
Online Car-Hailing Supply-Demand Forecast Based on Deep Learning 

Yonghong Tian1*, Bing Zheng1, Zeyu Li2, Yue Zhang1, Qi Wu1 

1 College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China 
2 School of Computer Science and Technology, Xidian University, Xi’an 710071, China  

Corresponding Author Email: tyh@imut.edu.cn

https://doi.org/10.18280/isi.250103 ABSTRACT 

Received: 15 September 2019 

Accepted: 8 December 2019 

In the Internet age, online car hailing (OCH) platforms are increasingly popular among 

travelers. The efficiency of the OCH platform relies on the accurate forecast of OCH 

supply-demand. This paper attempts to forecast the OCH supply-demand accurately in each 

area of the target city based on deep learning (DL). Firstly, the authors introduced the 

structures of the long short-term memory (LSTM) and its variants, and established a single-

gate model called minimal coupled LSTM (MC-LSTM). To improve the forecast effect, the 

MC-LSTEM was trained by the Nesterov-accelerated adaptive moment estimation (Nadam)

algorithm. After that, the features that affect the OCH supply-demand forecast were

identified. Based on the features, an experimental dataset was designed for the MC-LSTM,

and divided into a training set and a test set. Finally, several contrastive experiments were

conducted on the MC-LSTM and several contrastive models. The results show that the

single-gate MC-LSTM has the best forecast effect on OCH supply-demand. The research

findings provide a desirable tool for OCH enterprises to forecast the supply-demand gap,

reduce waiting time and make full use of vehicle resources.
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1. INTRODUCTION

With the dawn of the Internet age, online car hailing (OCH) 

platforms are increasingly popular among travelers, especially 

those living in urban areas. In China alone, the number of OCH 

users reached 330 million in the second half of 2018. Based on 

advanced Internet technology, the OCH platform is essentially 

a smart transportation mechanism, which connects drivers 

with users according to the instantaneous decentralized 

information of supply-demand, enabling the two parties to 

make full use of vehicle resources. The most popular OCH 

platforms are operated by enterprises like DiDi and Uber [1]. 

The key function of the OCH platform is to schedule 

vehicles in advance so as to satisfy user demand, which relies 

on the accurate forecast of OCH supply-demand. However, the 

supply-demand forecast is no easy task in big cities. In some 

areas, the OCH supply falls short of demand; in other areas, 

the vehicles are more than what is needed. Hence, the vehicle 

resources are either insufficient or left idle. As a result, it is of 

great significance to find a way to predict the travel demand in 

time, and supply the vehicle resources to fulfil the latest 

demand. 

Traditionally, the OCH supply-demand is projected by 

aggregate models or balance models. Over the years, great 

progress has been made in the OCH supply-demand forecast, 

giving birth to emerging models like deep learning (DL). For 

instance, Saadi et al. [2] forecasted the OCH supply-demand 

with several classic algorithms. Wang et al. [3] analyzed the 

time series of OCH data, and designed an end-to-end DL 

forecast model for OCH supply-demand.  Li and Wang [4] 

extracted the key features of OCH, and then built an OCH 

supply-demand forecast model based on long short-term 

memory (LSTM); the proposed model can schedule the OCH 

in real time. In recent years, many cutting-edge DL models 

have been inspired by machine learning [5]. Proposed by 

Hinton in 2006, the concept of DL [6] was extended from 

artificial neural networks (ANNs) [7]. Compared with 

traditional neural networks (NNs), DL models have a complex 

structure with multiple hidden layers. Common DL models 

include deep belief network (DBN), deep self-coding NN, 

convolutional neural network (CNN), and recursive neural 

networks (RNN) [8]. Being a special RNN, the LSTM is a DL 

model widely used in time series prediction. 

This paper attempts to forecast the OCH supply-demand 

accurately in each area of the target city based on DL. Firstly, 

the LSTM and its variants were subjected to structural analysis, 

and a single-gate model called minimal coupled LSTM (MC-

LSTM) was constructed. Next, the features that affect the 

OCH supply-demand forecast were identified and used to 

design an experimental dataset for MC-LSTM. 

The remainder of this paper is organized as follows: Section 

2 introduces the variants of the LSTM and Nesterov-

accelerated adaptive moment estimation (Nadam); Section 3 

sets up the MC-LSTM and optimizes the model by Nadam 

algorithm; Section 4 verifies the MC-LSTM through 

contrastive experiments; Section 5 puts forward the 

conclusions and looks forward to the future research. 

2. PRELIMINARIES

2.1 LSTM and its variants 

The OCH supply-demand forecast falls into the category of 

time series prediction. Therefore, the forecast should be 

carried out based on the emerging DL techniques. Here, the 
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LSTM, a special RNN, is selected as the basis of the forecast 

model, which is then optimized by Nadam algorithm. To 

clarify the design and optimization process, this section 

introduces the LSTM and its variants: Peephole-LSTM and 

Coupled-LSTM [9-11], as well as Nadam algorithm. 

The LSTM is an RNN consisting of one or more blocks. In 

each LSTM block, there is a memory cell to record the cell 

state, an input gate to update the cell state, a forget gate to 

eliminate the redundant information of the cell state, and an 

output gate to export the final cell state. The three gates control 

the data inside and outside the block through multiplications 

and additions. 
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Figure 1. Structure of a single-block LSTM 

 

The structure of a single-block LSTM is illustrated in Figure 

1, where the activation function of k is sigmoid function and 

that of l and r is either sigmoid function or tanh function. As 

shown in Figure 1, the LSTM acquires activation values from 

the inside or outside of the memory cell via the three gates, 

and controls the cell state by the multiplication unit (the small 

circle). The input gate adds information to the cell state; the 

forget gate decides which information should be discarded in 

the block, and resets the cell state based on the activation 

values at l and r; the output gate regulates the output of cell 

state. 

The unique, complex structure blesses the LSTM with the 

excellence in sequential tasks. Currently, two variants of the 

LSTM are widely adopted in time series prediction, namely, 

Peephole-LSTM and Coupled-LSTM. The two variants are 

compared with the classic LSTM as follows:  

LSTM: 

 

Input gate     (1) 

 

Cell state update     (2) 

 

Forget gate     (3) 

 

Cell state     (4) 

 

Output gate     (5) 

 

Cell output     (6) 

  

Peephole-LSTM: 

Input gate     (7) 

 

Cell state update     (8) 

 

Forget gate     (9) 

 

Cell state     (10) 

 

Output gate     (11) 

 

Cell output     (12) 

 

Coupled-LSTM: 

 

Forget gate  
 

 (13) 

 

Cell state update  (14) 

 

Cell state     (15) 

 

Output gate     (16) 

 

Cell output     (17) 

 

where, 𝑥𝑡  is the input at time t; 𝑊𝑖 , 𝑊𝑓 , 𝑊𝐶 , and 𝑊𝑜  are the 

weights of input gate, forget gate, cell, and output gate, 

respectively; 𝑏𝑖 , 𝑏𝑓 ,  𝑏𝐶  , and 𝑏𝑜  are the biases of input gate, 
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forget gate, cell, and output gate, respectively; 𝑖𝑡, 𝑓𝑡 and 𝑜𝑡 are 

the activation values of input gate, forget gate and output gate, 

respectively, ℎ𝑡 is the output value at time t. 

 

2.2 Nadam algorithm 

 

In the field of DL, the choice of optimization algorithm is 

critical to model training. This paper selects the Nadam 

algorithm [12], a DL optimization algorithm with adaptive 

learning rate, to optimize our model. 

Nadam algorithm inherits all the merits of another adaptive 

learning optimization algorithm: Adam optimization 

algorithm (AOA), and outperforms the AOA in the control of 

learning rate. Besides, the Nadam algorithm can effectively 

regulate gradient update. It can converge rapidly to the global 

optimal solution without consuming lots of memory. 

The DL models trained by Nadam generally converge faster 

than those trained by other optimization algorithms. Therefore, 

Nadam algorithm has been widely applied in DL tasks with 

large datasets and high-dimensional spaces. 

 
 

3. MODEL CONSTRUCTION AND OPTIMIZATION 

 

Based on the techniques introduced above, this section 

explains how to construct the MC-LSTM model and optimize 

the model through training. 

 

3.1 Model construction 

 

According to the introduction in subsection 2.1, the 

structure of the LSTM block directly bears on the forecast 

effect. Many scholars have explored the block structure, 

especially the gate arrangement. 

(1) Greff et al. compared the learning effects of popular 

LSTM variants on different datasets, and drew two important 

conclusions: forget gate and output gate have greater impacts 

on the learning effect than input gate; Coupled-LSTM has 

comparable, if not better, learning effect as the classic LSTM 

in individual tasks. 

(2) Zhou et al. [13] modified the gated recurrent unit (GRU) 

model into a simple LSTM with forget gate only, and proved 

the good overall performance of the simple model. 

(3) Jozefowicz et al. [14] conducted contrastive experiments 

on 10,000 RNNs. The experimental results reveal that forget 

gate and input gate are much more important than the output 

gate, and that the LSTM and its variants have similar learning 

effects. 

The above research shows the importance of the various 

gates to the LSTM, especially the forget gate. The learning 

effect of the LSTM is ultimately affected by the forget gate. 

Removing the other gates will not suppress the learning effect, 

but speed up the training.  

Therefore, this paper further simplifies the Coupled-LSTM 

into the MC-LSTM, which only contains the forget gate. The 

simplification reduces the number of parameters and promotes 

the training speed. Note that the Coupled-LSTM, as a 

simplified version of classic LSTM, has no input gate. 

 

3.2 Model structure 

 

The MC-LSTM model retains the coupling structure of the 

Coupled LSTM, while removing the output gate. The two 

major functions of the output gate, namely, switch control and 

cell state activation, are transferred to the forget gate. Then, 

the MC-LSTM model can be expressed as: 

MC-LSTM: 

 

Forget gate     (18) 

 

Cell state update   ( )1tan ,t C t t CC h W h x b−= +  (19) 

 

Cell state     (20) 

 

Cell output     (21) 

 

The structures of the LSTM, Peephole-LSTM, Coupled-

LSTM and MC-LSTM are compared in Figure 2 below. 

 

 
 

Figure 2. Structures of LSTM, Peephole-LSTM, Coupled-LSTM and MC-LSTM 
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3.3 Model optimization 

 

The prediction effect of the MC-LSTM depends on the 

convergence. To improve the convergence, this paper adopts 

Nadam algorithm to optimize the MC-LSTM model through 

training.  

Four parameters of Nadam algorithm must be controlled to 

ensure the training quality: the learning rate (α), the 

exponential decay rate of the first-order moment estimation 

(β1), the exponential decay rate of the second moment 

estimation (β2), and the hyper-parameter (ε) to prevent the 

denominator from being zero.  

During model training, the four parameters were configured 

according to the general settings of the DL platform 

TensorFlow: α=0.001, β1=0.9, β2=0.999 and ε=1e-08. Under 

these settings, the MC-LSTM was optimized by Nadam 

algorithm through the following process: 

 
 Inputs: The total number of layers L; the number of neurons 

in each hidden layer and the output layer; the activation 

function; the loss function; the iterative step h; the maximum 

number of iterations MAX; the termination threshold j; the 

number of training samples m. 

 Outputs: The weights W and biases b of each hidden layer and 

the output layer. 

1 Randomly initialize weights W and biases b of each hidden 

layer and the output layer. 

2 for iter from 1 to MAX: 

3 for i=1 to m: calculate activation value through forward 

propagation. 

4 for l=2 to L: calculate activation value through forward 

propagation. 

5 Calculate the gradient of the output layer by mean squared loss 

function. 

6 for l=L to 2, calculate the gradient of each layer through 

backpropagation. 

7 for l=2 to L, update the weights W and biases b of the first 

layer by Nadam algorithm. 

8 If the variations in weights W and biases b are below the 

termination threshold j, go to Step 9. 

9 Output weights W and biases b of each hidden layer and the 

output layer. 

 

 

4. EXPERIMENTAL VERIFICATION 

 

4.1 Experimental environment 

 

This section attempts to verify the effectiveness of the MC-

LSTM through contrastive experiments. The experiments 

were carried out on a computer operating on Ubuntu 16.04 

(64bit) with an Intel Core i7-8700 CPU (memory: 16GB) and 

a GeForce GTX1060 GPU. The software system consists of 

the TensorFlow DL framework embedded in the integrated 

development environment of PyCharm Community Edition 

(64bit). Many Python libraries are installed in the development 

environment, including sklearn, panda and numpy. 

 

4.2 Feature selection 

 

The features that greatly affect the learning effect of the 

MC-LSTM must be selected and constructed reasonably. 

Through detailed analysis on original OCH data, this paper 

identifies the following key features: period, temperature, air 

quality, area ID, congestion, and supply-demand gap. Note 

that the original OCH data were provided by DiDi. 

The period feature was constructed based on time attributes 

and the events in each period. It is easier to take a ride outside 

the peak hours, holidays and the duration of major events. For 

temperature and air quality, the OCH demand plunges in 

unfavorable weather, such as high temperature and haze. The 

area ID and congestion reflect the regional difference in OCH 

demand across the target city. The supply-demand gap at the 

current moment depends on that at the previous moment. 

Hence, the supply-demand gap in the past can greatly affect 

the forecast of future gap values. 

 

4.3 Data processing and evaluation indices 

 

The original OCH data were collected in the following 

manner: First, the target city was divided into 58 areas of equal 

size, and each day was split into 144 10min slices; then, the 

data on each area were obtained every other 10min from 0:00 

to 24:00 on each day. In this way, a total of 200,448 pieces of 

data was obtained for our experiments.  

Table 1. Feature dataset 

 
Time Region_ID Temp PM 2.5 Traffic Date L-GAP 

5:20:00-5:30:00 3 6 75 1067 1 0 

5:30:00-5:40:00 3 6 75 1073 1 0 

5:40:00-5:50:00 3 6 72 1097 1 1 

5:50:00-6:00:00 3 6 72 901 1 0 

6:00:00-6:10:00 3 6 72 1043 1 0 

6:10:00-6:20:00 3 6 72 1317 1 2 

6:20:00-6:30:00 3 6 72 1309 1 1 

6:30:00-6:40:00 3 6 72 1393 1 0 

6:40:00-6:50:00 3 6 72 1476 1 0 

6:50:00-7:00:00 3 6 64 1576 1 3 

7:00:00-7:10:00 3 6 64 1638 5 1 

7:10:00-7:20:00 3 6 64 1991 5 2 

7:20:00-7:30:00 3 6 64 1983 5 4 

7:30:00-7:40:00 3 6 64 1990 5 8 

7:40:00-7:50:00 3 6 64 2237 5 14 

7:50:00-8:00:00 3 6 64 2239 5 21 

8:00:00-8:10:00 3 6 64 2454 5 41 

8:10:00-8:20:00 3 6 64 2430 5 37 

8:20:00-8:30:00 3 6 64 2411 5 30 
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The original OCH data contain lots of missing entries, 

redundant information and entries in wrong format. These 

defects must be eliminated before OCH supply-demand 

forecast. Since the forecast is a task of time-series prediction, 

the processed data should be sorted in time order, creating a 

time series.  

Here, the original data are sorted out at an interval of 10min. 

Then, the data were subjected to outlier elimination, 

normalization, conversion, query and standardization. Firstly, 

the original data files were converted into the CSV format and 

stored in a special MongoDB database. Next, the CSV files 

were viewed, managed and queried through the graphic 

interface of the database, and then stored in CSV format again. 

The processed data have few outliers and high integrity, and 

are in the input and output formats required by the MC-LSTM 

model. Then, the data were divided into a training set (80%) 

and a test set (20%). 

The final feature dataset is provided in Table 1 above, where 

Time is the data collection interval (10min), Region_ID is the 

area ID, Temp is the temperature, PM2.5 is the air quality, 

Traffic is the congestion, Date is the period, and L-GAP is the 

supply-demand gap. 

The OCH supply-demand forecast effects of the MC-LSTM 

and contrastive models are evaluated by three indices: mean 

absolute error (MAE) and root-mean-square error (RMSE): 

 

 (22) 

 

 (23) 

 

where, yi and �̂�i i are predicted value and actual value, 

respectively. The forecast quality is negatively correlated with 

the MAE and RMSE values. 

 

4.4 Results analysis 

 

In this subsection, the OCH supply-demand forecast effect of 

the proposed single-gate MC-LSTM model is compared with 

that of several commonly used models on the experimental 

dataset, and the optimization effect of the Nadam algorithm 

was compared with that of other optimization algorithms. 

 

4.4.1 Training speed 

 

 
 

Figure 3. Training speeds of four models 

 

Figure 3 compares the LSTM, Peephole-LSTM, Coupled-

LSTM and MC-LSTM in terms of the average time consumed 

in each iteration. The four models were trained separately with 

the above-mentioned GPU and the CPU. The results show that 

the MC-LSTM consumed fewer time on average than the other 

models in each iteration in both GPU and CPU trainings. 

Besides, the GPU trainings consumed a shorter average time 

in each iteration than the CPU trainings. This means the single-

gate MC-LSTM boasts the fastest training among the four 

models. 

 

4.4.2 Prediction effect 

Table 2 compares the OCH supply-demand forecast results 

of the MC-LSTM model on the experimental dataset with 

those of five models, namely, Peephole-LSTM, Coupled-

LSTM, LSTM, gradient boosting decision tree (GBDT), and 

support vector regression (SVR). To eliminate stochasticity, 30 

comparative experiments were carried out, and the mean 

values of these experiments were taken as the final results. 

 

Table 2. Prediction results of different models 

 
                    Evaluation indices 

 

Models 

 

MAE 

 

RMSE 

MC-LSTM 6.532 16.562 

Coupled-LSTM 7.026 18.211 

Peephole-LSTM 8.435 17.692 

LSTM 8.731 20.234 

GBDT 10.176 40.734 

SVR 13.205 45.157 

 

As shown in Table 2, the MC-LSTM model achieved a 

smaller MAE and RMSE than the contrastive models, 

indicating that our model have excellent forecast effect on 

OCH supply-demand. Moreover, the deep learning models 

(MC-LSTM, Coupled-LSTM, Peephole-LSTM and LSTM) 

outperformed the GBDT and SVR in both MAE and RMSE. 

Overall, the single-gate MC-LSTM has the best forecast effect 

on OCH supply-demand. 

  

4.4.3 Optimization effect 

The proposed MC-LSTM models were separately trained 

by Nadam algorithm, the AOA, the stochastic gradient descent 

(SGD) algorithm, and the NAG algorithm, and then applied to 

forecast the OCH supply-demand. To eliminate stochasticity, 

30 comparative experiments were carried out, and the mean 

values of these experiments were taken as the final results. 

Table 3 compares the MAEs and RMSEs of the four trained 

MC-LSTMs.  

 

Table 3. Prediction results of MC-LSTMs trained by 

different optimization algorithms 

 
               Evaluation indices 

 

Optimization algorithms 

 

MAE 

 

RMSE 

SGD 8.532 18.562 

NAG 8.731 16.734 

AOA 6.532 16.562 

Nadam 5.026 14.211 

 

As shown in Table 3, the MC-LSTM trained by Nadam 

algorithm had the lowest MAE and RMSE among the four 

contrastive models. This means Nadam algorithm can 

effectively improve the prediction effect of the MC-LSTM. 
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5. CONCLUSIONS 

 

This paper mainly proposes a DL-based OCH supply-

demand forecast model. Firstly, the LSTM and its variants 

were introduced, and the Coupled-LSTM was selected as the 

basis of modelling. Then, the single-gate MC-LSTM model 

was established and optimized by Nadam algorithm. After that, 

the original OCH data provided by DiDi were processed, and 

then divided into a training set and a test set. The superiority 

of the MC-LSTM model in OCH supply-demand forecast was 

confirmed through contrastive experiments. The research 

findings provide a desirable tool for OCH enterprises to 

forecast the supply-demand gap, reduce waiting time and 

make full use of vehicle resources. 

In the future research, model structures other than LSTM 

and its variants will be introduced to OCH supply-demand 

forecast, and various DL techniques will be employed to 

enhance the prediction effect. 
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