

Task Allocation Model for Optimal System Cost Using Fuzzy C-Means Clustering

Technique in Distributed System

Seema Yadav1*, Rakesh Mohan1, Pradeep Kumar Yadav2

1 Department of Mathematics, DIT University, Dehradun 248009, India
2 CBRI-IIT Roorkee, Roorkee 247667, India

Corresponding Author Email: seema.yadav@dituniversity.edu.in

https://doi.org/10.18280/isi. 250108

ABSTRACT

Received: 8 October 2019

Accepted: 10 December 2019

 The task scheduling is an important activity in distributed system environment to divide the

proper load among the available processors. The requirement of efficient task scheduling

technique is an important issue in distributed computing systems, which can balance the

load in such a way, so that no processor remains idle. Further, it can provide proper

utilization of available resources and minimize the response time and system cost, with the

maximum system reliability. In this paper the novel task allocation technique is being

proposed with the aim of minimizing the response time and system cost. The method of

clustering is used for the proper distribution of tasks on the processors. The proposed

technique uses Fuzzy C-Means clustering technique and Hungarian method for task

allocations. The performance of the algorithm is evaluated through examples and the results

are compared with some existing models.

Keywords:

distributed system, task scheduling, load

balancing, fuzzy c-means, Hungarian

method

1. INTRODUCTION

With advance computational technologies and high-speed

networks, distributed computing system (DCS) has become

popular worldwide. Distributed computing system has

multiple processors located at geographically distant places i.e.

at different cities or countries, interconnected by

communication links. There are many factors which

considerably affects the performance of the DCS viz. speed of

processors, memories, failure rate of processors, failure rate of

interconnecting network etc. One such & highly considerable

factor is allocation of modules to processors. This allocation

should be in such a way that system cost is minimized with

some average load on each processor, so that no processor

remains idle. Also, the available resources should be utilized

to its maximum. Task allocation can be done in two ways:

1. Static Allocation- when a module is assigned to a

processor, it remains with the processor till the completion of

the process.
2. Dynamic Allocation- a module when allocated to one

processor may migrate to another processor according to

requirement of the system.

Dynamic allocation uses current state information of the

system in making decision while static allocation using

Random or Round Robin don’t use any information of current

state of nodes for load balancing [1-4]. Different algorithms

for module allocation are proposed with different objectives.

Some have objective of balancing the load [2, 4] while some

an objective of minimizing response time and maximizing

system reliability [5-9]. Topcuoglu et al. [10] discussed and

proposed two novel scheduling algorithms, the Heterogeneous

Earliest-Finish-Time (HEFT) algorithm and the Critical-Path-

on-a-Processor (CPOP) algorithm, for a bounded number of

heterogeneous processors with an objective to meet high

performance and fast scheduling time simultaneously. Falta et

al. [11] propose a fully distributed K-Means algorithm

(Epidemic K-Means) which does not require global

communication and is intrinsically fault tolerant, which

otherwise lacks in large scale systems and provides a

clustering solution which can approximate the solution of

an ideal centralized algorithm over the aggregated data as

closely as desired. Rashidi [12] proposes an algorithm, based

on multi-objective scheduling cuckoo optimization algorithm

(MOSCOA), in which each cuckoo represents a scheduling

solution in which the ordering of tasks and processors

allocated to them are considered. In addition, the operators, of

cuckoo optimization algorithm defined, are usable for

scheduling scenario of the directed acyclic graph of the

problem. Bahmani and Mueller [13] proposed a fast signature-

based clustering algorithm that clusters processes exhibiting

similar execution behavior. Vidyarthi and Tripathi [14]

developed a heuristic approach, based on genetic algorithm, to

find the near optimal solution.

In this paper, the proposed work uses Fuzzy C-Means

(FCM) clustering algorithm to allocate task to different

processors with the objective of minimizing system cost and

response time. It is different from other clustering techniques

in such a way that the data point is not a member of only one

cluster, but may belong to more clusters with certain degree of

membership value. If the data points are located on the

boundaries of the clusters, they are not forced to belong to a

certain cluster and thus have flexibility of being the member

of others clusters too, for better performance of system. FCM

is an iterative process and it stops when the objective function

acquires desired degree of accuracy. The performance of the

proposed algorithm is illustrated with examples. The outcomes

are compared with some existing models. The road map of the

paper is as follows- section 2 describes the problem statement.

Section 3, illustrates the preliminaries for the proposed

technique. Section 4, proposes the algorithm. Section 5,

Ingénierie des Systèmes d’Information
Vol. 25, No. 1, February, 2020, pp. 59-68

Journal homepage: http://iieta.org/journals/isi

59

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.250108&domain=pdf

describes the performance evaluation and comparisons with

existing works and at last section 6 draws the conclusion.

2. PROBLEM STATEMENT

The problem addressed in the paper is concerned with

allocation of tasks to processors of a distributed system with

the goal of minimizing response time and system cost. The

distributed system consists of multiple processors, where

multiple users can work simultaneously from different sites.

The processors available, at different sites in the system,

process the requests according to availability. Each processor

has its own computation capacity and memory while

communication network has a limited communication capacity.

In real time scenario, some failure rate is also associated with

each processor and communication link. Figure 1 shows a

general model of distributed system.

Figure 1. Distributed system model

Different factors are considered while allocating tasks to

processors. Two main factors are Execution Time of tasks at

different processors [7] and Inter Processor Communication

(IPC) overhead [14, 15]. A set of 𝑚 tasks, to be executed

parallel, are to be allocated to 𝑛 processors where 1im,

1kn & mn. The tasks require processor resources such as

computational capacity and memory capacity. The system

resources have restricted capacity and a failure rate is

associated with each component. The purpose of task

allocation is to find optimal allocation of each task to the

processors such that the system cost and response time are

minimized with proper mapping of tasks to processors so that

no processor remains idle. Furthermore, the task requirements

and resource limitations are met.

3. PRELIMINARIES

3.1 Execution Time (ET)

The execution time, eik is the amount of time taken by task

ti, which is to be executed on the processor pk, where 1im,

1kn. If a task ti is assigned to a processor 𝑝𝑘 but is not

executed due to absence of some resources, then eik of the task

on the processor is taken to be ∞ i.e. very large value. The

execution time, eik, of each task on each processor can be

written in the form of Execution Time Matrix (ETM). The

Total Execution Time (ET) is calculated as given [16]:

𝐸𝑇 = ∑ ∑ 𝑒𝑖𝑘𝑥𝑖𝑘
𝑛
𝑘=1

𝑚
𝑖=1 (1)

𝑥 is an assignment matrix such that

𝑥𝑖𝑘 = {
1 , 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑇𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑝𝑘

0, 𝑒𝑙𝑠𝑒

3.2 Inter Task Communication Time (ITCT)

The Inter Task Communication Time, cij, is the amount of

time incurred due to the data units exchanged between the

tasks ti and tj if they are executed on different processors.

When some tasks are assigned to same processor, then cij=0.

Total Inter-Task Communication Time (ITCT) of program is

calculated by using Eq. (2) given as follows [16]:

𝐼𝑇𝐶𝑇 = ∑ ∑ 𝑐𝑖𝑗
𝑛
𝑘,𝑙=1
𝑘≠𝑙

𝑚
𝑖,𝑗=1 𝑥𝑖𝑘𝑥𝑗𝑙 (2)

𝑥 is an assignment matrix such that

𝑥𝑖𝑘 = {
1 , 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑡𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑝𝑘

0, 𝑒𝑙𝑠𝑒

3.3 Response time (RT)

Response time of a system is the amount of time taken by

each processor for the computation of the given tasks including

inter task communication time. It is defined by considering the

processor with heaviest aggregate computation and

communication loads of the processor. Response time (RT) of

a system is calculated as follows:

𝑅𝑇 = 𝑚𝑎𝑥 {∑ ∑ 𝑒𝑖𝑘𝑥𝑖𝑘

𝑛

𝑘=1

𝑚

𝑖=1

+ ∑ ∑ 𝑐𝑖𝑗

𝑛

𝑙=1
𝑘≠𝑙

𝑚

𝑖,𝑗=1

𝑥𝑖𝑘𝑥𝑗𝑙} (3)

3.4 System Cost (SC)

The System Cost (SC) of the system is the sum of total

execution time and total inter task communication time i.e.

𝑆𝐶 = ∑ ∑ 𝑒𝑖𝑘𝑥𝑖𝑘

𝑛

𝑘=1

𝑚

𝑖=1

+ ∑ ∑ 𝑐𝑖𝑘

𝑛

𝑘,𝑙=1
𝑘≠𝑙

𝑚

𝑖,𝑗=1

𝑥𝑖𝑘𝑥𝑗𝑙 (4)

3.5 Allocation constraints

The allocation depends on tasks requirements and system

resources. Some of the constraints are considered in the

proposed algorithm and are as follows:

➢ Processor load constraints: For task assignment, the total

processing load required by all tasks assigned to processor

k must be less than or equal to available computational load

of processor k. If Li denotes the processing load required

T2T1 T3 ... Tm
Cluster

Formation
T2 T4 ...

T1 T3 ...

T5 T10 ...

P1

P2

Pn

Distributed
Computing

System

Distributed Computing System

Allocation

60

by task i and if pk denotes available processing load of

processor k, then the following inequality for each

processor must hold:

∑ 𝐿𝑖𝑥𝑖𝑘 ≤ 𝑃𝑘
𝑚
𝑖=1 (5)

𝑥𝑖𝑘 is an assignment matrix.

➢ Number of clusters: To execute a program parallel in

minimum time, all the processors must be utilized wisely

and tasks should be allocated in such a way that no

processor remains idle. Keeping this point in mind the

maximum number of clusters, a system can have, should be

equal to number of processors i.e. neither should it exceed

the number of processor nor should it be less than that else

some of the processors may remain idle.

➢ Number of tasks in a processor: To execute a program

parallel in minimum time and to balance load on all the

processors, the maximum number of tasks in a cluster

should be ≤
𝑚

𝑛
, where 𝑚 is the number of tasks and 𝑛 is the

number of processors.

4. PROPOSED WORK

In this section, first the Fuzzy C-Means clustering technique

have been discussed and then explains how it may be

employed for task allocation.

4.1 Fuzzy C-means clustering technique

Clustering groups the objects of similar nature and the

metric is supposed to be defined on nature of addressed

problem. Clustering can be hierarchical or partitioned.

Hierarchical clustering is organized as tree, having a set of

nested clusters, while partitioned clustering is division of

objects into non-overlapping cluster in such a way that each

object is contained exactly in one cluster. But, sometimes to

improve and optimize the solution, it becomes an essential

requirement to shift an object/s from one cluster to some other

cluster by taking into consideration the parameters, constraints

and available resources. Thus, having a flexibility of an object,

of being a member of other clusters too, makes the system

more efficient. Fuzzy C-Means clustering provides this

flexibility to the objects where data objects (points) are

grouped into overlapping clusters. It is different from other

techniques in a way that in this technique the data point can

potentially belongs to multiple clusters with a variable degree

of membership value in each cluster. So, if data points are

located on the boundaries of the clusters, they are not forced to

belong to a certain cluster and have flexibility of being the

member of others clusters too, for better performance of

system. Clusters are formed according to distance, between

data points and cluster centers, which characterized by

membership values of data points for different clusters. Larger

distance of data point from cluster centre is characterized by

smaller membership value and smaller distance of is

characterized by larger membership value. Fuzzy C-Means

(FCM) is an iterative process and it stops when the objective

function acquires desired degree of accuracy.

This clustering is based on Zadeh’s idea of fuzzy which was

introduced on 1965. This algorithm does not classify fuzzy

data, it classifies crisp data into fuzzy clusters. Fuzzy C-Means

clustering technique can be summarized as below:

a) Generate 𝑛 clusters randomly

b) Cluster centroids are calculated.

c) Finding Euclidean distance of each data point from

each cluster centre.

d) Finding the membership value of each data point for

each cluster, with the help of Euclidean distance.

e) Updating the clusters by taking membership value

into consideration.

f) Computing new cluster centroid based on updated

clusters.

g) Repeating the steps b) to f) until there is no change in

the cluster centre or the difference of membership

value is equal to the desired degree of accuracy.

4.2 Proposed algorithm

4.2.1 Fetch the data set

Fetch the data set. Inputs are:

i. A program of m tasks i.e. T={t1,t2,t3,…,tm}.

ii. A set of n processors i.e. P={p1,p2,p3,…,pm}.

iii. A set of 𝑛 clusters i.e. G={g1,g2,g3,…,gm}.

iv. ET(eik) and ITCT(cij) are taken in the form of

matrices as Execution Time Matrix (ETM) and

Inter Task Communication Time Matrix

(ITCTM).

4.2.2 Fuzzy C-means clustering technique to form clusters

Let G denotes the clusters and T denotes the tasks, then form

a matrix U of order GT. Initializing Fuzzy C-Means (FCM)

clustering technique by either forming the clusters randomly

or using K-means clustering. In the clusters by Fuzzy C-means,

the elements (i.e. tasks) belonging to one cluster may be shifted

to another to balance the load and minimize the system cost, if

required.

4.2.3 Assignment of tasks using Hungarian method

After forming clusters, the execution time (for each

processor) and inter task communication time of each cluster

is calculated. Then applying Hungarian method to allocate

clusters to different processors in such a way that processor

executes the clustered tasks in minimum time. If there is tie

between two or more clustered tasks, the same above

mentioned method can be used for allocation by using that

combination which optimizes the system cost and response

time.

4.2.4 Determination of Process Response Time (PRT)

The Process Response Time (PRT) is calculated using Eq.

(6) as follows:

𝑃𝑅𝑇𝑘 = min{(𝐸𝑇𝑖1 + 𝐼𝑇𝐶𝑇𝑖1) , ((𝐸𝑇𝑖2

+ 𝐼𝑇𝐶𝑇𝑖2), … … … . , (𝐸𝑇𝑖𝑚

+ 𝐼𝑇𝐶𝑇𝑖𝑚)}

(6)

Clustered Task giG is assigned to that processor for which

PRT, i.e. (ETik+ITCTij), is minimum. This process is continued

until all the clusters, gkG1kn are assigned to all the

processors.

4.2.5 Determination of Overall Process Response Time (OPRT)

& System Cost (SC)

When the procedure of assigning the clustered tasks to

different processors gets over, the OPRT for the distribution is

the maximum of Process Response Time i.e.

61

𝑂𝑃𝑅𝑇 = max{𝑃𝑅𝑇𝑘} ; ∀ 1 ≤ 𝑘 ≤ 𝑛 (7)

The System Cost (SC) after assigning all clustered tasks is

calculated using Eq. (8) as follows:

𝑆𝐶 = ∑ PRT𝑘

𝑛

𝑘=1

 (8)

Flow Chart of the algorithm is shown in Figure 2.

Figure 2. Flow chart of proposed algorithm

5. PERFORMANCE ANALYSIS AND DISCUSSION

This section illustrates the proposed algorithm with the help

of examples.

Table 1. Execution time matrix

Processor→

Tasks ↓

𝑝1 𝑝2 𝑝3

𝑡1 174 176 110

𝑡2 95 15 134

𝑡3 196 79 156

𝑡4 148 215 143

𝑡5 44 234 122

𝑡6 241 225 27

𝑡7 12 28 192

𝑡8 215 13 122

𝑡9 211 11 208

Example 1: Consider a program made up of nine tasks

{𝑡1, 𝑡2, 𝑡3, … . 𝑡9} to be allocated to three processors {𝑝1 , 𝑝2, 𝑝3}.

The execution cost of each task on each processor and the inter

- task communication cost between tasks is considered in the

form of matrices as given in Table 1 above and Table 2 below.

Table 2. Inter – task communication time matrix

Tasks

→

↓

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9

𝑡1 0 8 10 4 0 3 4 0 0

𝑡2 8 0 7 0 0 0 0 3 0

𝑡3 10 7 0 1 0 0 0 0 0

𝑡4 4 0 1 0 6 0 0 8 0

𝑡5 0 0 0 6 0 0 0 12 0

𝑡6 3 0 0 0 0 0 0 0 12

𝑡7 4 0 0 0 0 0 0 3 10

𝑡8 0 3 0 8 12 0 3 0 5

𝑡9 0 0 0 0 0 12 10 5 0

62

While using Fuzzy C – Means clustering technique, the

partition matrix at each iteration (showing membership values

of each task in each cluster) and the matrix of cluster centres

are shown in Table 3 and Table 4.

Table 3. Iterations of partition matrix (showing membership values)

U1

𝑔1 0.26944 0.2953 0.69726 0.11647 0.2157 0.24482 0.34089 0.40289 0.25013

𝑔2 0.65614 0.05707 0.05908 0.83766 0.6651 0.6326 0.14511 0.07719 0.05999

𝑔3 0.07442 0.64763 0.24366 0.04587 0.1192 0.12258 0.514 0.51992 0.68988

U2

𝑔1 0.13282 0.25301 0.82182 0.05699 0.19409 0.23627 0.32528 0.46318 0.35981

𝑔2 0.81396 0.05594 0.03873 0.91363 0.66779 0.62349 0.15925 0.07537 0.07084

𝑔3 0.05322 0.69105 0.13945 0.02938 0.13812 0.14024 0.51547 0.46145 0.56935

U3

𝑔1 0.09418 0.1558 0.91397 0.04361 0.17362 0.22585 0.27523 0.59509 0.51028

𝑔2 0.85947 0.03807 0.02343 0.92942 0.67249 0.63271 0.14793 0.07202 0.075

𝑔3 0.04635 0.80613 0.0626 0.02697 0.15389 0.14144 0.57684 0.33289 0.41472

U4

𝑔1 0.07885 0.04934 0.94406 0.03894 0.1554 0.21915 0.18803 0.74374 0.67206

𝑔2 0.87947 0.01416 0.02079 0.93429 0.67186 0.64786 0.11284 0.06565 0.0748

𝑔3 0.04168 0.9365 0.03515 0.02677 0.17274 0.13299 0.69913 0.19061 0.25314

U5

𝑔1 0.06728 0.06102 0.91672 0.0361 0.14294 0.20859 0.12142 0.83341 0.77084

𝑔2 0.8959 0.01931 0.03803 0.9374 0.67022 0.66874 0.07791 0.05469 0.06697

𝑔3 0.03682 0.91967 0.04525 0.0265 0.18684 0.12267 0.80067 0.1119 0.16219

U6

𝑔1 0.05997 0.10523 0.88754 0.03562 0.13794 0.19827 0.08842 0.86924 0.8124

𝑔2 0.90628 0.03409 0.05572 0.93707 0.6669 0.6861 0.05756 0.04801 0.06017

𝑔3 0.03375 0.86068 0.05674 0.02731 0.19516 0.11563 0.85402 0.08275 0.12743

U7

𝑔1 0.05587 0.13943 0.87322 0.03631 0.13676 0.19187 0.07063 0.88326 0.83039

𝑔2 0.9125 0.04515 0.06542 0.93536 0.66271 0.69707 0.04585 0.0455 0.05691

𝑔3 0.03163 0.81542 0.06136 0.02833 0.20053 0.11106 0.88352 0.07124 0.1127

U8

𝑔1 0.05353 0.16252 0.86763 0.03715 0.13692 0.18832 0.06047 0.88926 0.8387

𝑔2 0.9163 0.05237 0.06996 0.93375 0.65916 0.70357 0.03904 0.0447 0.05559

𝑔3 0.03017 0.78511 0.06241 0.0291 0.20392 0.10811 0.90049 0.06604 0.10571

U9

𝑔1 0.0522 0.17753 0.86573 0.03783 0.13737 0.18637 0.0545 0.89213 0.84274

𝑔2 0.9186 0.05692 0.07202 0.93258 0.65665 0.70738 0.03501 0.04448 0.05511

𝑔3 0.0292 0.76555 0.06225 0.02959 0.20598 0.10625 0.91049 0.06339 0.10215

U10

𝑔1 0.05144 0.18711 0.86516 0.0383 0.13778 0.18529 0.05091 0.89362 0.84479

𝑔2 0.91997 0.05975 0.07298 0.93181 0.65501 0.70963 0.03259 0.04444 0.05495

𝑔3 0.02859 0.75314 0.06186 0.02989 0.20721 0.10508 0.9165 0.06194 0.10026

Table 4. Iterations of cluster centres

Iterations

↓

No. of

Clusters

Coordinates Iterations

↓

No. of

Clusters

Coordinates

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

Center 1

𝑔1 155 90 133.33333

Center 6

𝑔1 203.98745 44.22856 156.54067

𝑔2 144.33333 224.66667 97.33333 𝑔2 153.95814 206.81627 109.35136

𝑔3 146 17.33333 174 𝑔3 64.68694 27.34281 157.40131

Center 2

𝑔1 166.38193 77.53152 144.41094

Center 7

𝑔1 204.94189 41.08747 157.21112

𝑔2 148.08071 209.34167 108.82608 𝑔2 155.18978 206.87612 108.50419

𝑔3 143.31387 23.10518 164.60876 𝑔3 57.98387 28.60875 160.8326

Center 3

𝑔1 177.83962 66.48551 150.24886

Center 8

𝑔1 205.05052 39.66569 157.5271

𝑔2 149.75095 206.05552 111.43946 𝑔2 156.05533 206.78809 107.9489

𝑔3 128.69962 23.87541 159.98489 𝑔3 53.94841 29.49065 163.19529

Center 4

𝑔1 190.9272 58.74352 153.35347

Center 9

𝑔1 204.92854 39.02938 157.66113

𝑔2 150.84279 205.81643 111.27492 𝑔2 156.62046 206.68726 107.60592

𝑔3 101.04029 25.29404 155.51662 𝑔3 51.45863 30.05883 164.71614

Center 5

𝑔1 200.37714 50.38906 155.29311

Center 10

𝑔1 204.77892 38.73451 157.71129

𝑔2 152.37622 206.38704 110.41493 𝑔2 156.97301 206.61035 107.39854

𝑔3 76.93313 26.05557 154.03158 𝑔3 49.91486 30.4147 165.67657

Since the convergence criterion ‖𝑈(𝑟+1) − 𝑈(𝑟)‖ < 0.01

fulfills at the tenth iteration and also cluster centres at two

successive iterations, i.e. 9th and 10th, are approximate same,

therefore the procedure stops at 10th step. The cluster formed,

on the basis of membership values, are given in Table 5 below:

63

Table 5. Formation of clusters

Clusters Tasks

g1 t3+t8+t9

g2 t1+t4+t6

g3 t2+t5+t7

To allocate the clustered tasks to processors, Hungarian

method is used. The Execution Time Matrix for clustered tasks

and final allocation is shown in Table 6 given above.

Final allocation is: 𝑔1 → 𝑝2; 𝑔2 → 𝑝3; 𝑔3 → 𝑝1.

The final allocation task list for overall process response

time and system cost is given in Table 7.

Table 6. Allocation matrix using Hungarian method

Clusters 𝒑𝟏 𝒑𝟐 𝒑𝟑

g1 (t3+t8+t9) 622 103 486

g2 (t1+t4+t6) 563 616 280

g3 (t2+t5+t7) 151 277 448

Example 2: Consider a program made up of ten tasks

{t1,t2,t3,…,t10} to be allocated to three processors {p1,p2,p3}.

The execution cost of each task on each processor and the inter

- task communication cost between tasks is considered in the

form of matrices as shown in Table 8 and Table 9.

Table 7. Final task allocation with OPRT & SC

Processors Clustered Tasks
ET

(1)

ITCT

(2)

PRT=ET+ ITCT

(1)+(2)
OPRT System Cost

p1
g3

(t2+t5+t7)
151 53 204

329 702 p2
g1

(t3+t8+t9)
103 66 169

p3
g2

(t1+t4+t6)
280 49 329

Table 8. Execution time matrix

Processor→

Tasks ↓

𝑝1 𝑝2 𝑝3

t1 14 16 9

t2 13 19 18

t3 11 13 19

t4 13 8 17

t5 12 13 10

t6 13 16 9

t7 7 15 11

t8 5 11 14

t9 18 12 20

t10 21 7 16

Table 9. Inter – task communication matrix

Tasks →

↓
𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10

t1 0 18 12 9 11 14 0 0 0 0

t2 18 0 0 0 0 0 0 19 16 0

t3 12 0 0 0 0 0 23 0 0 0

t4 9 0 0 0 0 0 0 27 23 0

t5 11 0 0 0 0 0 0 0 13 0

t6 14 0 0 0 0 0 0 15 0 0

t7 0 0 23 0 0 0 0 0 0 17

t8 0 19 0 27 0 15 0 0 0 11

t9 0 16 0 23 13 0 0 0 0 13

t10 0 0 0 0 0 0 17 11 13 0

Table 10. Iterations of partition matrix (showing membership values)

U1

g1 0.84017 0.5733 0.50007 0.13976 0.06266 0.19189 0.25357 0.24949 0.38848 0.24435

g2 0.0596 0.23876 0.13938 0.2045 0.81031 0.59174 0.46161 0.36673 0.21639 0.32659

g3 0.10023 0.18794 0.36055 0.65574 0.12703 0.21637 0.28482 0.38378 0.39513 0.42906

U2

g1 0.855 0.50679 0.52748 0.1051 0.03285 0.14646 0.20051 0.25203 0.42655 0.27588

g2 0.05209 0.32737 0.11666 0.08618 0.92586 0.73209 0.61762 0.41518 0.14569 0.2375

g3 0.09291 0.16584 0.35586 0.80872 0.04129 0.12145 0.18187 0.33279 0.42776 0.48662

U3 g1 0.89767 0.4694 0.61314 0.06736 0.03558 0.1099 0.15155 0.25851 0.43318 0.26059

64

g2 0.03751 0.38243 0.1053 0.04074 0.92818 0.80949 0.73197 0.45736 0.10569 0.17899

g3 0.06482 0.14817 0.28156 0.8919 0.03624 0.08061 0.11648 0.28413 0.46113 0.56042

U4

g1 0.9181 0.44983 0.69029 0.07899 0.049 0.10486 0.12794 0.26451 0.42404 0.22889

g2 0.03209 0.41138 0.09989 0.0435 0.90433 0.82028 0.78376 0.48626 0.09393 0.14789

g3 0.04981 0.13879 0.20982 0.87751 0.04667 0.07486 0.0883 0.24923 0.48203 0.62322

U5

g1 0.91908 0.44287 0.74274 0.11335 0.05811 0.10894 0.1176 0.27163 0.39953 0.19812

g2 0.03309 0.42304 0.09361 0.06055 0.88933 0.81461 0.80864 0.5058 0.08949 0.12732

g3 0.04783 0.13409 0.16365 0.8261 0.05256 0.07645 0.07376 0.22257 0.51098 0.67456

U6

g1 0.91266 0.44296 0.78003 0.15601 0.06424 0.11428 0.11313 0.27986 0.36716 0.17002

g2 0.03662 0.42611 0.0874 0.0822 0.88124 0.80771 0.82244 0.51959 0.0856 0.11021

g3 0.05072 0.13093 0.13257 0.76179 0.05452 0.07801 0.06443 0.20055 0.54724 0.71977

U7

g1 0.90313 0.44535 0.80917 0.20118 0.06877 0.11928 0.11144 0.2887 0.33433 0.14458

g2 0.04143 0.42644 0.0815 0.1049 0.87701 0.80216 0.83095 0.5295 0.0815 0.0948

g3 0.05544 0.12821 0.10933 0.69392 0.05422 0.07856 0.05761 0.1818 0.58417 0.76062

U8

g1 0.89204 0.44706 0.83308 0.24455 0.07229 0.12351 0.11117 0.29751 0.30698 0.12288

g2 0.04708 0.42718 0.07582 0.12583 0.87489 0.79822 0.83636 0.53628 0.07785 0.08134

g3 0.06088 0.12576 0.0911 0.62962 0.05282 0.07827 0.05247 0.16621 0.61517 0.79578

U9

g1 0.88071 0.44664 0.85265 0.28222 0.07497 0.12668 0.11163 0.30564 0.28863 0.10607

g2 0.05309 0.42961 0.07038 0.14254 0.8739 0.79584 0.8396 0.54026 0.07543 0.0706

g3 0.0662 0.12375 0.07697 0.57524 0.05113 0.07748 0.04877 0.1541 0.63594 0.82333

U10

g1 0.87028 0.44401 0.86813 0.31199 0.07686 0.12858 0.11243 0.31262 0.27924 0.0942

g2 0.05884 0.43372 0.06541 0.15406 0.87353 0.79489 0.84124 0.54187 0.07443 0.06281

g3 0.07088 0.12227 0.06646 0.53395 0.04961 0.07653 0.04633 0.14551 0.64633 0.84299

U11

g1 0.86153 0.43996 0.87993 0.33392 0.07805 0.12929 0.11335 0.31831 0.27623 0.08627

g2 0.06384 0.43877 0.06117 0.16104 0.8735 0.79515 0.84177 0.54179 0.0745 0.05746

g3 0.07463 0.12127 0.0589 0.50504 0.04845 0.07556 0.04488 0.1399 0.64927 0.85627

U12

g1 0.85467 0.43546 0.88866 0.34945 0.07868 0.1291 0.11428 0.32282 0.27668 0.08099

g2 0.06788 0.44394 0.05775 0.16491 0.87371 0.79624 0.84162 0.54075 0.07511 0.05384

g3 0.07745 0.1206 0.05359 0.48564 0.04761 0.07466 0.0441 0.13643 0.64821 0.86517

U13

g1 0.84949 0.43123 0.89504 0.36032 0.07893 0.12841 0.11516 0.32635 0.27855 0.07741

g2 0.07101 0.44865 0.0551 0.16695 0.87404 0.79776 0.8411 0.5393 0.07587 0.05136

g3 0.0795 0.12012 0.04986 0.47273 0.04703 0.07383 0.04374 0.13435 0.64558 0.87123

U14

g1 0.84567 0.4276 0.89965 0.36796 0.07897 0.12752 0.11597 0.3291 0.28072 0.07492

g2 0.07337 0.45264 0.0531 0.16801 0.87445 0.79937 0.84043 0.5378 0.07661 0.04962

g3 0.08096 0.11976 0.04725 0.46403 0.04658 0.07311 0.0436 0.1331 0.64267 0.87546

Table 11. Iterations of cluster centres

Iterations

↓

No. of

Clusters

Coordinates

x y z

Center 1

g1 12.66667 16 17.33333

g2 12.66667 12.33333 12

g3 12.75 11.25 15.25

Center 2

g1 13.32716 15.13869 17.25228

g2 11.79793 13.40774 11.37251

g3 13.26053 10.44493 16.22578

Center 3

g1 13.5674 14.84055 17.66616

g2 11.14801 14.05792 10.79482

g3 14.05844 9.56795 16.88512

Center 4

g1 13.48814 14.73917 17.99345

g2 10.78603 14.33411 10.70182

g3 14.76034 9.04835 17.02626

Center 5

g1 13.2945 14.68999 18.13227

g2 10.57464 14.42635 10.74227

g3 15.3709 8.84049 17.03303

Center 6

g1 13.09276 14.66078 18.16463

g2 10.43981 14.44923 10.78314

g3 15.95703 8.78626 17.0564

Center 7

g1 12.90375 14.63101 18.15025

g2 10.34777 14.44649 10.81186

g3 16.53335 8.79949 17.10356

Center 8

g1 12.73741 14.58346 18.11863

g2 10.28437 14.43494 10.83394

g3 17.07674 8.83754 17.16028

Center 9
g1 12.60214 14.51304 18.08541

g2 10.24407 14.42292 10.85312

g3 17.54509 8.87491 17.21059

Center 10

g1 12.5012 14.42774 18.05933

g2 10.22334 14.41557 10.86976

g3 17.90701 8.8971 17.2431

Center 11

g1 12.43084 14.34138 18.04338

g2 10.21783 14.41503 10.88282

g3 18.16176 8.90151 17.25597

Center 12

g1 12.38353 14.26466 18.03627

g2 10.22241 14.42039 10.89183

g3 18.33143 8.89318 17.25458

Center 13

g1 12.35188 14.20202 18.03491

g2 10.23242 14.42907 10.89734

g3 18.44266 8.87884 17.24592

Center 14

g1 12.33037 14.15323 18.03641

g2 10.24443 14.43871 10.90034

g3 18.5163 8.86334 17.23507

While using Fuzzy C-Means clustering technique, the

partition matrix at each iteration (showing membership values

of each task in each cluster) and the matrix of cluster centres

are shown in Table 10 and Table 11.

Table 12. Formation of clusters

Clusters Tasks

g1 t2+t3+t7

g2 t4+t8+t9+t10

g3 t1+t5+t6

65

Since the convergence criterion ‖𝑈(𝑟+1) − 𝑈(𝑟)‖ < 0.01

fulfills at the fourteenth iteration and also cluster centres at two

successive iterations, i.e. 13th and 14th, are approximate same,

therefore the procedure stops at 14th step. The cluster formed,

on the basis of membership values, are given in Table 12.

To allocate the clustered tasks to processors, Hungarian

method is used. The Execution Time Matrix for clustered tasks

and final allocation is shown in Table 13.

Table 13. Allocation matrix using Hungarian matrix

Clusters 𝒑𝟏 𝒑𝟐 𝒑𝟑

g1 (t2+t3+t7) 31 47 48

g2 (t4+t8+t9+t10) 57 38 67

g3 (t1+t5+t6) 39 51 28

Final allocation is: g1→p1; g2→p2; g3→p3.

The final allocation task list for overall process response

time and system cost is given in Table 14 below.

Task scheduling in a distributed system is challenging.

Since there are more than one processor and large number of

tasks are to be allocated. Keeping in mind the various

restriction and conditions, it is difficult to meet all the

objectives simultaneously. A lot of studies have been done for

task scheduling in distributed system so that the response time

and system cost can be reduced, load can be balanced, system

reliability can be improved. Kumar et al. [16] proposed a

technique to achieve optimal cost and optimal system

reliability. The computational analysis is done to achieve the

objective. Sriramdas et al. [5] proposed a model for reliability

allocation technique using fuzzy model and an approximation

method based on linear programming approach. The model is

based on centralized distributed system (DS). Srinivasan and

Geetharamani [17] proposed a technique to optimize the

system cost of a fuzzy assignment problem which is

formulated to crisp assignment problem in the form of linear

programming problem (LPP) and then solving the problem

using Robust Ranking method and Ones Assignment method.

The results are illustrated with numerical examples. Qinma et

al. [18] proposed an iterative greedy algorithm to maximize the

system reliability by considering the wide range of parameters.

The model has been simulated using MATLAB. Rehman et al.

[19] proposed Min-Min algorithm for efficient resource

distribution and load balancing. The results are then simulated

and compared with Round Robin algorithm. Jang et al. [20]

proposes a task scheduling model based on the genetic

algorithm for an optimal task scheduling. The experimental

results are then compared with existing task scheduling models.

The proposed study presents an algorithm based on clustering

technique. The proposed algorithm improves an overall

process response time and system cost for unsupervised data

by allocating the clustered tasks on processors with on an

average balanced load. For this purpose, Execution Time and

Inter Task Communication Time have been taken into

consideration. The algorithm uses fuzzy C – means clustering

technique for grouping the tasks. Later, to allocate clusters to

processors, Hungarian method is used. From the data sets

given in illustrated examples it can be seen that this algorithm

improves the total response time and system cost. The

proposed model is compared with the existing model, taken

from research paper. Results are summarized as given in Table

15.

The comparison of response time & system cost is

graphically shown in Figure 3~6.

Table 14. Final task allocation with OPRT & SC

Processors Clustered Tasks
ET

(1)

ITCT

(2)

PRT=ET+ ITCT

(1)+(2)
OPRT System Cost

p1
g1

(t1+t2+t3+t8)
31 82 113

127 335 p2
g3

(t4+t9+t10)
38 89 127

p3
g2

(t5+t6+t7)
28 67 95

Table 15. Comparative study

S.No. Example Processor Tasks Response Time System Cost

1.

Elsadek Model (1999)

p1 t6+t7+t9

479 1369 p2 t4+t5+t8

p3 t1+t2+t3

H. Kumar Model (2018)

p1 t4+t5+t8

423 1109 p2 t6+t7+t9

p3 t1+t2+t3

Proposed Algorithm

p1 t2+t5+t7

329 702 p2 t3+t8+t9

p3 t1+t4+t6

2.

Topcuoglu et. al. (2002)

p1 t5+t7

172 335 p2 t1+t2+t5+t9+t10

p3 t4+t6+t8

H. Kumar Model (2018)

p1 t3+t7+t10

130 332 p2 t4+t8+t9

p3 t1+t2+t5+t6

Proposed Algorithm

p1 t2+t3+t7

127 335 p2 t4+t8+t9+t10

p3 t1+t5+t6

66

Figure 3. Comparison of Response Time of Example 1

Figure 4. Comparison of system cost of example 1

Figure 5. Comparison of response time of example 2

Figure 6. Comparison of system cost of example 2

6. CONCLUSION AND FUTURE SCOPE

In this paper a task allocation problem has been formulated

and shown in the form of mathematical model. Paper proposes

a novel algorithm for allocating the tasks on different

processors with the objective of minimum response time and

system cost by taking Execution Time and Inter Task

Communication Time into consideration. The algorithm uses

fuzzy C – means clustering technique (to form the clusters) and

Hungarian method (for allocation of clustered tasks to

different processors). Paper illustrated two scenarios for

testing the proposed algorithm which gives optimum OPRT

and system cost. The model has potential to minimize the

Overall Process Response Time and System Cost (for

overlapped data) by assigning an approximate balanced load

to the processors as per literature studied. The limitation of

paper is that it has a restriction of using for static load

balancing and task assignment. Moreover, in the proposed

clustering technique the number of iterations increases if the

termination criterion is lowered, thus making the technique

lengthy. Although the model presented is efficient enough for

unsupervised data but leaves a number of situations where

further work can be done by making use of flexibility of the

clustering technique used. In future it can be further explored

by varying the values of the parameters, of the clustering

technique used, for static and dynamic systems.

ACKNOWLEDGMENT

The author is extremely grateful to Dr. Jogendra Kumar, Dr.

Garima Verma and Dr. Fateh Singh for their kind support,

valuable suggestions, comments and help.

REFERENCES

[1] Waraich, S.S. (2008). Classification of Dynamic Load

Balancing strategies in a network of workstations. Fifth

International Conference on Information Technology,

New Generations, Las Vegas, NV, USA, pp. 1263-1265.

https://doi.org/10.1109/ITNG.2008.166

[2] Huang, M.C., Hosseini, S.H., Vairaven, K. (2003). A

Receiver-Initiated load balancing method in computer

networks using fuzzy logic control. GLOBECOM '03.

IEEE Global Telecommunications Conference (IEEE

Cat. No.03CH37489), San Francisco, CA, USA, pp.

4028-4033.

https://doi.org/10.1109/GLOCOM.2003.1258985

[3] Ahn, H.C., Youn, H.Y., Jeon, K.Y., Lee, K.S. (2007).

Dynamic load balancing for large scale distributed

system with intelligent fuzzy controller. IEEE

International Conference on Information Reuse and

Integration, Las Vegas, IL, USA, pp. 576-581.

https://doi.org/10.1109/IRI.2007.4296682

[4] Zomaya, A.Y., Teh., Y.H. (2001). Observations on using

Genetic algorithms for dynamic load balancing. IEEE

Transaction on Parallel and Distributed Systems, 12(9):

899-911. https://doi.org/10.1109/71.954620

[5] Sriramdas, V., Chaurvedi, S.K., Gargama, H. (2014).

Fuzzy arithmetic based reliability allocation approach

during early design & development. Expert Systems with

Applications, 41(7): 3444-3449.

https://doi.org/10.1016/j.eswa.2013.10.048

[6] Neelkantan, P., Sreekanth, S. (2016). Task allocation in

67

distributed systems. Indian Journal of Science &

Technology, 9(31): 1-10.

http://dx.doi.org/10.17485/ijst/2016/v9i31/89615

[7] Attiya, G., Hamam, Y. (2006). Task Allocation for

maximizing reliability of distributed systems: A

simulated annealing approach. Journal of Parallel and

Distributed Computing, 66(10): 1259-1266.

http://dx.doi.org/10.1016/j.jpdc.2006.06.006

[8] Kumar, H. (2015). A Heiristic model for task scheduling

in heterogeneous distributed real time system under fuzzy

environment. International Journal of Computer

Applications, 111(2): 35-43.

[9] Hamed, A.Y. (2012). Task allocation for maximizing

reliability of distributed computing systems using genetic

algorithm. International Journal of Computer Networks

and Wireless Communications, 2(5): 560-569.

[10] Topcuoglu, H., Hariri, S., Wu, M.Y. (2002). Performance

effective & low complexity task scheduling for

heterogeneous computing. IEEE Transactions on Parallel

and Distributed Computing, 13(3): 260-274.

http://dx.doi.org/10.1109/71.993206

[11] Falta, G.D., Blasa, F., Cafiero, S., Fortina, G. (2013).

Fault tolerant decentralized k-means clustering for

asynchronous large scale network. Journal of Parallel and

Distributed Computing, 3(3): 317-329.

https://doi.org/10.1016/j.jpdc.2012.09.009

[12] Akbari, M., Rashidi, H. (2016). A multi objective

scheduling algorithm based on cuckoo optimization for

task allocation problem at compile time in heterogeneous

systems. Expert Systems with Applications, 60: 234-248.

https://doi.org/10.1016/j.eswa.2016.05.014

[13] Bahmani, A., Mueller, F. (2016). Efficient clustering for

ultra scale application tracing. Journal of Parallel &

Distributed Computing, 98: 25-39.

https://doi.org/10.1016/j.jpdc.2016.08.001

[14] Vidyarthi, D.P., Tripathi, A.K. (2001). Maximizing

reliability of distributed computing systems with task

allocation using simple genetic algorithm. J. System

Architecture, 47(6): 549-554.

https://doi.org/10.1016/S1383-7621(01)00013-3

[15] Chu, W.W., Holloway, I.J., Lan, M.T., Efe, K. (1980).

Task allocation in distributed data processing. Journal

Computer, 13(11): 57-69.

http://dx.doi.org/10.1109/MC.1980.1653419

[16] Kumar, H., Chauhan, N.K., Yadav, P.K. (2018). A high

performance model of task allocation in distributed

computing system using k-means clustering technique.

International Journal of Distributed Systems &

Technologies, 9(3): 1-23.

https://doi.org/10.4018/IJDST.2018070101

[17] Srinivasan, A., Geetharamani, G. (2013). Method for

solving fuzzy assignment problem. Applied

Mathematical Sciences, 7(113): 5607-5619.

http://dx.doi.org/10.12988/ams.2013.37381

[18] Qinma, K., Hong, H., Jun, W. (2013). An effective

iterated greedy algorithm for reliability-oriented task

allocation in distributed computing systems. Journal of

Parallel and Distributed Computing, 73(8): 1106-1115.

https://doi.org/10.1016/j.jpdc.2013.03.008

[19] Rehman, S., Javaid, N., Rasheed, S., Hassan, K., Zafar,

F., Naeem, M. (2018). Min-min scheduling algorithm for

efficient resource distribution using cloud and fog in

smart buildings. Proceedings of 13th International

conference on Broadband and Wireless Computing

Communication and Applications, pp. 15-27.

http://dx.doi.org/10.1007/978-3-030-02613-4_2

[20] Jang, S.H., Kim, T.Y., Kim, J.K., Lee, J.S. (2012). The

study of genetic algorithm-based task scheduling for

cloud computing. International Journal of Control and

Automation, 5(4): 157-162.

68

