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 The task scheduling is an important activity in distributed system environment to divide the 

proper load among the available processors. The requirement of efficient task scheduling 

technique is an important issue in distributed computing systems, which can balance the 

load in such a way, so that no processor remains idle. Further, it can provide proper 

utilization of available resources and minimize the response time and system cost, with the 

maximum system reliability. In this paper the novel task allocation technique is being 

proposed with the aim of minimizing the response time and system cost. The method of 

clustering is used for the proper distribution of tasks on the processors. The proposed 

technique uses Fuzzy C-Means clustering technique and Hungarian method for task 

allocations. The performance of the algorithm is evaluated through examples and the results 

are compared with some existing models. 
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1. INTRODUCTION 

 

With advance computational technologies and high-speed 

networks, distributed computing system (DCS) has become 

popular worldwide. Distributed computing system has 

multiple processors located at geographically distant places i.e. 

at different cities or countries, interconnected by 

communication links. There are many factors which 

considerably affects the performance of the DCS viz. speed of 

processors, memories, failure rate of processors, failure rate of 

interconnecting network etc. One such & highly considerable 

factor is allocation of modules to processors. This allocation 

should be in such a way that system cost is minimized with 

some average load on each processor, so that no processor 

remains idle. Also, the available resources should be utilized 

to its maximum. Task allocation can be done in two ways:  

1. Static Allocation- when a module is assigned to a 

processor, it remains with the processor till the completion of 

the process.  
2. Dynamic Allocation- a module when allocated to one 

processor may migrate to another processor according to 

requirement of the system. 

Dynamic allocation uses current state information of the 

system in making decision while static allocation using 

Random or Round Robin don’t use any information of current 

state of nodes for load balancing [1-4]. Different algorithms 

for module allocation are proposed with different objectives. 

Some have objective of balancing the load [2, 4] while some 

an objective of minimizing response time and maximizing 

system reliability [5-9]. Topcuoglu et al. [10] discussed and 

proposed two novel scheduling algorithms, the Heterogeneous 

Earliest-Finish-Time (HEFT) algorithm and the Critical-Path-

on-a-Processor (CPOP) algorithm, for a bounded number of 

heterogeneous processors with an objective to meet high 

performance and fast scheduling time simultaneously. Falta et 

al. [11] propose a fully distributed K-Means algorithm 

(Epidemic K-Means) which does not require global 

communication and is intrinsically fault tolerant, which 

otherwise lacks in large scale systems and provides a 

clustering solution which can approximate the solution of 

an ideal centralized algorithm over the aggregated data as 

closely as desired. Rashidi [12] proposes an algorithm, based 

on multi-objective scheduling cuckoo optimization algorithm 

(MOSCOA), in which each cuckoo represents a scheduling 

solution in which the ordering of tasks and processors 

allocated to them are considered. In addition, the operators, of 

cuckoo optimization algorithm defined, are usable for 

scheduling scenario of the directed acyclic graph of the 

problem. Bahmani and Mueller [13] proposed a fast signature-

based clustering algorithm that clusters processes exhibiting 

similar execution behavior. Vidyarthi and Tripathi [14] 

developed a heuristic approach, based on genetic algorithm, to 

find the near optimal solution.  

In this paper, the proposed work uses Fuzzy C-Means 

(FCM) clustering algorithm to allocate task to different 

processors with the objective of minimizing system cost and 

response time. It is different from other clustering techniques 

in such a way that the data point is not a member of only one 

cluster, but may belong to more clusters with certain degree of 

membership value. If the data points are located on the 

boundaries of the clusters, they are not forced to belong to a 

certain cluster and thus have flexibility of being the member 

of others clusters too, for better performance of system. FCM 

is an iterative process and it stops when the objective function 

acquires desired degree of accuracy. The performance of the 

proposed algorithm is illustrated with examples. The outcomes 

are compared with some existing models. The road map of the 

paper is as follows- section 2 describes the problem statement. 

Section 3, illustrates the preliminaries for the proposed 

technique. Section 4, proposes the algorithm. Section 5, 
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describes the performance evaluation and comparisons with 

existing works and at last section 6 draws the conclusion. 

 

 

2. PROBLEM STATEMENT  

 

The problem addressed in the paper is concerned with 

allocation of tasks to processors of a distributed system with 

the goal of minimizing response time and system cost. The 

distributed system consists of multiple processors, where 

multiple users can work simultaneously from different sites. 

The processors available, at different sites in the system, 

process the requests according to availability. Each processor 

has its own computation capacity and memory while 

communication network has a limited communication capacity. 

In real time scenario, some failure rate is also associated with 

each processor and communication link. Figure 1 shows a 

general model of distributed system. 

 

 
 

Figure 1. Distributed system model 

 

Different factors are considered while allocating tasks to 

processors. Two main factors are Execution Time of tasks at 

different processors [7] and Inter Processor Communication 

(IPC) overhead [14, 15]. A set of 𝑚  tasks, to be executed 

parallel, are to be allocated to 𝑛  processors where 1im, 

1kn & mn. The tasks require processor resources such as 

computational capacity and memory capacity. The system 

resources have restricted capacity and a failure rate is 

associated with each component. The purpose of task 

allocation is to find optimal allocation of each task to the 

processors such that the system cost and response time are 

minimized with proper mapping of tasks to processors so that 

no processor remains idle. Furthermore, the task requirements 

and resource limitations are met. 

 

 

3. PRELIMINARIES  
 

3.1 Execution Time (ET)  

 

The execution time, eik is the amount of time taken by task 

ti, which is to be executed on the processor pk, where 1im, 

1kn. If a task ti is assigned to a processor 𝑝𝑘  but is not 

executed due to absence of some resources, then eik of the task 

on the processor is taken to be ∞ i.e. very large value. The 

execution time, eik, of each task on each processor can be 

written in the form of Execution Time Matrix (ETM). The 

Total Execution Time (ET) is calculated as given [16]: 

 

𝐸𝑇 = ∑ ∑ 𝑒𝑖𝑘𝑥𝑖𝑘
𝑛
𝑘=1

𝑚
𝑖=1  (1) 

 

𝑥 is an assignment matrix such that 

 

𝑥𝑖𝑘 = {
1 , 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑇𝑖  𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑝𝑘

0, 𝑒𝑙𝑠𝑒                                                                    
 

 

3.2 Inter Task Communication Time (ITCT) 

 

The Inter Task Communication Time, cij, is the amount of 

time incurred due to the data units exchanged between the 

tasks ti and tj if they are executed on different processors. 

When some tasks are assigned to same processor, then cij=0. 

Total Inter-Task Communication Time (ITCT) of program is 

calculated by using Eq. (2) given as follows [16]:  

 

𝐼𝑇𝐶𝑇 = ∑ ∑ 𝑐𝑖𝑗
𝑛
𝑘,𝑙=1
𝑘≠𝑙

𝑚
𝑖,𝑗=1 𝑥𝑖𝑘𝑥𝑗𝑙   (2) 

 

𝑥 is an assignment matrix such that  

 

𝑥𝑖𝑘 = {
1 , 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑡𝑖  𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑝𝑘

0, 𝑒𝑙𝑠𝑒                                                                    
 

 

3.3 Response time (RT) 

 

Response time of a system is the amount of time taken by 

each processor for the computation of the given tasks including 

inter task communication time. It is defined by considering the 

processor with heaviest aggregate computation and 

communication loads of the processor. Response time (RT) of 

a system is calculated as follows: 

 

𝑅𝑇 = 𝑚𝑎𝑥 {∑ ∑ 𝑒𝑖𝑘𝑥𝑖𝑘

𝑛

𝑘=1

𝑚

𝑖=1

+ ∑ ∑ 𝑐𝑖𝑗

𝑛

𝑙=1
𝑘≠𝑙

𝑚

𝑖,𝑗=1

𝑥𝑖𝑘𝑥𝑗𝑙} (3) 

 

3.4 System Cost (SC) 

 

The System Cost (SC) of the system is the sum of total 

execution time and total inter task communication time i.e. 

 

𝑆𝐶 = ∑ ∑ 𝑒𝑖𝑘𝑥𝑖𝑘

𝑛

𝑘=1

𝑚

𝑖=1

+ ∑ ∑ 𝑐𝑖𝑘

𝑛

𝑘,𝑙=1
𝑘≠𝑙

𝑚

𝑖,𝑗=1

𝑥𝑖𝑘𝑥𝑗𝑙  (4) 

 

3.5 Allocation constraints 

 

The allocation depends on tasks requirements and system 

resources. Some of the constraints are considered in the 

proposed algorithm and are as follows: 

➢ Processor load constraints: For task assignment, the total 

processing load required by all tasks assigned to processor 

k must be less than or equal to available computational load 

of processor k. If Li denotes the processing load required 

T2T1 T3 ... Tm
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T1 T3 ...

T5 T10 ...
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P2

Pn

Distributed 
Computing 

System

Distributed Computing System

Allocation

60



 

by task i and if pk denotes available processing load of 

processor k, then the following inequality for each 

processor must hold: 

 

∑ 𝐿𝑖𝑥𝑖𝑘 ≤ 𝑃𝑘
𝑚
𝑖=1    (5) 

 

𝑥𝑖𝑘 is an assignment matrix. 

➢ Number of clusters: To execute a program parallel in 

minimum time, all the processors must be utilized wisely 

and tasks should be allocated in such a way that no 

processor remains idle. Keeping this point in mind the 

maximum number of clusters, a system can have, should be 

equal to number of processors i.e. neither should it exceed 

the number of processor nor should it be less than that else 

some of the processors may remain idle. 

➢ Number of tasks in a processor: To execute a program 

parallel in minimum time and to balance load on all the 

processors, the maximum number of tasks in a cluster 

should be ≤
𝑚

𝑛
, where 𝑚 is the number of tasks and 𝑛 is the 

number of processors. 

 

 

4. PROPOSED WORK 

 

In this section, first the Fuzzy C-Means clustering technique 

have been discussed and then explains how it may be 

employed for task allocation. 

 

4.1 Fuzzy C-means clustering technique  

 

Clustering groups the objects of similar nature and the 

metric is supposed to be defined on nature of addressed 

problem. Clustering can be hierarchical or partitioned. 

Hierarchical clustering is organized as tree, having a set of 

nested clusters, while partitioned clustering is division of 

objects into non-overlapping cluster in such a way that each 

object is contained exactly in one cluster. But, sometimes to 

improve and optimize the solution, it becomes an essential 

requirement to shift an object/s from one cluster to some other 

cluster by taking into consideration the parameters, constraints 

and available resources. Thus, having a flexibility of an object, 

of being a member of other clusters too, makes the system 

more efficient. Fuzzy C-Means clustering provides this 

flexibility to the objects where data objects (points) are 

grouped into overlapping clusters. It is different from other 

techniques in a way that in this technique the data point can 

potentially belongs to multiple clusters with a variable degree 

of membership value in each cluster. So, if data points are 

located on the boundaries of the clusters, they are not forced to 

belong to a certain cluster and have flexibility of being the 

member of others clusters too, for better performance of 

system. Clusters are formed according to distance, between 

data points and cluster centers, which characterized by 

membership values of data points for different clusters. Larger 

distance of data point from cluster centre is characterized by 

smaller membership value and smaller distance of is 

characterized by larger membership value. Fuzzy C-Means 

(FCM) is an iterative process and it stops when the objective 

function acquires desired degree of accuracy.  

This clustering is based on Zadeh’s idea of fuzzy which was 

introduced on 1965. This algorithm does not classify fuzzy 

data, it classifies crisp data into fuzzy clusters. Fuzzy C-Means 

clustering technique can be summarized as below: 

a) Generate 𝑛 clusters randomly 

b) Cluster centroids are calculated. 

c) Finding Euclidean distance of each data point from 

each cluster centre. 

d) Finding the membership value of each data point for 

each cluster, with the help of Euclidean distance. 

e) Updating the clusters by taking membership value 

into consideration. 

f) Computing new cluster centroid based on updated 

clusters. 

g) Repeating the steps b) to f) until there is no change in 

the cluster centre or the difference of membership 

value is equal to the desired degree of accuracy. 

 

4.2 Proposed algorithm 

 

4.2.1 Fetch the data set 

Fetch the data set. Inputs are: 

i. A program of m tasks i.e. T={t1,t2,t3,…,tm}. 

ii. A set of n processors i.e. P={p1,p2,p3,…,pm}. 

iii. A set of 𝑛 clusters i.e. G={g1,g2,g3,…,gm}. 

iv. ET(eik) and ITCT(cij) are taken in the form of 

matrices as Execution Time Matrix (ETM) and 

Inter Task Communication Time Matrix 

(ITCTM). 

 

4.2.2 Fuzzy C-means clustering technique to form clusters 

Let G denotes the clusters and T denotes the tasks, then form 

a matrix U of order GT. Initializing Fuzzy C-Means (FCM) 

clustering technique by either forming the clusters randomly 

or using K-means clustering. In the clusters by Fuzzy C-means, 

the elements (i.e. tasks) belonging to one cluster may be shifted 

to another to balance the load and minimize the system cost, if 

required. 

 

4.2.3 Assignment of tasks using Hungarian method 

After forming clusters, the execution time (for each 

processor) and inter task communication time of each cluster 

is calculated. Then applying Hungarian method to allocate 

clusters to different processors in such a way that processor 

executes the clustered tasks in minimum time. If there is tie 

between two or more clustered tasks, the same above 

mentioned method can be used for allocation by using that 

combination which optimizes the system cost and response 

time. 

 

4.2.4 Determination of Process Response Time (PRT) 

The Process Response Time (PRT) is calculated using Eq. 

(6) as follows: 

 

𝑃𝑅𝑇𝑘 = min{(𝐸𝑇𝑖1 + 𝐼𝑇𝐶𝑇𝑖1) , ((𝐸𝑇𝑖2

+ 𝐼𝑇𝐶𝑇𝑖2), … … … . , (𝐸𝑇𝑖𝑚

+ 𝐼𝑇𝐶𝑇𝑖𝑚)} 

(6) 

 

Clustered Task giG is assigned to that processor for which 

PRT, i.e. (ETik+ITCTij), is minimum. This process is continued 

until all the clusters, gkG1kn are assigned to all the 

processors. 

 

4.2.5 Determination of Overall Process Response Time (OPRT) 

& System Cost (SC) 

When the procedure of assigning the clustered tasks to 

different processors gets over, the OPRT for the distribution is 

the maximum of Process Response Time i.e. 
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𝑂𝑃𝑅𝑇 = max{𝑃𝑅𝑇𝑘} ;  ∀ 1 ≤ 𝑘 ≤ 𝑛 (7) 

 

The System Cost (SC) after assigning all clustered tasks is 

calculated using Eq. (8) as follows: 

𝑆𝐶 = ∑ PRT𝑘

𝑛

𝑘=1

 (8) 

 

Flow Chart of the algorithm is shown in Figure 2. 

 

 
 

Figure 2. Flow chart of proposed algorithm 

 

 

5. PERFORMANCE ANALYSIS AND DISCUSSION 

 

This section illustrates the proposed algorithm with the help 

of examples.  

 

Table 1. Execution time matrix 

 
Processor→ 

Tasks ↓ 

𝑝1 𝑝2 𝑝3 

𝑡1 174 176 110 

𝑡2 95 15 134 

𝑡3 196 79 156 

𝑡4 148 215 143 

𝑡5 44 234 122 

𝑡6 241 225 27 

𝑡7 12 28 192 

𝑡8 215 13 122 

𝑡9 211 11 208 

 

Example 1: Consider a program made up of nine tasks 

{𝑡1, 𝑡2, 𝑡3, … . 𝑡9} to be allocated to three processors {𝑝1 , 𝑝2, 𝑝3}. 

The execution cost of each task on each processor and the inter 

- task communication cost between tasks is considered in the 

form of matrices as given in Table 1 above and Table 2 below. 

 

Table 2. Inter – task communication time matrix  

 
Tasks 

→ 

↓ 

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 

𝑡1 0 8 10 4 0 3 4 0 0 

𝑡2 8 0 7 0 0 0 0 3 0 

𝑡3 10 7 0 1 0 0 0 0 0 

𝑡4 4 0 1 0 6 0 0 8 0 

𝑡5 0 0 0 6 0 0 0 12 0 

𝑡6 3 0 0 0 0 0 0 0 12 

𝑡7 4 0 0 0 0 0 0 3 10 

𝑡8 0 3 0 8 12 0 3 0 5 

𝑡9 0 0 0 0 0 12 10 5 0 

62



 

While using Fuzzy C – Means clustering technique, the 

partition matrix at each iteration (showing membership values 

of each task in each cluster) and the matrix of cluster centres 

are shown in Table 3 and Table 4. 

 

Table 3. Iterations of partition matrix (showing membership values) 

 

U1 

𝑔1 0.26944 0.2953 0.69726 0.11647 0.2157 0.24482 0.34089 0.40289 0.25013 

𝑔2 0.65614 0.05707 0.05908 0.83766 0.6651 0.6326 0.14511 0.07719 0.05999 

𝑔3 0.07442 0.64763 0.24366 0.04587 0.1192 0.12258 0.514 0.51992 0.68988 

 

U2 

𝑔1 0.13282 0.25301 0.82182 0.05699 0.19409 0.23627 0.32528 0.46318 0.35981 

𝑔2 0.81396 0.05594 0.03873 0.91363 0.66779 0.62349 0.15925 0.07537 0.07084 

𝑔3 0.05322 0.69105 0.13945 0.02938 0.13812 0.14024 0.51547 0.46145 0.56935 

 

U3 

𝑔1 0.09418 0.1558 0.91397 0.04361 0.17362 0.22585 0.27523 0.59509 0.51028 

𝑔2 0.85947 0.03807 0.02343 0.92942 0.67249 0.63271 0.14793 0.07202 0.075 

𝑔3 0.04635 0.80613 0.0626 0.02697 0.15389 0.14144 0.57684 0.33289 0.41472 

 

U4 

𝑔1 0.07885 0.04934 0.94406 0.03894 0.1554 0.21915 0.18803 0.74374 0.67206 

𝑔2 0.87947 0.01416 0.02079 0.93429 0.67186 0.64786 0.11284 0.06565 0.0748 

𝑔3 0.04168 0.9365 0.03515 0.02677 0.17274 0.13299 0.69913 0.19061 0.25314 

 

U5 

𝑔1 0.06728 0.06102 0.91672 0.0361 0.14294 0.20859 0.12142 0.83341 0.77084 

𝑔2 0.8959 0.01931 0.03803 0.9374 0.67022 0.66874 0.07791 0.05469 0.06697 

𝑔3 0.03682 0.91967 0.04525 0.0265 0.18684 0.12267 0.80067 0.1119 0.16219 

 

U6 

𝑔1 0.05997 0.10523 0.88754 0.03562 0.13794 0.19827 0.08842 0.86924 0.8124 

𝑔2 0.90628 0.03409 0.05572 0.93707 0.6669 0.6861 0.05756 0.04801 0.06017 

𝑔3 0.03375 0.86068 0.05674 0.02731 0.19516 0.11563 0.85402 0.08275 0.12743 

 

U7 

𝑔1 0.05587 0.13943 0.87322 0.03631 0.13676 0.19187 0.07063 0.88326 0.83039 

𝑔2 0.9125 0.04515 0.06542 0.93536 0.66271 0.69707 0.04585 0.0455 0.05691 

𝑔3 0.03163 0.81542 0.06136 0.02833 0.20053 0.11106 0.88352 0.07124 0.1127 

 

U8 

𝑔1 0.05353 0.16252 0.86763 0.03715 0.13692 0.18832 0.06047 0.88926 0.8387 

𝑔2 0.9163 0.05237 0.06996 0.93375 0.65916 0.70357 0.03904 0.0447 0.05559 

𝑔3 0.03017 0.78511 0.06241 0.0291 0.20392 0.10811 0.90049 0.06604 0.10571 

 

U9 

𝑔1 0.0522 0.17753 0.86573 0.03783 0.13737 0.18637 0.0545 0.89213 0.84274 

𝑔2 0.9186 0.05692 0.07202 0.93258 0.65665 0.70738 0.03501 0.04448 0.05511 

𝑔3 0.0292 0.76555 0.06225 0.02959 0.20598 0.10625 0.91049 0.06339 0.10215 

 

U10 

𝑔1 0.05144 0.18711 0.86516 0.0383 0.13778 0.18529 0.05091 0.89362 0.84479 

𝑔2 0.91997 0.05975 0.07298 0.93181 0.65501 0.70963 0.03259 0.04444 0.05495 

𝑔3 0.02859 0.75314 0.06186 0.02989 0.20721 0.10508 0.9165 0.06194 0.10026 

 

Table 4. Iterations of cluster centres 
 

Iterations 

↓ 

No. of 

Clusters 

Coordinates Iterations 

↓ 

No. of 

Clusters 

Coordinates 

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 

Center 1 

𝑔1 155 90 133.33333 

Center 6 

𝑔1 203.98745 44.22856 156.54067 

𝑔2 144.33333 224.66667 97.33333 𝑔2 153.95814 206.81627 109.35136 

𝑔3 146 17.33333 174 𝑔3 64.68694 27.34281 157.40131 

Center 2 

𝑔1 166.38193 77.53152 144.41094 

Center 7 

𝑔1 204.94189 41.08747 157.21112 

𝑔2 148.08071 209.34167 108.82608 𝑔2 155.18978 206.87612 108.50419 

𝑔3 143.31387 23.10518 164.60876 𝑔3 57.98387 28.60875 160.8326 

Center 3 

𝑔1 177.83962 66.48551 150.24886 

Center 8 

𝑔1 205.05052 39.66569 157.5271 

𝑔2 149.75095 206.05552 111.43946 𝑔2 156.05533 206.78809 107.9489 

𝑔3 128.69962 23.87541 159.98489 𝑔3 53.94841 29.49065 163.19529 

Center 4 

𝑔1 190.9272 58.74352 153.35347 

Center 9 

𝑔1 204.92854 39.02938 157.66113 

𝑔2 150.84279 205.81643 111.27492 𝑔2 156.62046 206.68726 107.60592 

𝑔3 101.04029 25.29404 155.51662 𝑔3 51.45863 30.05883 164.71614 

Center 5 

𝑔1 200.37714 50.38906 155.29311 

Center 10 

𝑔1 204.77892 38.73451 157.71129 

𝑔2 152.37622 206.38704 110.41493 𝑔2 156.97301 206.61035 107.39854 

𝑔3 76.93313 26.05557 154.03158 𝑔3 49.91486 30.4147 165.67657 

 

Since the convergence criterion ‖𝑈(𝑟+1) − 𝑈(𝑟)‖ < 0.01 

fulfills at the tenth iteration and also cluster centres at two 

successive iterations, i.e. 9th and 10th, are approximate same, 

therefore the procedure stops at 10th step. The cluster formed, 

on the basis of membership values, are given in Table 5 below: 
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Table 5. Formation of clusters 

 
Clusters Tasks 

g1 t3+t8+t9 

g2 t1+t4+t6 

g3 t2+t5+t7 

 

To allocate the clustered tasks to processors, Hungarian 

method is used. The Execution Time Matrix for clustered tasks 

and final allocation is shown in Table 6 given above. 

Final allocation is: 𝑔1 → 𝑝2;  𝑔2 → 𝑝3;  𝑔3 → 𝑝1. 

The final allocation task list for overall process response 

time and system cost is given in Table 7. 

Table 6. Allocation matrix using Hungarian method 

 
Clusters  𝒑𝟏 𝒑𝟐 𝒑𝟑 

g1 (t3+t8+t9) 622 103 486 

g2 (t1+t4+t6) 563 616 280 

g3 (t2+t5+t7) 151 277  448 

 

Example 2: Consider a program made up of ten tasks 

{t1,t2,t3,…,t10} to be allocated to three processors {p1,p2,p3}. 

The execution cost of each task on each processor and the inter 

- task communication cost between tasks is considered in the 

form of matrices as shown in Table 8 and Table 9. 

 

Table 7. Final task allocation with OPRT & SC 

 

Processors Clustered Tasks 
ET 

(1) 

ITCT 

(2) 

PRT=ET+ ITCT 

(1)+(2) 
OPRT System Cost 

p1 
g3 

(t2+t5+t7) 
151 53 204 

329 702 p2 
g1 

(t3+t8+t9) 
103 66 169 

p3 
g2 

(t1+t4+t6) 
280 49 329 

  

Table 8. Execution time matrix 

 
Processor→ 

Tasks ↓ 

𝑝1 𝑝2 𝑝3 

t1 14 16 9 

t2 13 19 18 

t3 11 13 19 

t4 13 8 17 

t5 12 13 10 

t6 13 16 9 

t7 7 15 11 

t8 5 11 14 

t9 18 12 20 

t10 21 7 16 

 

Table 9. Inter – task communication matrix  

 
Tasks → 

↓ 
𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 

t1 0 18 12 9 11 14 0 0 0 0 

t2 18 0 0 0 0 0 0 19 16 0 

t3 12 0 0 0 0 0 23 0 0 0 

t4 9 0 0 0 0 0 0 27 23 0 

t5 11 0 0 0 0 0 0 0 13 0 

t6 14 0 0 0 0 0 0 15 0 0 

t7 0 0 23 0 0 0 0 0 0 17 

t8 0 19 0 27 0 15 0 0 0 11 

t9 0 16 0 23 13 0 0 0 0 13 

t10 0 0 0 0 0 0 17 11 13 0 

 

Table 10. Iterations of partition matrix (showing membership values) 

 

U1 

g1 0.84017 0.5733 0.50007 0.13976 0.06266 0.19189 0.25357 0.24949 0.38848 0.24435 

g2 0.0596 0.23876 0.13938 0.2045 0.81031 0.59174 0.46161 0.36673 0.21639 0.32659 

g3 0.10023 0.18794 0.36055 0.65574 0.12703 0.21637 0.28482 0.38378 0.39513 0.42906 

U2 

g1 0.855 0.50679 0.52748 0.1051 0.03285 0.14646 0.20051 0.25203 0.42655 0.27588 

g2 0.05209 0.32737 0.11666 0.08618 0.92586 0.73209 0.61762 0.41518 0.14569 0.2375 

g3 0.09291 0.16584 0.35586 0.80872 0.04129 0.12145 0.18187 0.33279 0.42776 0.48662 

U3 g1 0.89767 0.4694 0.61314 0.06736 0.03558 0.1099 0.15155 0.25851 0.43318 0.26059 
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g2 0.03751 0.38243 0.1053 0.04074 0.92818 0.80949 0.73197 0.45736 0.10569 0.17899 

g3 0.06482 0.14817 0.28156 0.8919 0.03624 0.08061 0.11648 0.28413 0.46113 0.56042 

U4 

g1 0.9181 0.44983 0.69029 0.07899 0.049 0.10486 0.12794 0.26451 0.42404 0.22889 

g2 0.03209 0.41138 0.09989 0.0435 0.90433 0.82028 0.78376 0.48626 0.09393 0.14789 

g3 0.04981 0.13879 0.20982 0.87751 0.04667 0.07486 0.0883 0.24923 0.48203 0.62322 

U5 

g1 0.91908 0.44287 0.74274 0.11335 0.05811 0.10894 0.1176 0.27163 0.39953 0.19812 

g2 0.03309 0.42304 0.09361 0.06055 0.88933 0.81461 0.80864 0.5058 0.08949 0.12732 

g3 0.04783 0.13409 0.16365 0.8261 0.05256 0.07645 0.07376 0.22257 0.51098 0.67456 

U6 

g1 0.91266 0.44296 0.78003 0.15601 0.06424 0.11428 0.11313 0.27986 0.36716 0.17002 

g2 0.03662 0.42611 0.0874 0.0822 0.88124 0.80771 0.82244 0.51959 0.0856 0.11021 

g3 0.05072 0.13093 0.13257 0.76179 0.05452 0.07801 0.06443 0.20055 0.54724 0.71977 

U7 

g1 0.90313 0.44535 0.80917 0.20118 0.06877 0.11928 0.11144 0.2887 0.33433 0.14458 

g2 0.04143 0.42644 0.0815 0.1049 0.87701 0.80216 0.83095 0.5295 0.0815 0.0948 

g3 0.05544 0.12821 0.10933 0.69392 0.05422 0.07856 0.05761 0.1818 0.58417 0.76062 

U8 

g1 0.89204 0.44706 0.83308 0.24455 0.07229 0.12351 0.11117 0.29751 0.30698 0.12288 

g2 0.04708 0.42718 0.07582 0.12583 0.87489 0.79822 0.83636 0.53628 0.07785 0.08134 

g3 0.06088 0.12576 0.0911 0.62962 0.05282 0.07827 0.05247 0.16621 0.61517 0.79578 

U9 

g1 0.88071 0.44664 0.85265 0.28222 0.07497 0.12668 0.11163 0.30564 0.28863 0.10607 

g2 0.05309 0.42961 0.07038 0.14254 0.8739 0.79584 0.8396 0.54026 0.07543 0.0706 

g3 0.0662 0.12375 0.07697 0.57524 0.05113 0.07748 0.04877 0.1541 0.63594 0.82333 

U10 

g1 0.87028 0.44401 0.86813 0.31199 0.07686 0.12858 0.11243 0.31262 0.27924 0.0942 

g2 0.05884 0.43372 0.06541 0.15406 0.87353 0.79489 0.84124 0.54187 0.07443 0.06281 

g3 0.07088 0.12227 0.06646 0.53395 0.04961 0.07653 0.04633 0.14551 0.64633 0.84299 

U11 

g1 0.86153 0.43996 0.87993 0.33392 0.07805 0.12929 0.11335 0.31831 0.27623 0.08627 

g2 0.06384 0.43877 0.06117 0.16104 0.8735 0.79515 0.84177 0.54179 0.0745 0.05746 

g3 0.07463 0.12127 0.0589 0.50504 0.04845 0.07556 0.04488 0.1399 0.64927 0.85627 

U12 

g1 0.85467 0.43546 0.88866 0.34945 0.07868 0.1291 0.11428 0.32282 0.27668 0.08099 

g2 0.06788 0.44394 0.05775 0.16491 0.87371 0.79624 0.84162 0.54075 0.07511 0.05384 

g3 0.07745 0.1206 0.05359 0.48564 0.04761 0.07466 0.0441 0.13643 0.64821 0.86517 

U13 

g1 0.84949 0.43123 0.89504 0.36032 0.07893 0.12841 0.11516 0.32635 0.27855 0.07741 

g2 0.07101 0.44865 0.0551 0.16695 0.87404 0.79776 0.8411 0.5393 0.07587 0.05136 

g3 0.0795 0.12012 0.04986 0.47273 0.04703 0.07383 0.04374 0.13435 0.64558 0.87123 

U14 

g1 0.84567 0.4276 0.89965 0.36796 0.07897 0.12752 0.11597 0.3291 0.28072 0.07492 

g2 0.07337 0.45264 0.0531 0.16801 0.87445 0.79937 0.84043 0.5378 0.07661 0.04962 

g3 0.08096 0.11976 0.04725 0.46403 0.04658 0.07311 0.0436 0.1331 0.64267 0.87546 

Table 11. Iterations of cluster centres 

 
Iterations 

↓ 

No. of 

Clusters 

Coordinates 

x y z 

Center 1 

g1 12.66667 16 17.33333 

g2 12.66667 12.33333 12 

g3 12.75 11.25 15.25 

Center 2 

g1 13.32716 15.13869 17.25228 

g2 11.79793 13.40774 11.37251 

g3 13.26053 10.44493 16.22578 

Center 3 

g1 13.5674 14.84055 17.66616 

g2 11.14801 14.05792 10.79482 

g3 14.05844 9.56795 16.88512 

Center 4 

g1 13.48814 14.73917 17.99345 

g2 10.78603 14.33411 10.70182 

g3 14.76034 9.04835 17.02626 

Center 5 

g1 13.2945 14.68999 18.13227 

g2 10.57464 14.42635 10.74227 

g3 15.3709 8.84049 17.03303 

Center 6 

g1 13.09276 14.66078 18.16463 

g2 10.43981 14.44923 10.78314 

g3 15.95703 8.78626 17.0564 

Center 7 

g1 12.90375 14.63101 18.15025 

g2 10.34777 14.44649 10.81186 

g3 16.53335 8.79949 17.10356 

Center 8 

g1 12.73741 14.58346 18.11863 

g2 10.28437 14.43494 10.83394 

g3 17.07674 8.83754 17.16028 

Center 9 
g1 12.60214 14.51304 18.08541 

g2 10.24407 14.42292 10.85312 

g3 17.54509 8.87491 17.21059 

Center 10 

g1 12.5012 14.42774 18.05933 

g2 10.22334 14.41557 10.86976 

g3 17.90701 8.8971 17.2431 

Center 11 

g1 12.43084 14.34138 18.04338 

g2 10.21783 14.41503 10.88282 

g3 18.16176 8.90151 17.25597 

Center 12 

g1 12.38353 14.26466 18.03627 

g2 10.22241 14.42039 10.89183 

g3 18.33143 8.89318 17.25458 

Center 13 

g1 12.35188 14.20202 18.03491 

g2 10.23242 14.42907 10.89734 

g3 18.44266 8.87884 17.24592 

Center 14 

g1 12.33037 14.15323 18.03641 

g2 10.24443 14.43871 10.90034 

g3 18.5163 8.86334 17.23507 

 

While using Fuzzy C-Means clustering technique, the 

partition matrix at each iteration (showing membership values 

of each task in each cluster) and the matrix of cluster centres 

are shown in Table 10 and Table 11. 

 

Table 12. Formation of clusters 

 
Clusters Tasks 

g1 t2+t3+t7 

g2 t4+t8+t9+t10 

g3 t1+t5+t6 
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Since the convergence criterion ‖𝑈(𝑟+1) − 𝑈(𝑟)‖ < 0.01 

fulfills at the fourteenth iteration and also cluster centres at two 

successive iterations, i.e. 13th and 14th, are approximate same, 

therefore the procedure stops at 14th step. The cluster formed, 

on the basis of membership values, are given in Table 12. 

To allocate the clustered tasks to processors, Hungarian 

method is used. The Execution Time Matrix for clustered tasks 

and final allocation is shown in Table 13. 
 

Table 13. Allocation matrix using Hungarian matrix 

 
Clusters  𝒑𝟏 𝒑𝟐 𝒑𝟑 

g1 (t2+t3+t7) 31 47 48 

g2 (t4+t8+t9+t10) 57 38 67 

g3 (t1+t5+t6) 39 51 28 

 

Final allocation is: g1→p1; g2→p2; g3→p3. 

The final allocation task list for overall process response 

time and system cost is given in Table 14 below. 

Task scheduling in a distributed system is challenging. 

Since there are more than one processor and large number of 

tasks are to be allocated. Keeping in mind the various 

restriction and conditions, it is difficult to meet all the 

objectives simultaneously. A lot of studies have been done for 

task scheduling in distributed system so that the response time 

and system cost can be reduced, load can be balanced, system 

reliability can be improved. Kumar et al. [16] proposed a 

technique to achieve optimal cost and optimal system 

reliability. The computational analysis is done to achieve the 

objective. Sriramdas et al. [5] proposed a model for reliability 

allocation technique using fuzzy model and an approximation 

method based on linear programming approach. The model is 

based on centralized distributed system (DS). Srinivasan and 

Geetharamani [17] proposed a technique to optimize the 

system cost of a fuzzy assignment problem which is 

formulated to crisp assignment problem in the form of linear 

programming problem (LPP) and then solving the problem 

using Robust Ranking method and Ones Assignment method. 

The results are illustrated with numerical examples. Qinma et 

al. [18] proposed an iterative greedy algorithm to maximize the 

system reliability by considering the wide range of parameters. 

The model has been simulated using MATLAB. Rehman et al. 

[19] proposed Min-Min algorithm for efficient resource 

distribution and load balancing. The results are then simulated 

and compared with Round Robin algorithm. Jang et al. [20] 

proposes a task scheduling model based on the genetic 

algorithm for an optimal task scheduling. The experimental 

results are then compared with existing task scheduling models. 

The proposed study presents an algorithm based on clustering 

technique. The proposed algorithm improves an overall 

process response time and system cost for unsupervised data 

by allocating the clustered tasks on processors with on an 

average balanced load. For this purpose, Execution Time and 

Inter Task Communication Time have been taken into 

consideration. The algorithm uses fuzzy C – means clustering 

technique for grouping the tasks. Later, to allocate clusters to 

processors, Hungarian method is used. From the data sets 

given in illustrated examples it can be seen that this algorithm 

improves the total response time and system cost. The 

proposed model is compared with the existing model, taken 

from research paper. Results are summarized as given in Table 

15. 

The comparison of response time & system cost is 

graphically shown in Figure 3~6. 

 

Table 14. Final task allocation with OPRT & SC 
 

Processors Clustered Tasks 
ET 

(1) 

ITCT 

(2) 

PRT=ET+ ITCT 

(1)+(2) 
OPRT System Cost 

p1 
g1 

(t1+t2+t3+t8) 
31 82 113 

127 335 p2 
g3 

(t4+t9+t10) 
38 89 127 

p3 
g2 

(t5+t6+t7) 
28  67 95 

 

Table 15. Comparative study 
 

S.No. Example Processor Tasks Response Time System Cost 

1. 

Elsadek Model (1999) 

p1 t6+t7+t9 

479 1369 p2 t4+t5+t8 

p3 t1+t2+t3 

H. Kumar Model (2018) 

p1 t4+t5+t8 

423 1109 p2 t6+t7+t9 

p3 t1+t2+t3 

Proposed Algorithm 

p1 t2+t5+t7 

329 702 p2 t3+t8+t9 

p3 t1+t4+t6 

2. 

Topcuoglu et. al. (2002) 

p1 t5+t7 

172 335 p2 t1+t2+t5+t9+t10 

p3 t4+t6+t8 

H. Kumar Model (2018) 

p1 t3+t7+t10 

130 332 p2 t4+t8+t9 

p3 t1+t2+t5+t6 

Proposed Algorithm 

p1 t2+t3+t7 

127 335 p2 t4+t8+t9+t10 

p3 t1+t5+t6 
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Figure 3. Comparison of Response Time of Example 1 

 

 
 

Figure 4. Comparison of system cost of example 1 

 

 
 

Figure 5. Comparison of response time of example 2 
 

 
 

Figure 6. Comparison of system cost of example 2 

6. CONCLUSION AND FUTURE SCOPE 
 

In this paper a task allocation problem has been formulated 

and shown in the form of mathematical model. Paper proposes 

a novel algorithm for allocating the tasks on different 

processors with the objective of minimum response time and 

system cost by taking Execution Time and Inter Task 

Communication Time into consideration. The algorithm uses 

fuzzy C – means clustering technique (to form the clusters) and 

Hungarian method (for allocation of clustered tasks to 

different processors). Paper illustrated two scenarios for 

testing the proposed algorithm which gives optimum OPRT 

and system cost. The model has potential to minimize the 

Overall Process Response Time and System Cost (for 

overlapped data) by assigning an approximate balanced load 

to the processors as per literature studied. The limitation of 

paper is that it has a restriction of using for static load 

balancing and task assignment. Moreover, in the proposed 

clustering technique the number of iterations increases if the 

termination criterion is lowered, thus making the technique 

lengthy. Although the model presented is efficient enough for 

unsupervised data but leaves a number of situations where 

further work can be done by making use of flexibility of the 

clustering technique used. In future it can be further explored 

by varying the values of the parameters, of the clustering 

technique used, for static and dynamic systems. 
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