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 The aim of this study is to investigate the problem of steady magneto-hydrodynamic 

(MHD) flow of an in-compressible viscous fluid over a stretching sheet. This system of 
nonlinear differential equations is solved analytically using the homogeneous balance 

method where the induced magnetic field and heat transfer are taken into account. Sea 

water is the working fluid in our problem. Through this study, it was found that the re-

sulting solutions include the non-dimensional temperature, velocity, induced magnetic field 

functions and the ratio between kinetic and magnetic energies depend on different 

governing parameters. The obtained solutions are plotted at selected values of the 

prevailing parameters including the magnetic parameter and the ratio between the straining 

velocity of the stagnation point flow and the stretching velocity of the sheet. The results 

indicate that all these quantities are damping far from the stretching source. The findings of 

this research may serve as a contribution for studying the thermodynamic irreversible 

processes that is responsible for consuming the energy within the system under scope of 

the study. This aspect is attained through representing the non-dimensional entropy 

generation and Bejan numbers at the selected prevailing parameters.  
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1. INTRODUCTION 

 

The study of stretching layers and thin sheets represents 

actual subject in characterizing seawater, see Figure A. The 

motion of seawater, which is a conductor, in the earth’s 

magnetic field induces a current density. This current density, 

in turn, induces its own magnetic field [1]. So the study of 

the magneto-hydrodynamic (MHD) flow of an electrically 

conducting fluid due to the stretching sheet is important in 

modern applications and working processes, which is 

governed by the structure of the boundary layer near the 

stretching sheets in several media [2-4].  

In geophysics, a pioneering series of works constitute a 

review of theoretical models for electromagnetic induction in 

the ocean has been conducted by Ashour [5-8] concerning 

stretching sheets. McKirdy, D.M.in [9] demonstrated, via 

comprehensive works of several scientists that a model in 

which an oceanic strip and a perfectly conducting mantle 

were connected by a crust of small, but non-zero, 

conductivity and that electric currents could be made to flow 

along the ocean, down through the crust, back along the 

mantle and return upwards into the ocean through the crust, 

for the case of H-polarization. In this situation the inducing 

magnetic field is parallel to the strike, with the result that no 

induced magnetic field can be detected outside the conductor, 

provided the conductivity structure is strictly two-

dimensional. The horizontal magnetic field below the sea 

floor was calculated and the effect of return currents in the 

mantle was shown to be important provided that the width of 

the ocean was greater than two skin-depths in the crust. 

Hurley, D. G. and, Siew, P. F. in [10] considered that the 

electromagnetic response of a thin conducting sheet in the 

low frequency limit when the depth of penetration of the 

primary magnetic field is much greater than the thickness of 

the sheet is of interest in a number of branches of geophysics 

including ionospheres’ physics and geophysical. Al-Odat et 

al., [11] presented numerical solutions for the thermal 

boundary layer of an exponentially continuous stretching 

surface in the presence of a magnetic field with variable 

exponential temperature at the surface. Li et al., [12] 

represented multiple solutions of laminar flow in channels 

with a transverse magnetic field. Kumari et al. [13] 

investigated the MHD flow and heat transfer over a 

stretching surface by considering the effect of the induced 

magnetic field. The principle of electromagnetic induction 

due to water flow is long known and was first described by 

Faraday [14], Mahapatra and Gupta [15] reconsidered the 

stagnation point flow problem towards a stretching sheet 

taking different stretching and straining velocities and they 

observed two different kinds of boundary layer near the sheet 

depending on the ratio of the stretching and straining constant. 

To date, little theoretical works had been done on finding 

an exact solution for the MHD flow and heat transfer over a 

stretching surface by considering the effect of the induced 

magnetic field. Also, the irreversible thermodynamic point of 

view was almost not contributed to many of the previous 

studies. To solve these defects, this paper establishes a model 

based on a system of nonlinear differential equations, and 

applies it to simulate the MHD flow under the previously 

mentioned conditions, with the aim to find an exact method 

of solution for those equations. The findings shed new light 

on studying the induced magnetic field due to the flow of sea 

Mathematical Modelling of Engineering Problems 
Vol. 6, No. 1, March, 2019, pp. 141-151 

 

Journal homepage: http://iieta.org/Journals/MMEP 
 

141



 

water through the Earth’s magnetic field (motional induction) 

and studying the entropy generation within the system under 

scope.  

While fresh water has a very low conductivity, a salt 

concentration of about 35 grams per litre turns the oceans 

into good conductors. When using globally uniform sea water 

conductivity, the signals of the motional induced magnetic 

field at sea level due to global ocean circulation ranges 

from− 5 to 4 Nano-Tesla at sea level altitude. Mean values 

over the simulation period are in the range of 4 to 3 Nano-

Tesla [16]. 

The remainder of this paper is organized as follows: 

Section 2 introduces the physical problem and basic 

equations, Section 3 describes the method of solution and 

Section 4 represents the discussion and conclusion. 

 

 

2. THE PHYSICAL PROBLEM AND BASIC 

EQUATIONS 

 

In our problem a suitable set of equations for steady 2D 

flow motion of an in-compressible electrically conducting 

fluid (sea water) is concerned, subjected to a stretching 

surface in its own plane with a velocity proportional to the 

distance from the stagnation-point. We assume that the 

stretching sheet to be of infinitesimal thickness ( 𝛿 ).The 

medium on both sides is assumed to be non-conducting [7]. 
The induced magnetic field effect and heat transfer are taken 

into account. The flow geometry after making a modification 

according to the physical situation of the problem with the 

applied geomagnetic field 𝐵⃗  is shown in Figure A. The basic 

equations for the flow of a viscous and electrically 

conducting fluid are given by Cowling et al., [17]. Applying 

the boundary layer approximation [18], the equations for the 

problem under consideration are [11]: 
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The boundary conditions of Eq. (1-5) are as follows: 
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Figure 1. The flow geometry of the problem [19] 

 

Applying the following similarity transformations [20, 21] 

to the basic equations [17] 
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Substituting from Eq. (11-26) into Eq. (3-5), the following 

system of nonlinear ordinary differential non-dimensional 

equations is obtained: 

 

2 2 2( ) ( ) ( 1) 0
a

f ff f g gg
c

    + − + + − − =                    (27) 

 

0g fg f g   + − =                                                               (28) 

 

Pr 0 f  + =                                                                      (29) 

 

The primes denote differentiation with respect to the 

similarity variable . Table 1 contains the definitions of the 

non-dimensional transformation governing parameters [20]. 

 

Table 1. Definitions of the non-dimensional transformation 

governing parameters 

 
The parameter Its definition 

The velocity ratio 
𝑎

𝑐
 𝑎

𝑐
=  

𝑢𝑒(𝑥)

𝑢𝑤(𝑥)
 

 

The magnetic parameter   
𝛽 =

𝜇

4𝜋𝜌
(
𝐻0

𝑐
)2 

The reciprocal magnetic 

Prandtl number   
𝜆 =

𝜇𝑒

𝜈
 

 

Prandtle number 𝑃𝑟 
𝑃𝑟 =

𝜈

𝜆0

𝜌 𝐶𝑝

 

1. The stretching constants c is fixed at a constant value equal to one; 

2. As the uniform induced magnetic field 𝐻0 is changed, 𝛽 value changes. 

 

The velocity ratio and the magnetic parameter will play a 

principle role in the study. 

 

 

3. METHOD OF SOLUTION 

 

In the known literature throughout the majority of the 

solutions concerning such problems, among them is the 

present one; the numerical methods are widely applied with 

various accuracies. Our concern in this study is devoted to 

introduce an analytical model, which can be considered as 

advantageous, and reliable, accordingly a comparison is 

made with the available previous results.   

We shall solve Eq. (27-29) by applying the homogeneous 

balance method [22] as follows: 

A. At first we should verify the homogeneous balance 

(between the highest order derivative terms with nonlinear 

terms) to this system: 

In Eq. (27): The highest order derivative term is f  gives 

n+3, while the highest non-linear term is ff  gives 2n+2; 

equating we get n = 1. 

In Eq. (28): The highest order derivative term is g  gives 

n+3, while the highest non-linear term is fg  gives 2n +2; 

equating we get  n = 1. 

In Eq. (29): The highest order derivative term is    gives 

n+2, while the highest non-linear term is f   gives 2n +1; 

equating we get  n = 1.  

B. Among the possible solutions representing the non-

dimensional velocity, induced magnetic field and temperature 

are the power series truncated to the term corresponding to 

n=1 as follows : 
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Here, 

 

( )Y tanh = +                                                                   (33) 

 

The constant shift   shall be appointed. 

The boundary conditions are: 
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C. Substituting from Eq. (30-32) into the equation 

combined by summing up Eq. (27-29) to reduce the number 

of differential equations, in order to evaluate the unknown 

coefficients a0, a1, b0, b1, d0, d1 and ϵ; 
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By substituting Eq. (30-32) into the above equation a 

number of independent algebraic equations each of which 

corresponds to a specific power of Y is obtained, they are 

solved simultaneously (by using symbolic software), so that 

the unknown coefficients a0, a1, b0, b1 can be evaluated: 
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where, 
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D. Using the boundary conditions ( (0) 1, ( ) 0 =  = ), the 

unknown coefficients d0 and d1are therefore evaluated: 
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E. Using the boundary condition (g[0] = 0 at η=0) after 

substituting the coefficients b0 and b1 into the expression of 

g[η] , we obtain the unknown ∈: 
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F. Substituting Eq. (36-40) into Eq. (30-32) to get the 

sought variables: 
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G. Differentiating Eq. (43) and (44) with respect to η to 

get the normal velocity ( )f  and the normal induced 

magnetic field ( )g  components; 
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Kinetic energy per unit mass . .K E  and Magnetic energy 

. .M E and their ratio ( )Q   can be respectively written as: 
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H. The Entropy generation 

Entropy generation analysis, and specifically, second law 

efficiency, is an important tool for illustrating the influence 

of irreversibility within a system on the required energy input, 

where salinity of water is introduced [23]. In our work, this 

thermodynamic tool is used to reveal which of the three 

properties in the system is prevailing for the problem in hand. 

Indeed, the volumetric entropy generation (which is derived 

from energy and entropy balances) [24], for the case of heat 

and mass transfer in presence of a magnetic field (B) is given 

in a general form by: 

 
2

2.
0

. i2
0 00 0

( ) 1
J

( )

e
d

gen i

V BgradVT
S

T TT T






= −  + +

  
     (50) 

where
i

J , i and 
d

V are mass flux vector of species 𝑖  in 

phase   , the chemical potential of species 𝑖 and dimensional 

velocity vector, respectively.  

The conductivity of seawater is a globally uniform value 

of approximately 4 S/m, which is assumed constant in time. 

It is derived from salinity and temperature, where the 

temperature is the predominant component [16]. The motion 

of this conductor in the geomagnetic field creates an 

electromotive force. This in turn leads to a current density 

given by [1]; 

 

𝐽 = 𝜎𝑒(𝑉⃗ × 𝐵⃗ ) = 𝜎𝑒𝜇0(𝑉⃗ × 𝐻⃗⃗ 0) = 𝜎𝑒𝜇0(𝑢𝐻2 − 𝑣𝐻1)k⃗   (51) 
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Since velocity is confined to the x-y plane, the current 

density 𝐽  is in the z-direction. This current density creates a 

secondary induced magnetic field. We are concerned with the 

heat transfer in the presence of induced magnetic field and 

according to the problem situation Eq. (50) can be rewritten 

as 
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By applying the similarity transformations (i.e. Eq. (11-24)) 

to the above equation, we obtain the final expression: 
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Multiplying both sides of Eq. (53) by 
𝐿4

𝐾𝐵𝑈
 seeking the non-

dimensional form: 
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and 
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Bejan number:  

In Eq. (54) an alternative parameter for irreversibility 

distributions is the Bejan number (Be) defined in [25]: 

 

h

h

h V M

S
Be

S S S
=

+ +
                                                           (55) 

 

V

V

h V M

S
Be

S S S
=

+ +
                                                          (56) 

 

M

M

h V M

S
Be

S S S
=

+ +
                                                          (57) 

 

 

4. DISCUSSION AND CONCLUSION 

 

First of all we resort to the estimated temperature profiles 

to start within our discussion, since the laws of conservation 

are the main guaranty in any theoretical study to be 

consistent with experiment. Throughout the data in several 

references, we adopt a range of the magnetic parameter and 

the a/c ratio at certain values of the reciprocal of the magnetic 

Prandtl number (i.e.   = 15828.8) and Prandtl number (i.e. 

Pr = 7.2) [26], non-dimensional temperature, velocity and 

induced magnetic field profiles are shown in Figures (1-10) 

as functions of 𝜂.  

The used parameters are given in Table (2) citing the 

properties of seawater at salinity of 35 g/kg and temperature 

200 C (at 1 atmospheric pressure) [26].  

 

Table 2. The properties of seawater at salinity of 35 g/kg and 

temperature 200 C (at 1 atmospheric pressure) 

 
Dynamic viscosity (μ) 1.08 × 10−3 Pa s 

Kinematic viscosity ( )   1.05 × 10−6 m2 s-1 

Thermal conductivity (𝜆0) 0.596 W/m K 

Thermal diffusivity ( ) 71.46 10−  m2 s-1 

Prandtl number (Pr) 7.2 

Specific heat capacity (Cp) 3993 J kg-1 K-1 

Electrical conductivity  

(
e ) 

4.788 S m-1 

Density (  ) 1024.763 kg m-3 

Magnetic permeability (μ0) 74 10 −  N A-2 

 

The odd-numbered figures correspond to different values 

of β at a fixed value of the ratio a/c>>1. Increasing β which 

corresponds to increasing the induced magnetic field 

throughout the thermal boundary layer, tends to decrease the 

non-dimensional temperature ( )   as illustrated in Figure1 

at a fixed value of ∆T = Tw - T∞ = 20 K. 

An important result is found includes a reduction of heat 

transfer in electrically conducting fluids, by which ( )   will 

tend to equilibrium with nonlinear damping to zero as the 

fluid flows far from the initial point of stretching, in 

agreement with previous works [20-21, 27]. Figure 3, 

describes that the longitudinal flow velocity component

( )f  is damping to vanish monotonically nonlinearly with 

increasing β as η increases. 

 

 
 

Figure 2. Temperature profile for different values of β; 

a/c=110 

 

Figure 5 gives the behaviour of the transverse flow 

velocity component 𝑓 ′(𝜂); it is in the negative unit scale and 

damping to zero as it moves far from the stretching surface 

for all values of β in a descending order. The stagnation 

points are found along η direction as the flow is far from the 

stretching sheet surface and the boundary layer edge. 

The nonlinear damping of the positive transverse 

component of the induced magnetic 𝑔′(𝜂) field for all values 

of β in ascending order is shown in Figure 6. 
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The same tendency is shown in Figure 5 for the 

longitudinal component of the induced magnetic field 𝑔(𝜂) 

for all values of β but in an ascending order. 

 

 

Figure 3. Velocity profile for different values of β at a/c 

=110 

 
 

Figure 4. Velocity profile for different values of β; a/c =110 

 

 
 

Figure 5. ( )g   Profile for different values of β; a/c = 110 

 

In Figure 11 it is observed that the increase in β has a 

direct increasing effect on the ratio 𝑄(𝜂), which is always 

greater than unity, but in a descending damping order starting 

from η = 0. 

The even-numbered figures correspond to different values 

of the velocity ratio parameter (a/c >>1) at a fixed value of 

magnetic parameter β. The velocity of the boundary layer 

thickness decreases with increasing values a/c and also the 

thermal boundary layer thickness decreases with increasing 

a/c. 

 
 

Figure 6. 𝑔′(𝜂) Profile for different values of β at a/c = 110 

 

 

 
 

Figure 7. 𝑄(𝜂) at different values of β when a/c = 110 
 

The reduction of the thermal boundary layer and the 

velocity boundary layer thicknesses is due to the increase of 

the straining velocity compared to the stretching velocity (i.e. 

increasing a/c ratio).  

 

 
 

Figure 8. Temperature profile for different values of a/c at 

 β = 7.519*10-16 

 

In Figure 8 increasing a/c ratio tends to an increase of the 

non-dimensional temperature ( )   for a fixed ∆T. The 

increase of ( )  , is due to the increase of the fluid bulk 

temperature T which occurs concurrently with the reduction 

of the thermal boundary layer thickness. 

Also, ( )   will tend to equilibrium in a nonlinear 

damping towards zero as the fluid flows far from the initial 

point of stretching as shown in Figure 8, in agreement with 

previous works [20-21, 27]. 
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Figure 9, describes that the longitudinal flow velocity 

component 𝑓(𝜂)  is damping to vanish monotonically 

nonlinearly - in ascending values of a/c - as η increases. 

Figure 10 gives the behaviour of the transverse flow 

velocity component 𝑓 ′(𝜂); it is in the negative unit scale and 

damping to zero as it moves far from the stretching surface 

for all values of a/c in an ascending order. The stagnation 

points are found along η direction as the flow is far from the 

stretching surface and the boundary layer edge. 

 

 
 

Figure 9. Velocity profile for different values of a/c at  

β = 7.519*10-16 

 

The velocity components 𝑓(𝜂) and 𝑓 ′(𝜂) decrease is due 

to the increase of viscous force effect which occurs 

simultaneously with the thinning of the velocity boundary 

layer. 

 

 
 

Figure 10. Velocity profile for different values of a/c at 

 β = 7.519*10-16 

 

 
 

Figure 11. ( )g  profile for different values of a/cat  

β=7.519 10-16 

 
 

Figure 12. ( )g   Profile for different values of a/c when  

β = 7.519*10-16 

 

The same tendency is shown in Figure 11 for the 

longitudinal component of the induced magnetic field 𝑔(𝜂) 

for all values of a/c but in descending order.  

The nonlinear damping of the positive transverse 

component of the induced magnetic 𝑔′(𝜂) field for all values 

of a/c in descending order is shown in Figure 12. 

In Figure 13 it is shown that the increase in a/c has a 

reverse decreasing effect on the ratio 𝑄(𝜂), although is it 

always greater than unity, but in descending damping order 

starting from η = 0. 
 

 

 

Figure 13. 𝑄(𝜂) at different values of a/c at β = 7.519*10-16 

 

The entropy generation due to the heat transfer (𝑆̄̇ℎ) has the 

major effect on the total entropy generation, it is dominating 

as seen through the ratios between the three Bejan numbers, 

which amount to: 

  

Beh: Bev: BeM = 1: 4 10- 6: 9 10- 32 

 

In order to examine the validation of our method of 

solution together with the physical consistency we are 

comparing our results with those obtained by Ali, F. M. et al., 

[20], where the same problem was solved numerically, 

considering the air as the working fluid, with the assumption 

of its incompressibility (Pr= 0.72) at standard conditions. 

This condition is fulfilled by assuming that air velocity V is 

about 100 m/s (330 ft/s), making the Mach number Ma< V/c 

< 0.3, c is the sound speed. So that with the same 

dimensionless quantities and boundary conditions and by 

substituting the values of the parameters (a/c, β, Pr) 

mentioned in [20, 21] in equations (16, 17, 19, 20) of our 

study. Our results (the figures shown in colour) are compared 
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with those obtained in Ali, F. M. et al., [20] (the figures 

shown in black) as they observed in their original text. 

Good agreement is obtained concerning the temperature 

profile according to the boundary condition i.e. the 

conservation of thermal en energy for both fluids; see Figures 

14, 16 compared to Figures 15, 17 in [20].  

 

 
 

Figure 14. Temperature profile for different β at a/c =3 

 

 
 

Figure 15. Tempereture profiles for different values of β 

when a/c=З and Pr=0.72 

 

 
 

Figure 16. Temperature profile for different a/c at β = 0.1 

 

By looking to the behaviour of the velocity and magnetic 

field components; 18 with 19; 20 with 21; 22 with 23; 24 

with 27, and 25 with 26, it is found that by our method that 

they tend to vanish as the fluid flows far from the stretching 

source, while this is not observed in the corresponding 

figures cited at [20] for some values of the ratio a/c and 

parameter β. 

By looking at the behaviour of the velocity and magnetic 

field components; 16 with 3; 17 with 10; 18 with 5; 19 with 8, 

it is found that by our method that they tend to vanish as the 

fluid flows far from the stretching source, while this is not 

observed in the corresponding figures cited at [20] for some 

values of the ratio a/c and parameter β. 

 

 
 

Figure 17. Tempereture profiles for different values of a/c 

when Pr=0.72 and β=0.1 

 

 

 

Figure 18. ( )g  Profile for different values of a/c, β=0.1 

 

 
 

Figure 19. 𝑔′ Profiles for different values of a/c, when 

Pr=0.72 and β=0.1 

 

 
Figure 20. ( )g  Profile for different values of β at a/c = 3 
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Figure 21. 𝑔′ profiles for different values of β, when a/c=3 

and Pr=0.72 

 

 
 

Figure 22. Velocity profile for different values of a/c at  

β =0.1 

 

 
 

Figure 23. Variation of f for diferrent values of a/c when 

Pr=0.72 and β=0.1 

 
Figure 24. Velocity profile for different a/c at β = 0.1 

 

 
Figure 25. Velocity profiles for different values of β when 

a/c=0.5 and Pr=0.72 

 

 
 

Figure 26. Velocity profile for different 𝛽 at a/c = 0.5 

 

 
 

Figure 27. Velocity profile for diferrent values of a/c when 

Pr=0.72 and β=0.1 

 

 

5. CONCLUSION  

 

This study considers the flow of an electrically conducting 

fluid (sea water) past over a stretching sheet where the 

induced magnetic field is taken into account. We employed 

the homogenous balance method to solve the flow governing 

equations by the aid of symbolic software. Some main points 

are concluded: 

 

• The conservation of energy is maintained in the 

system, it is demonstrated by the non-dimensional 

temperature profiles (see Figures1, 2), which agrees 

with those obtained in the literature. 
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• It is found that the resulting solutions depend on 

different governing parameters including the mag-

netic parameter and the ratio between the straining 

velocity of the stagnation point flow and the 

stretching velocity of the sheet. 

• The non-dimensional velocity and induced magnetic 

field are vector components quantities, their 

behaviours in our study show damping far from the 

stretching source (see Figures3-12), and they satisfy 

the physical situation but differ from those obtained 

by other studies for same values of the controlling 

parameters.  

• Some important physical analysis such as the ratio 

of the kinetic to magnetic energies within the fluid 

under study, the development of entropy generation 

are highlighted by quantifying the corresponding 

contributions of heat transfer, viscous dissipation 

and magnetic effects. 

 

We recommend for future studies to extend the findings of 

this study; first by tackling the nonstationary case to the 

present problem, second, by applying other approaches for 

modelling electromagnetic induction in the ocean at a 

variable seawater conductivity distribution. 
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NOMENCLATURE 

u, v Velocity components along x and y directions, m.s-1

H1,H2 Induced magnetic field components along x and y 

directions, A.m-1 

H0 Uniform induced magnetic field, A.m-1 

𝐻𝑒(𝑥) The x-magnetic field at the edge of the boundary 

layer, A.m-1 

T The fluid temperature, K 

,wT T
The fluid temperature along the wall and at the 

edge of the boundary layer, K 

Cp Isobaric specific heat, J. kg-1. K-1  

L Characteristic length of the system, m 

KB Boltzmann constant, J. K-1 

U Characteristic velocity of the fluid, m.s-1

eu ( )x The straining velocity of the stagnation point 

flow, m.s-1 

u ( )w x The stretching velocity of the sheet, m.s-1 

( ), ( )f f  Non-dimensional velocities along x and y 

directions 

( ), ( )g g  Non-dimensional induced magnetic fields along 

x and y directions 

Pr The Prandtl number 

R1 , R2 , R3 Irreversibility distribution ratios 
a, c (>0) The straining and stretching constants 

Greek symbols 

 Fluid density, kg. m-3 

µ dynamic viscosity, kg. m-1.s-1 

0 The magnetic permeability, N.A-2 

e The magnetic diffusivity, m2 s-1 

 The thermal diffusivity, m2 s-1 
 The kinematic viscosity, m2 s-1 

e The electrical conductivity of the fluid, S.m-1 

( )  Non-dimensional temperature 
 Similarity variable 

( , )x y Stream function 

( , )x y Magnetic Stream function 

 The magnetic parameter 

 The reciprocal magnetic Prandtl number 

𝜆0
The thermal conductivity of the fluid,  

W.m-1. K-1
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