the 60𝑡ℎ year

5 − Reinforce in the 70𝑡ℎ year

6 − No reinforcement                

 (10) 

 

𝐽2 = {

1 − No maintenance               

2 −Maintain every 10 years

3 −Maintain every 20 years

4 −Maintain every 30 years

 (11) 

 

3.2 Population initialization 

 

Generally, the individuals in the initial population are 

generated randomly, because without prior knowledge of the 

problem space, it is difficult to judge the number of optimal 

solutions and their distribution in the feasible solution space. 

This paper adopted the method of randomly generated initial 

population, that is, for the first part (J1) of each individual, a 

random number between 1-6 was generated by the randi (6) 

function; for the second part (J2) of each individual, a random 

number between 1-4 was generated by the randi (4) function; 

at last, the initial population (pop) was formed by multiple 

random individuals, and the initial population was a two-

dimensional matrix. 

 

3.3 Individual assessment 

 

In this paper, the individual fitness function was consistent 

with the optimization goal. The individual fitness value was 

calculated by Formula (1), and ensured to satisfy the constraint 

condition Formula (9); individuals that did not satisfy the 

constraint were not allowed to enter the selection stage. 

 

3.4 Selection, crossover, and mutation operations 

 

This paper adopted Roulette Wheel Selection as the 

selection method [23-26]. Individuals with high fitness values 

(low LCC value) have a higher probability of being selected, 

while individuals with low fitness values (high LCC value) 

have a higher probability of being eliminated. 

In this paper, the crossover operation adopted the single-

point crossover scheme according to the particularity of the 

model. That is, from that population that had been subject to 

the selection operation, two individuals were chosen as the 

objects for the crossover operation, and these two individuals 

are called the parent individuals, which were subject to single-

point crossover operation and two new individuals were 

generated, and called the child individuals, as shown in Figure 

2. From J1 or J2, a position was randomly selected as the 

intersection point, which was taken as the position of the first 

gene of the gene string of parent individual 1 and parent 

individual 2; then the gene codes after the intersection point 

were interchanged to form the child individual 1 and child 

individual 2, the crossover operations of other individuals 

were completed in the same way. 

 

 
 

Figure 2. Crossover operation 

 

In this paper, the mutation operation adopted the 

substitution mutation-based scheme, that is, a position was 

randomly selected for substitution, and the genetic information 

used for substitution was made sure to be the one that can 

satisfy the reinforcement maintenance measures, as shown in 

Figure 3. 

 

4 2

2 2

 
 

Figure 3. Mutation operation 

 

3.5 Algorithm implementation 

 

After trials and loops, the algorithm finally obtained the 

minimum value of the objective function as shown in Figure 

4. 

 

 

4. CASE STUDY 

 

According to the engineering project example in [16] we 

can know that, under the condition of no maintenance measure 

had been applied, the service life of concrete bridge deck is 70 

years. From two perspectives, this paper set three different 

maintenance scenarios and conducted comparative analysis 

from the vertical and horizontal directions, as shown in Table 

2. With MATLAB R2013a software as the operating platform, 

LCC theory as the basis, Formula (1) as the objective function, 

the overall objective of the example project as the constraint 

condition, a GA program was written and compiled to 

optimize the schemes that satisfied the conditions and find out 

the optimal solution. The parameters of the evolutionary 

algorithm are shown in the schemes listed in sections 3.1 to 

3.3. 
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Figure 4. Flow of GA 

 

Table 2. Reliability indexes of failure levels 

 

 Perspective 1: control the service life, and calculate the cost Perspective 2: control the cost and calculate the service life  

Scenario 1 

A No maintenance 

B Maintain every 10 years 

C Maintain every 20 years 

D Maintain every 30 years 

Scenario 2 

A Reinforce in the 30th year 

B Reinforce in the 40th year 

C Reinforce in the 50th year 

D Reinforce in the 60th year 

E Reinforce in the 70th year 

Scenario 3 

A Reinforce in the 30th year and maintain every 10, 20, and 30 years 

B Reinforce in the 40th year and maintain every 10, 20, and 30 years 

C Reinforce in the 50th year and maintain every 10, 20, and 30 years 

D Reinforce in the 60th year and maintain every 10, 20, and 30 years 

E Reinforce in the 70th year and maintain every 10, 20, and 30 years 

 

4.1 Optimal scheme for no maintenance measure and 

preventive maintenance measures only 

 

4.1.1 Control the service life and calculate the cost 

 

 
 

Figure 5. Trend of optimal point 

 
 

Figure 6. Trend of average value of optimal point 

 

The optimization goal is to calculate the scheme with the 

minimum cost under the constraint condition that the service 

life is 100 years. In terms of Scenario 1, the evolution 
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parameters were set as follows: population size 100, number 

of iterations 100 generations, crossover rate 0.4, mutation rate 

0.1. Targeting at the optimization goal, the maintenance 

scheme was optimized by the GA program, and the data results 

and analysis are shown as follows: 

(1) Calculation results: 

After the optimization operations, the specific cost and 

optimization process of each maintenance scheme are shown 

in Table 3, and the convergence diagrams are shown in Figure 

5 and Figure 6 

(2) Result analysis 

Table 3 shows the optimization process of the schemes 

under Scenario 1 by GA, the total cost of the initial scheme 

was 9.50E + 03CC, and the scheme was “no measure taken”; 

after the optimization operation, it reached optimum in the 13th 

generation and converged to the end; the total cost after 

optimization was 7.856CC, and the scheme was “maintain 

every 10 years”. Figure 5 shows the trend of the individual 

with the optimal fitness value and Figure 6 shows the trend of 

the average fitness value of the optimal solution. It can be seen 

that the algorithm had good convergence characteristics and 

high solution efficiency. The calculation results were 

compared with the existing examples [16], and its rationality 

had been proved. Since the GA had found the optimal solution 

quickly and accurately, its high efficiency had been proved as 

well. 

 

Table 3. Data summary of schemes 

 

Number of 

iterations 
Schemes 𝑪𝑰𝑵,𝑴 𝑪𝑭 𝑪𝑹,𝑷𝑴 𝑳𝑪𝑪 

1 
No measure 

taken 

7.6355

𝐶𝑐 
9.50E+03

𝐶𝑐 
0.2𝐶𝑐 

9.50E+03

𝐶𝑐 

2 
No measure 

taken 

7.6355

𝐶𝑐 
9.50E+03

𝐶𝑐 
0.2𝐶𝑐 

9.50E+03

𝐶𝑐 

3 
Maintain 

every 30 years 

7.6355

𝐶𝑐 
591.3107

𝐶𝑐 
0.2001

𝐶𝑐 
599.1463

𝐶𝑐 

4 
Maintain 

every 30 years 

7.6355

𝐶𝑐 
591.3107

𝐶𝑐 
0.2001

𝐶𝑐 
599.1463

𝐶𝑐 
… … … … … … 

13 
Maintain 

every 10 years 

7.6355

𝐶𝑐 
0.0196𝐶𝑐 

0.2009

𝐶𝑐 
7.856𝐶𝑐 

… … … … … … 

100 
Maintain 

every 10 years 

7.6355

𝐶𝑐 
0.0196𝐶𝑐 

0.2009

𝐶𝑐 
7.856𝐶𝑐 

 

4.1.2 Control the cost and calculate the service life 

The optimization goal is to calculate the scheme with the 

longest service life under the constraint condition of a given 

total maintenance cost. In this paper, the initial cost Cc was set 

to 1 million yuan, the limit of total maintenance cost was set 

to 7 million yuan, and the constraint condition was Formula 

(9). According to the reliability degradation model [16] and 

Formula (1), a GA optimization program was written and 

compiled using MATLAB to calculate the service life under 

the Scenario 1. 

(1) Calculation results: 

 

Table 4 Service life of maintenance schemes 

 

Number Scheme Service life Reliability 

1 Routine maintenance 77 3.5188 

2 Maintain every 10 years 93 5.1282 

3 Maintain every 20 years 91 4.0322 

4 Maintain every 30 years 84 3.6213 

(2) Result analysis 

According to the results in Table 4, it can be seen that the 

service life was the longest 93 years when the scheme was 

“maintain every 10 years”, and the corresponding reliability 

value was 5.1282. It can be seen from the results that the 

shorter the interval, the longer the service life extended, this 

result is consistent with the existing research conclusions [16], 

which proved the rationality of the algorithm.  

 

4.2 Optimal scheme for major maintenance measures 

 

4.2.1 Control the service life and calculate the cost 

The optimization goal is to calculate the scheme with the 

minimum cost under the constraint condition that the service 

life is 100 years. In terms of Scenario 2, the evolution 

parameters were set as follows: population size 100, number 

of iterations 100 generations, crossover rate 0.4, mutation rate 

0.1. Targeting at the optimization goal, the maintenance 

scheme was optimized by the GA program, and the data results 

and analysis are shown as follows: 

(1) Calculation results: 

After the optimization operations, the specific cost and 

optimization process of each maintenance scheme are shown 

in Table 5, and the convergence diagrams are shown in Figure 

7 and Figure 8. 

 

 
 

Figure 7. Trend of optimal point 

 

 
 

Figure 8. Trend of average value of optimal point 
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(2) Result analysis 

 

Table 5. Data summary of schemes 

 

Number of 

iterations 
Scheme 𝑪𝑰𝑵,𝑴 𝑪𝑭 𝑪𝑹,𝑷𝑴 𝑳𝑪𝑪 

1 
Reinforce in the 

70th year 

7.6355

𝐶𝑐 
0.4759

𝐶𝑐 
0.4329

𝐶𝑐 
8.5443

𝐶𝑐 

2 
Reinforce in the 

60th year 

7.6355

𝐶𝑐 
0.0198

𝐶𝑐 
0.5589

𝐶𝑐 
8.2142

𝐶𝑐 

3 
Reinforce in the 

60th year 

7.6355

𝐶𝑐 
0.0198

𝐶𝑐 
0.5589

𝐶𝑐 
8.2142

𝐶𝑐 
… … … … … … 

6 
Reinforce in the 

50th year 

7.6355

𝐶𝑐 
0.0294

𝐶𝑐 
0.4329

𝐶𝑐 
8.0978

𝐶𝑐 
… … … … … … 

100 
Reinforce in the 

50th year 

7.6355

𝐶𝑐 
0.0294

𝐶𝑐 
0.4329

𝐶𝑐 
8.0978

𝐶𝑐 

 

Table 5 shows the optimization process of the schemes 

under Scenario 2 by GA, the total cost of the initial scheme 

was 8.5443CC, and the scheme was “reinforce in the 70th year”; 

after optimization operation, it reached optimum in the 6th 

generation and converged to the end; after optimization, the 

total cost was 8.0978CC, and the scheme was “reinforce in the 

50th year”. Figure 7 shows the trend of the individual with the 

optimal fitness value and Figure 8 shows the trend of the 

average fitness value of the optimal solution. The results 

showed that, under the constraint of 100-year service life, the 

cost of the “reinforce in the 50th year” scheme was the lowest. 

 

4.2.2 Control cost and calculate the service life 

The initial cost Cc was set to 1 million yuan, the limit of total 

maintenance cost was set to 7 million yuan, and the constraint 

condition was Formula (9). According to the reliability 

degradation model and Formula (1), a GA optimization 

program was written and compiled using MATLAB to 

calculate the service life of the schemes under Scenario 2. 

(1) Calculation results 

The Calculation results is as shown in table 6. 

(2) Result analysis 

According to the results in Table 6, it can be seen that the 

service life reached the longest 59 years when the scheme was 

“reinforce in the 70th year”, and the corresponding reliability 

value was 5.5229. From the degradation curve of reliability, 

we can know that, the longer the service life, for the same 

interval, the greater the difference of in reliability (𝛥𝛽), and 

the longer the extended service life ( 𝛥𝑇 ) after the 

reinforcement. 

 

Table 6. Service life of maintenance schemes 

 
Number Scheme Service life Reliability 

1 Reinforce in the 30th year 19 7.9394 

2 Reinforce in the 40th year 29 7.6284 

3 Reinforce in the 50th year 39 7.1103 

4 Reinforce in the 60th year 49 6.4045 

5 Reinforce in the 70th year 59 5.5229 

 

4.3 Optimal scheme for major maintenance measures and 

preventive maintenance measures 

 

4.3.1 Control the service life and calculate the cost 

The optimization goal is to calculate the scheme with the 

minimum cost under the constraint condition that the service 

life is 100 years. In terms of Scenario 3, under the condition of 

reinforcement only, the evolution parameters were set as 

follows: population size 100, number of iterations 100 

generations, crossover rate 0.4, mutation rate 0.1. Targeting at 

the optimization goal, the maintenance schemes were 

optimized by the GA program, and the data results and 

analysis are shown as follows: 

(1) Calculation results: 

After the optimization operations, the specific cost and 

optimization process of each maintenance scheme are shown 

in Table 7, and the convergence diagrams are shown in Figure 

9 and Figure 10. 

 

Table 7. Data summary of schemes 

 

Number of iterations Scheme 𝑪𝑰𝑵,𝑴 𝑪𝑭 𝑪𝑹,𝑷𝑴 𝑳𝑪𝑪 

1 Reinforce in the 70th year and conduct routine maintenance afterwards 7.6355𝐶𝑐 0.3990𝐶𝑐 0.7043𝐶𝑐 8.7388𝐶𝑐 
2 Reinforce in the 50th year and conduct routine maintenance afterwards 7.6355𝐶𝑐 0.0294𝐶𝑐 0.4329𝐶𝑐 8.0978𝐶𝑐 
3 Reinforce in the 50th year and conduct routine maintenance afterwards 7.6355𝐶𝑐 0.0294𝐶𝑐 0.4329𝐶𝑐 8.0978𝐶𝑐 
… … … … … … 

6 Maintain every 10 years 7.6355𝐶𝑐 0.0196𝐶𝑐 0.2009𝐶𝑐 7.8560𝐶𝑐 
… … … … … … 

100 Maintain every 10 years 7.6355𝐶𝑐 0.0196𝐶𝑐 0.2009𝐶𝑐 7.8560𝐶𝑐 

 

 
 

Figure 9. Trend of optimal point 

 
 

Figure 10. Trend of average value of optimal point 
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(2) Result analysis 

Table 7 shows the optimization process of schemes under 

Scenario 3 by GA, the total cost of the initial scheme was 

8.7388CC, and the scheme was “reinforce in the 70th year and 

conduct no maintenance afterwards”; after optimization 

operation, it reached optimum in the 6th generation and 

converged to the end; the total cost after optimization was 

7.8560CC, and the scheme was “maintain every 10 years”. 

Figure 9 shows the trend of the individual with the optimal 

fitness value and Figure 10 shows the trend of the average 

fitness value of the optimal solution. The results showed that, 

among the schemes for major maintenance measures and 

preventive maintenance measures, the optimal scheme that 

satisfied the constraint was “maintain every 10 years”.  

 

4.3.2 Control cost and calculate the service life 

The initial cost Cc was set to 1 million yuan, the limit of total 

maintenance cost was set to 7 million yuan, and the constraint 

condition was Formula (9). According to the reliability 

degradation model and Formula (1), a GA optimization 

program was written and compiled using MATLAB to 

calculate the service life of the schemes under Scenario 3. 

(1) Calculation results: 

 

Table 8. Service life of maintenance schemes 

 
Number Scheme Service life Reliability 

1 Maintain every 10 years 93 5.1282 

2 Reinforce in the 30th year and maintain every 10 years afterwards 19 7.9394 

3 Reinforce in the 30th year and maintain every 20 years afterwards 19 7.9394 

4 Reinforce in the 30th year and maintain every 30 years afterwards 19 7.9394 

5 Reinforce in the 40th year and maintain every 10 years afterwards 29 7.6284 

6 Reinforce in the 40th year and maintain every 20 years afterwards 29 7.6284 

7 Reinforce in the 40th year and maintain every 30 years afterwards 28 7.6692 

8 Reinforce in the 50th year and maintain every 10 years afterwards 39 7.1103 

9 Reinforce in the 50th year and maintain every 20 years afterwards 38 7.1707 

10 Reinforce in the 50th year and maintain every 30 years afterwards 38 7.1707 

11 Reinforce in the 60th year and maintain every 10 years afterwards 49 6.4045 

12 Reinforce in the 60th year and maintain every 20 years afterwards 49 6.4045 

13 Reinforce in the 60th year and maintain every 30 years afterwards 49 6.4045 

14 Reinforce in the 70th year 59 5.5229 

15 Reinforce in the 70th year and maintain every 10 years afterwards 59 5.5229 

16 Reinforce in the 70th year and maintain every 20 years afterwards 59 5.5229 

17 Reinforce in the 70th year and maintain every 30 years afterwards 59 5.5229 

 

(2) Result analysis 

Under the conditions of initial cost Cc was 1 million yuan, 

the limit of total maintenance cost was 7 million yuan, and the 

constraint was Formula (9), according to the results in Table 8, 

it can be seen that the service life reached the longest 93 years 

when the scheme was “maintain every 10 years”, and the 

corresponding reliability value was 5.1282, indicating that 

among the maintenance schemes that satisfied the constraint, 

under condition of a given cost, the service life of the scheme 

“maintain every 10 years” was the longest. This result 

corresponded to the results in Table 7, which proved the 

excellency of the scheme and the rationality of the result.  

 

 

5. CONCLUSION 

 

Based on the LCC model, this paper studied the 

optimization selection problem of the maintenance schemes of 

reinforced concrete bridge decks. The paper used GA to design 

an algorithm which adopted real number coding and combined 

with the selection of actual maintenance schemes to optimize 

and analyze the cost and service life of bridge deck under the 

three scenarios of “take no maintenance measure/preventive 

maintenance measures only”, “take major maintenance 

measures”, and “take major maintenance measures and 

preventive maintenance measures”; moreover, from the two 

perspective of “control service life and calculate the cost” and 

“control the cost and calculate the service life”, the paper 

optimized and solved the corresponding optimal schemes, and 

verified the reliability and efficiency of the proposed 

algorithm with actual examples. 
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