
Online Car-Hailing Supply-Demand Forecast Based on Deep Learning

Yonghong Tian1*, Bing Zheng1, Zeyu Li2, Yue Zhang1, Qi Wu1

1 College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China
2 School of Computer Science and Technology, Xidian University, Xi’an 710071, China

Corresponding Author Email: tyh@imut.edu.cn

https://doi.org/10.18280/isi.250103 ABSTRACT

Received: 15 September 2019

Accepted: 8 December 2019

In the Internet age, online car hailing (OCH) platforms are increasingly popular among

travelers. The efficiency of the OCH platform relies on the accurate forecast of OCH

supply-demand. This paper attempts to forecast the OCH supply-demand accurately in each

area of the target city based on deep learning (DL). Firstly, the authors introduced the

structures of the long short-term memory (LSTM) and its variants, and established a single-

gate model called minimal coupled LSTM (MC-LSTM). To improve the forecast effect, the

MC-LSTEM was trained by the Nesterov-accelerated adaptive moment estimation (Nadam)

algorithm. After that, the features that affect the OCH supply-demand forecast were

identified. Based on the features, an experimental dataset was designed for the MC-LSTM,

and divided into a training set and a test set. Finally, several contrastive experiments were

conducted on the MC-LSTM and several contrastive models. The results show that the

single-gate MC-LSTM has the best forecast effect on OCH supply-demand. The research

findings provide a desirable tool for OCH enterprises to forecast the supply-demand gap,

reduce waiting time and make full use of vehicle resources.

Keywords:

online car-hailing (OCH), supply-demand

forecast, long short-term memory (LSTM),

Nesterov-accelerated adaptive moment

estimation (Nadam) algorithm

1. INTRODUCTION

With the dawn of the Internet age, online car hailing (OCH)

platforms are increasingly popular among travelers, especially

those living in urban areas. In China alone, the number of OCH

users reached 330 million in the second half of 2018. Based on

advanced Internet technology, the OCH platform is essentially

a smart transportation mechanism, which connects drivers

with users according to the instantaneous decentralized

information of supply-demand, enabling the two parties to

make full use of vehicle resources. The most popular OCH

platforms are operated by enterprises like DiDi and Uber [1].

The key function of the OCH platform is to schedule

vehicles in advance so as to satisfy user demand, which relies

on the accurate forecast of OCH supply-demand. However, the

supply-demand forecast is no easy task in big cities. In some

areas, the OCH supply falls short of demand; in other areas,

the vehicles are more than what is needed. Hence, the vehicle

resources are either insufficient or left idle. As a result, it is of

great significance to find a way to predict the travel demand in

time, and supply the vehicle resources to fulfil the latest

demand.

Traditionally, the OCH supply-demand is projected by

aggregate models or balance models. Over the years, great

progress has been made in the OCH supply-demand forecast,

giving birth to emerging models like deep learning (DL). For

instance, Saadi et al. [2] forecasted the OCH supply-demand

with several classic algorithms. Wang et al. [3] analyzed the

time series of OCH data, and designed an end-to-end DL

forecast model for OCH supply-demand. Li and Wang [4]

extracted the key features of OCH, and then built an OCH

supply-demand forecast model based on long short-term

memory (LSTM); the proposed model can schedule the OCH

in real time. In recent years, many cutting-edge DL models

have been inspired by machine learning [5]. Proposed by

Hinton in 2006, the concept of DL [6] was extended from

artificial neural networks (ANNs) [7]. Compared with

traditional neural networks (NNs), DL models have a complex

structure with multiple hidden layers. Common DL models

include deep belief network (DBN), deep self-coding NN,

convolutional neural network (CNN), and recursive neural

networks (RNN) [8]. Being a special RNN, the LSTM is a DL

model widely used in time series prediction.

This paper attempts to forecast the OCH supply-demand

accurately in each area of the target city based on DL. Firstly,

the LSTM and its variants were subjected to structural analysis,

and a single-gate model called minimal coupled LSTM (MC-

LSTM) was constructed. Next, the features that affect the

OCH supply-demand forecast were identified and used to

design an experimental dataset for MC-LSTM.

The remainder of this paper is organized as follows: Section

2 introduces the variants of the LSTM and Nesterov-

accelerated adaptive moment estimation (Nadam); Section 3

sets up the MC-LSTM and optimizes the model by Nadam

algorithm; Section 4 verifies the MC-LSTM through

contrastive experiments; Section 5 puts forward the

conclusions and looks forward to the future research.

2. PRELIMINARIES

2.1 LSTM and its variants

The OCH supply-demand forecast falls into the category of

time series prediction. Therefore, the forecast should be

carried out based on the emerging DL techniques. Here, the

Ingénierie des Systèmes d’Information
Vol. 25, No. 1, February, 2020, pp. 21-26

Journal homepage: http://iieta.org/journals/isi

21

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.250103&domain=pdf

LSTM, a special RNN, is selected as the basis of the forecast

model, which is then optimized by Nadam algorithm. To

clarify the design and optimization process, this section

introduces the LSTM and its variants: Peephole-LSTM and

Coupled-LSTM [9-11], as well as Nadam algorithm.

The LSTM is an RNN consisting of one or more blocks. In

each LSTM block, there is a memory cell to record the cell

state, an input gate to update the cell state, a forget gate to

eliminate the redundant information of the cell state, and an

output gate to export the final cell state. The three gates control

the data inside and outside the block through multiplications

and additions.

Cell Cell

r

k

l

k

l

r

Cell Input Cell Input

Cell OutputCell Output

Output
Gate

Output
Gate

Input
Gate

Input
Gate

Forget
Gate

Forget
Gate

Figure 1. Structure of a single-block LSTM

The structure of a single-block LSTM is illustrated in Figure

1, where the activation function of k is sigmoid function and

that of l and r is either sigmoid function or tanh function. As

shown in Figure 1, the LSTM acquires activation values from

the inside or outside of the memory cell via the three gates,

and controls the cell state by the multiplication unit (the small

circle). The input gate adds information to the cell state; the

forget gate decides which information should be discarded in

the block, and resets the cell state based on the activation

values at l and r; the output gate regulates the output of cell

state.

The unique, complex structure blesses the LSTM with the

excellence in sequential tasks. Currently, two variants of the

LSTM are widely adopted in time series prediction, namely,

Peephole-LSTM and Coupled-LSTM. The two variants are

compared with the classic LSTM as follows:

LSTM:

Input gate (1)

Cell state update (2)

Forget gate (3)

Cell state (4)

Output gate (5)

Cell output (6)

Peephole-LSTM:

Input gate (7)

Cell state update (8)

Forget gate (9)

Cell state (10)

Output gate (11)

Cell output (12)

Coupled-LSTM:

Forget gate

 (13)

Cell state update (14)

Cell state (15)

Output gate (16)

Cell output (17)

where, 𝑥𝑡 is the input at time t; 𝑊𝑖 , 𝑊𝑓 , 𝑊𝐶 , and 𝑊𝑜 are the

weights of input gate, forget gate, cell, and output gate,

respectively; 𝑏𝑖 , 𝑏𝑓 , 𝑏𝐶 , and 𝑏𝑜 are the biases of input gate,

 ()1,t i t t ii W h x b −=  +

 ()1tan ,t C t t CC h W h x b−= +

 ()1,t f t t ff W h x b −=  +

1t t t t tC i C f C −=  + 

 ()1,t o t t oo W h x b −=  +

()tanht t th o C= 

 ()1 1, ,t i t t t ii W C h x b − −=  +

 ()1tan ,t C t t CC h W h x b−= +

 ()1 1, ,t f t t t ff W C h x b − −=  +

1t t t t tC i C f C −=  + 

 ()1, ,t o t t t oo W C h x b −=  +

()tanht t th o C= 

 ()1,t f t t ff W h x b −=  +

 ()1tan ,t C t t CC h W h x b−= +

() 11t t t t tC f C f C −= −  + 

 ()1,t o t t oo W h x b −=  +

()tanht t th o C= 

22

forget gate, cell, and output gate, respectively; 𝑖𝑡, 𝑓𝑡 and 𝑜𝑡 are

the activation values of input gate, forget gate and output gate,

respectively, ℎ𝑡 is the output value at time t.

2.2 Nadam algorithm

In the field of DL, the choice of optimization algorithm is

critical to model training. This paper selects the Nadam

algorithm [12], a DL optimization algorithm with adaptive

learning rate, to optimize our model.

Nadam algorithm inherits all the merits of another adaptive

learning optimization algorithm: Adam optimization

algorithm (AOA), and outperforms the AOA in the control of

learning rate. Besides, the Nadam algorithm can effectively

regulate gradient update. It can converge rapidly to the global

optimal solution without consuming lots of memory.

The DL models trained by Nadam generally converge faster

than those trained by other optimization algorithms. Therefore,

Nadam algorithm has been widely applied in DL tasks with

large datasets and high-dimensional spaces.

3. MODEL CONSTRUCTION AND OPTIMIZATION

Based on the techniques introduced above, this section

explains how to construct the MC-LSTM model and optimize

the model through training.

3.1 Model construction

According to the introduction in subsection 2.1, the

structure of the LSTM block directly bears on the forecast

effect. Many scholars have explored the block structure,

especially the gate arrangement.

(1) Greff et al. compared the learning effects of popular

LSTM variants on different datasets, and drew two important

conclusions: forget gate and output gate have greater impacts

on the learning effect than input gate; Coupled-LSTM has

comparable, if not better, learning effect as the classic LSTM

in individual tasks.

(2) Zhou et al. [13] modified the gated recurrent unit (GRU)

model into a simple LSTM with forget gate only, and proved

the good overall performance of the simple model.

(3) Jozefowicz et al. [14] conducted contrastive experiments

on 10,000 RNNs. The experimental results reveal that forget

gate and input gate are much more important than the output

gate, and that the LSTM and its variants have similar learning

effects.

The above research shows the importance of the various

gates to the LSTM, especially the forget gate. The learning

effect of the LSTM is ultimately affected by the forget gate.

Removing the other gates will not suppress the learning effect,

but speed up the training.

Therefore, this paper further simplifies the Coupled-LSTM

into the MC-LSTM, which only contains the forget gate. The

simplification reduces the number of parameters and promotes

the training speed. Note that the Coupled-LSTM, as a

simplified version of classic LSTM, has no input gate.

3.2 Model structure

The MC-LSTM model retains the coupling structure of the

Coupled LSTM, while removing the output gate. The two

major functions of the output gate, namely, switch control and

cell state activation, are transferred to the forget gate. Then,

the MC-LSTM model can be expressed as:

MC-LSTM:

Forget gate (18)

Cell state update  ()1tan ,t C t t CC h W h x b−= + (19)

Cell state (20)

Cell output (21)

The structures of the LSTM, Peephole-LSTM, Coupled-

LSTM and MC-LSTM are compared in Figure 2 below.

Figure 2. Structures of LSTM, Peephole-LSTM, Coupled-LSTM and MC-LSTM

 ()1,t f t t ff W h x b −=  +

() 11t t t t tC f C f C −= −  + 

()tanht t th f C= 

23

3.3 Model optimization

The prediction effect of the MC-LSTM depends on the

convergence. To improve the convergence, this paper adopts

Nadam algorithm to optimize the MC-LSTM model through

training.

Four parameters of Nadam algorithm must be controlled to

ensure the training quality: the learning rate (α), the

exponential decay rate of the first-order moment estimation

(β1), the exponential decay rate of the second moment

estimation (β2), and the hyper-parameter (ε) to prevent the

denominator from being zero.

During model training, the four parameters were configured

according to the general settings of the DL platform

TensorFlow: α=0.001, β1=0.9, β2=0.999 and ε=1e-08. Under

these settings, the MC-LSTM was optimized by Nadam

algorithm through the following process:

 Inputs: The total number of layers L; the number of neurons

in each hidden layer and the output layer; the activation

function; the loss function; the iterative step h; the maximum

number of iterations MAX; the termination threshold j; the

number of training samples m.

 Outputs: The weights W and biases b of each hidden layer and

the output layer.

1 Randomly initialize weights W and biases b of each hidden

layer and the output layer.

2 for iter from 1 to MAX:

3 for i=1 to m: calculate activation value through forward

propagation.

4 for l=2 to L: calculate activation value through forward

propagation.

5 Calculate the gradient of the output layer by mean squared loss

function.

6 for l=L to 2, calculate the gradient of each layer through

backpropagation.

7 for l=2 to L, update the weights W and biases b of the first

layer by Nadam algorithm.

8 If the variations in weights W and biases b are below the

termination threshold j, go to Step 9.

9 Output weights W and biases b of each hidden layer and the

output layer.

4. EXPERIMENTAL VERIFICATION

4.1 Experimental environment

This section attempts to verify the effectiveness of the MC-

LSTM through contrastive experiments. The experiments

were carried out on a computer operating on Ubuntu 16.04

(64bit) with an Intel Core i7-8700 CPU (memory: 16GB) and

a GeForce GTX1060 GPU. The software system consists of

the TensorFlow DL framework embedded in the integrated

development environment of PyCharm Community Edition

(64bit). Many Python libraries are installed in the development

environment, including sklearn, panda and numpy.

4.2 Feature selection

The features that greatly affect the learning effect of the

MC-LSTM must be selected and constructed reasonably.

Through detailed analysis on original OCH data, this paper

identifies the following key features: period, temperature, air

quality, area ID, congestion, and supply-demand gap. Note

that the original OCH data were provided by DiDi.

The period feature was constructed based on time attributes

and the events in each period. It is easier to take a ride outside

the peak hours, holidays and the duration of major events. For

temperature and air quality, the OCH demand plunges in

unfavorable weather, such as high temperature and haze. The

area ID and congestion reflect the regional difference in OCH

demand across the target city. The supply-demand gap at the

current moment depends on that at the previous moment.

Hence, the supply-demand gap in the past can greatly affect

the forecast of future gap values.

4.3 Data processing and evaluation indices

The original OCH data were collected in the following

manner: First, the target city was divided into 58 areas of equal

size, and each day was split into 144 10min slices; then, the

data on each area were obtained every other 10min from 0:00

to 24:00 on each day. In this way, a total of 200,448 pieces of

data was obtained for our experiments.

Table 1. Feature dataset

Time Region_ID Temp PM 2.5 Traffic Date L-GAP

5:20:00-5:30:00 3 6 75 1067 1 0

5:30:00-5:40:00 3 6 75 1073 1 0

5:40:00-5:50:00 3 6 72 1097 1 1

5:50:00-6:00:00 3 6 72 901 1 0

6:00:00-6:10:00 3 6 72 1043 1 0

6:10:00-6:20:00 3 6 72 1317 1 2

6:20:00-6:30:00 3 6 72 1309 1 1

6:30:00-6:40:00 3 6 72 1393 1 0

6:40:00-6:50:00 3 6 72 1476 1 0

6:50:00-7:00:00 3 6 64 1576 1 3

7:00:00-7:10:00 3 6 64 1638 5 1

7:10:00-7:20:00 3 6 64 1991 5 2

7:20:00-7:30:00 3 6 64 1983 5 4

7:30:00-7:40:00 3 6 64 1990 5 8

7:40:00-7:50:00 3 6 64 2237 5 14

7:50:00-8:00:00 3 6 64 2239 5 21

8:00:00-8:10:00 3 6 64 2454 5 41

8:10:00-8:20:00 3 6 64 2430 5 37

8:20:00-8:30:00 3 6 64 2411 5 30

24

The original OCH data contain lots of missing entries,

redundant information and entries in wrong format. These

defects must be eliminated before OCH supply-demand

forecast. Since the forecast is a task of time-series prediction,

the processed data should be sorted in time order, creating a

time series.

Here, the original data are sorted out at an interval of 10min.

Then, the data were subjected to outlier elimination,

normalization, conversion, query and standardization. Firstly,

the original data files were converted into the CSV format and

stored in a special MongoDB database. Next, the CSV files

were viewed, managed and queried through the graphic

interface of the database, and then stored in CSV format again.

The processed data have few outliers and high integrity, and

are in the input and output formats required by the MC-LSTM

model. Then, the data were divided into a training set (80%)

and a test set (20%).

The final feature dataset is provided in Table 1 above, where

Time is the data collection interval (10min), Region_ID is the

area ID, Temp is the temperature, PM2.5 is the air quality,

Traffic is the congestion, Date is the period, and L-GAP is the

supply-demand gap.

The OCH supply-demand forecast effects of the MC-LSTM

and contrastive models are evaluated by three indices: mean

absolute error (MAE) and root-mean-square error (RMSE):

 (22)

 (23)

where, yi and �̂�i i are predicted value and actual value,

respectively. The forecast quality is negatively correlated with

the MAE and RMSE values.

4.4 Results analysis

In this subsection, the OCH supply-demand forecast effect of

the proposed single-gate MC-LSTM model is compared with

that of several commonly used models on the experimental

dataset, and the optimization effect of the Nadam algorithm

was compared with that of other optimization algorithms.

4.4.1 Training speed

Figure 3. Training speeds of four models

Figure 3 compares the LSTM, Peephole-LSTM, Coupled-

LSTM and MC-LSTM in terms of the average time consumed

in each iteration. The four models were trained separately with

the above-mentioned GPU and the CPU. The results show that

the MC-LSTM consumed fewer time on average than the other

models in each iteration in both GPU and CPU trainings.

Besides, the GPU trainings consumed a shorter average time

in each iteration than the CPU trainings. This means the single-

gate MC-LSTM boasts the fastest training among the four

models.

4.4.2 Prediction effect

Table 2 compares the OCH supply-demand forecast results

of the MC-LSTM model on the experimental dataset with

those of five models, namely, Peephole-LSTM, Coupled-

LSTM, LSTM, gradient boosting decision tree (GBDT), and

support vector regression (SVR). To eliminate stochasticity, 30

comparative experiments were carried out, and the mean

values of these experiments were taken as the final results.

Table 2. Prediction results of different models

 Evaluation indices

Models

MAE

RMSE

MC-LSTM 6.532 16.562

Coupled-LSTM 7.026 18.211

Peephole-LSTM 8.435 17.692

LSTM 8.731 20.234

GBDT 10.176 40.734

SVR 13.205 45.157

As shown in Table 2, the MC-LSTM model achieved a

smaller MAE and RMSE than the contrastive models,

indicating that our model have excellent forecast effect on

OCH supply-demand. Moreover, the deep learning models

(MC-LSTM, Coupled-LSTM, Peephole-LSTM and LSTM)

outperformed the GBDT and SVR in both MAE and RMSE.

Overall, the single-gate MC-LSTM has the best forecast effect

on OCH supply-demand.

4.4.3 Optimization effect

The proposed MC-LSTM models were separately trained

by Nadam algorithm, the AOA, the stochastic gradient descent

(SGD) algorithm, and the NAG algorithm, and then applied to

forecast the OCH supply-demand. To eliminate stochasticity,

30 comparative experiments were carried out, and the mean

values of these experiments were taken as the final results.

Table 3 compares the MAEs and RMSEs of the four trained

MC-LSTMs.

Table 3. Prediction results of MC-LSTMs trained by

different optimization algorithms

 Evaluation indices

Optimization algorithms

MAE

RMSE

SGD 8.532 18.562

NAG 8.731 16.734

AOA 6.532 16.562

Nadam 5.026 14.211

As shown in Table 3, the MC-LSTM trained by Nadam

algorithm had the lowest MAE and RMSE among the four

contrastive models. This means Nadam algorithm can

effectively improve the prediction effect of the MC-LSTM.

()
1

1
ˆ

m

m

i i

i

MAE y y
=

= −

()
2

1

1
ˆ

m

i i

i

RMSE y y
m =

= −

25

5. CONCLUSIONS

This paper mainly proposes a DL-based OCH supply-

demand forecast model. Firstly, the LSTM and its variants

were introduced, and the Coupled-LSTM was selected as the

basis of modelling. Then, the single-gate MC-LSTM model

was established and optimized by Nadam algorithm. After that,

the original OCH data provided by DiDi were processed, and

then divided into a training set and a test set. The superiority

of the MC-LSTM model in OCH supply-demand forecast was

confirmed through contrastive experiments. The research

findings provide a desirable tool for OCH enterprises to

forecast the supply-demand gap, reduce waiting time and

make full use of vehicle resources.

In the future research, model structures other than LSTM

and its variants will be introduced to OCH supply-demand

forecast, and various DL techniques will be employed to

enhance the prediction effect.

ACKNOWLEDGMENT

The work was supported by the Natural Science Foundation

of Inner Mongolia (Grant No.: 2013MS0920), and Science and

Technology Planning Project of Inner Mongolia (Grant No.:

201502015).

REFERENCES

[1] Daws, M. (2016). Perspectives on the ride sourcing

revolution: Surveying individual attitudes toward Uber

and Lyft to inform urban transportation policymaking.

Massachusetts Institute of Technology, 2016.

[2] Saadi, I., Wong, M., Farooq, B., Teller, J., Cools, M.

(2017). An investigation into machine learning

approaches for forecasting Spatio-temporal demand in

ride-hailing service. Computer Science, 1703.02433.

[3] Wang, D., Cao, W., Li, J., Ye, J.P. (2017). DeepSD:

supply-demand prediction for online car-hailing services

using deep neural networks. 2017 IEEE 33rd

International Conference on Data Engineering (ICDE),

San Diego, CA, USA, pp. 243-254.

https://doi.org/10.1109/ICDE.2017.83

[4] Li, J., Wang, Z. (2017). Online car-hailing dispatch:

Deep supply-demand gap forecast on spark. IEEE 2nd

International Conference on Big Data Analysis (ICBDA).

IEEE, Beijing, China, 2017, pp. 811-815.

https://doi.org/10.1109/ICBDA.2017.8078750

[5] Jordan, M.I., Mitchell, T.M. (2015). Machine learning:

Trends, perspectives, and prospects. Science, 349(6245):

255-260. https://doi.org/10.1126/science.aaa8415

[6] Lecun, Y., Bengio, Y., Hinton, G. (2015). Deep learning.

Nature, 521(7553): 436.

[7] Daniel, G. (2013). Principles of artificial neural networks.

World Scientific. ISBN-13: 978-9814522731.

[8] Graves, A. (2012). Supervised Sequence Labelling with

Recurrent Neural Networks. Studies in Computational

Intelligence, 385. ISBN-13: 978-3642247965.

[9] Gers, F. (2001). Long short-term memory in recurrent

neural networks. Learn Neural Networks.

[10] Gers, F.A., Schmidhuber, J. (2000). Recurrent nets that

time and count., Proceedings of the IEEE-INNS-ENNS

International Joint Conference on Neural Networks.

IJCNN 2000. Neural Computing: New Challenges and

Perspectives for the New Millennium, IEEE, 3: 189-194.

https://doi.org/10.1109/IJCNN.2000.861302

[11] Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink,

B.R., Schmidhuber, J. (2017). LSTM: A search space

odyssey. IEEE Transactions on Neural Networks and

Learning Systems, 28(10): 2222-2232.

https://doi.org/10.1109/TNNLS.2016.2582924

[12] Dozat, T. (2016). Incorporating nesterov momentum into

adam. In ICLR Workshop.

[13] Zhou, G.B., Wu, J., Zhang, C.L., Zhou, Z.H. (2016).

Minimal gated unit for recurrent neural networks.

International Journal of Automation and Computing,

13(3): 226-234. https://doi.org/10.1007/s11633-016-

1006-2

[14] Jozefowicz R, Zaremba W, Sutskever I. (2015). An

empirical exploration of recurrent network architectures.

International Conference on Machine Learning, 37:

2342-2350.

26

https://doi.org/10.1109/ICDE.2017.83
https://doi.org/10.1109/ICBDA.2017.8078750

