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 There are mainly three types of problems in Peer-to-Peer (P2P) networks such as free-riding 

nodes, group deception, and node bias. To solve this, the authors proposed an incentive 

mechanism for the P2P networks based on feature weighting and game theory. The 

mechanism first used the five comprehensive coefficients of node degree, node clustering 

coefficient, local clustering coefficient, all clustering coefficients, and correlation 

coefficients to form a feature clustering matrix through linear fusion; then, in order to 

maximize the overall revenue, a sparse matrix of revenue was generated through feature 

classification, noise reduction, mapping and iteration, highlighting the status of fully 

cooperative nodes; afterwards, combining group evolution and constraint rule sets, the 

authors determined group node dynamic adjustment rules, response service rules, and 

message query and forwarding rules, to maximize service efficiency; finally, a multi-

layered P2P dynamic service system was constructed to promote the active evolution of 

nodes, and avoid the negative migration. The simulation experiment was also performed to 

verity this mechanism. The research findings provide an effective idea for stimulating node 

behaviors, reducing negative node migration, and excellent node selection. 

 

Keywords: 

P2P network, feature weighting, negative 

migration, evolutionary game 

 

 

 
1. INTRODUCTION 

 

Because of its characteristics of openness, dynamics, 

heterogeneity, peer-to-peer, resource sharing, and no need of 

centralized server support, P2P networks can eliminate 

information resource islands and service bottlenecks in C/S. It 

shows its uniqueness in the aspects of cooperative work, 

distributed information, resource sharing, and large-scale 

parallel computing etc. [1, 2]. However, the nodes in P2P are 

not subordinate to any entity in the network, and they use the 

method of autonomous management and self-determined 

resource contribution, which results in a lack of centralized 

authentication and authorization mechanism, and also a large 

number of selfish nodes in real networks [3, 4]. Shneidman 

and Parkes [3] in 2005 found after measuring the Gnutella 

system that free-riding nodes in the P2P network had reached 

85%, while 1% of nodes provided queries at a rate of up to 

50%, and frequent responses from these nodes lead to 

excessive load and severe congestion. Meanwhile, only by 

minimal cost can the malicious groups emerge and carry out 

attacks in the network [5], thus exacerbating the bias of selfish 

nodes and causing a serious decline in network resource 

availability. For this, an effective incentive mechanism should 

be designed to encourage nodes in P2P to voluntarily and 

actively provide services, restrict free-riding nodes, prevent 

group fraud, slow down or avoid negative migration of nodes, 

and further improve the trust mechanism of P2P networks, 

which is one of the important issues related to the effective 

survival of P2P networks. 

In recent years, scholars at home and abroad have studied 

the incentive mechanism of P2P network nodes from various 

aspects of node behavior incentive mechanism [6-8], 

algorithm design [9-11], model design [12-14], and strategy 

design. Ouyang et al. [7] designed an incentive cooperation 

model based on the punishment mechanism to encourage 

nodes’ participation in cooperation, and motivate selfish nodes 

to actively participate in network activities through different 

behavioral strategies such as enthusiastic contributions to the 

system, greedy downloads, and contribution-income balance. 

Hu et al. [8] established service response rules, query 

forwarding rules, and neighbor selection rules to better 

encourage resource sharing of nodes by setting differences in 

global trust values between nodes, but ignoring the group 

attacks of malicious nodes to obtain high global trust values. 

Liu and Yi [15] discovered the dynamic process of social 

network evolution through multi-community dynamic 

network evolution from the micro perspective. Funasaka et al. 

[16] found that the immediate reconstruction of neighboring 

nodes does not consider the deterioration of download 

behavior, so it proposed the idea of adjusting the neighboring 

nodes and changing the group where the nodes belong to using 

the tit-for-tat strategy, but this method failed to consider the 

group deception issue of P2P nodes. The above studies are all 

conducted in the absence of malicious nodes’ group deception; 

usually only one feature attribute is considered and other 

features are ignored, without breaking the clustering limit. In 

fact, P2P nodes have typical clustering characteristics. The 

emergence of a large number of completely uncooperative 

nodes (mainly incl. free-riding nodes and malicious nodes) not 

only causes overload and congestion of high-performance 

nodes when frequently responding to many service requests, 

and the decline in the availability of network resources, but 

also accelerates the negative bias of rational cooperation nodes, 

and results in a more obvious negative migration. 

In view of the above, this paper proposes the incentive 

mechanism for P2P networks based on feature weighting and 
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evolutionary game. This mechanism can help nodes actively 

evolve, break through clustering restrictions, and avoid 

negative migration. Based on clustering coefficient settings, 

feature income mapping, and rule setting, a multi-layered P2P 

dynamic service system was constructed by node adjustment, 

response service, and query forwarding rules etc. 

 

 

2. SYSTEM SETTING 

 

2.1 Related definitions of clustering coefficients 

 

At present, there is no uniform standard for selection of 

network feature attributes. This paper focuses on the 

construction of clustering coefficients based on Kondor and 

Lafferty [17]. 

(1) Node i and its degree ki; the degree is the number of 

edges connected by node i. In principle, the larger ki, the higher 

the importance of the network. 

(2) The node clustering coefficient C(Vi), i.e., the ratio of 

the ki edges adjacent to node i to the 𝐶𝑘𝑖

2  edges of the possible 

complete graph, as shown in Eq. (1): 

 

𝐶(𝑉𝑖) =
𝑘𝑖

𝐶𝑘𝑖
2  (1) 

 

(3) The local clustering coefficient C(k) represents the ratio 

of the average number of edges (in a neighbor of the node with 

k degree) to the maximum possible number of edges, which is 

described as Eq. (2): 

 

𝐶(𝑘) =
𝑎𝑣𝑔(𝑘)

𝐶𝑘
2  (2) 

 

where, avg(k) is the average number of edges for the neighbor 

of a node with degree k. 

(4) The global clustering coefficient C represents the ratio 

of the average number of edges to the maximum number of 

edges that exist between the neighbors of nodes in the network. 

It is described as Eq. (3): 
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where, 𝐴𝑘
𝑖  is the origin of order i with degree k. 

(5) Vector correlation coefficients 𝜌𝑋,𝑌 describe the degree 

of linearity between the two reaction vectors X and Y, as 

described in Eq. (4): 

 

𝜌𝑋,𝑌 =
1

𝑛 − 1
∑(
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𝐷𝑋
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𝑛
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where, 𝑋, 𝑌 are the average values of the vectors, and 𝐷𝑋, 𝐷𝑌 

are the variances of the vectors X, Y. In value range 𝜌𝑋,𝑌 ∈

[−1, 1], when |𝜌| is closer to 1, the linear correlation between 

the two vectors is higher. 

 

2.2 Solving the feature fusion matrix 

 

Generate the fusion matrix in the following process: 

(1) Classify different attributes according to the node degree, 

and calculate the feature clustering matrix in the initial state; 

(2) Perform thresholding for the feature clustering matrix 

from the previous step to obtain attribute matrices of different 

states [10]; record the accurate number of matrices and record 

the accuracy rate as m; 

(3) Select the threshold with the best classification effect in 

each attribute, and perform linear fusion with the correlation 

coefficient matrix to construct and generate a feature fusion 

matrix A and thus improve the classification accuracy. 

The node degree matrix of optimal threshold is shown in Eq. 

(5): 
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The clustering coefficient matrix of optimal threshold is 

shown in Eq. (6): 
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(6) 

 

The correlation coefficient matrix is given in Eq. (7): 
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(7) 

 

The feature fusion matrix is given in Eq. (8). 
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(8) 

 

 

3. FEATURE INCOME MAPPING 

 

The resource sharing of nodes in P2P is actually a process 

of resource co-building and sharing through mutual game of 

individuals. After a period of gaming, the resources will 

generate k multipliers, and k>0. Considering that the most 

commonly used method in P2P is to establish strong 

connections and resource sharing from directly adjacent nodes 

that also tend to be more important. Thus, it will more fully 

reflect the clustering performance to effectively map the 

feature fusion matrix to the feature income matrix. 

The feature fusion matrix can highlight the original features 

maximally. However, in the adjustment process of real-time 

change, more features are randomly added or de-noised. In 

order to retain the original features of the task and the output 

characteristics after adding or removing noise, it’s necessary 

increase the times of adding or eliminating the noise as much 

as possible [18], which can be achieved by using feature 

income mapping plus multiple iterations. 
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3.1 Grouping and mapping 

 

Considering that the sparse similarity matrix can better 

highlight the clustering performance [11], feature zeroing can 

be used at random to reduce noise. Also, because the data of 

the same clustering feature differ only in a few features, 

random noise reduction for multiple times on the same data 

can be analogized to the common representation of the same 

clustering feature in different states. 

 

3.1.1 Feature classification and noise reduction 

Considering the "contribution-reward" rule of the nodes and 

different prominence of the features in the feature fusion 

matrix Aij, the feature ordering was performed: 𝐴(1) ≥ 𝐴(2) ≥

. . . ≥ 𝐴(𝑛2) 

In addition, the probability of noise reduction for each 

original feature should be 1-α higher than that of the total 

nodes, where α<(0,1), and α is the threshold. With the first 

α●n2 features that satisfy the ordering unchanged, the 

remaining features are all set to 0, to generate a sparse matrix. 

It is shown in Eq. (9): 

 

𝐴𝑖𝑗 = {
𝐴𝑖𝑗 𝐴𝑡 𝐴𝑖𝑗 = 𝐴(𝑘), 𝑎𝑛𝑑 𝑘 ≤ 𝛼 • 𝑛2

0 𝑂𝑡ℎ𝑒𝑟𝑠
 (9) 

 

3.1.2 Feature feedback and income mapping 

Different behavioral strategies of nodes generate different 

reward feedback, and affect the further behavior of nodes, so 

as to achieve the consistency between the nodes and the 

overall interests finally. 

Therefore, highlight the features of fully contributing nodes 

by strengthening the tightness of this type of node group, and 

improve the overall capital of the network; perform the income 

mapping of the feature fusion matrix after the noise reduction, 

and realize the maximum benefit of public resource capital 

[19]. The specific process is as follows: 

(1) For existing de-noised sparse matrix 𝐴 =
[𝐴1, 𝐴2, . . . , 𝐴𝑛] ∈ 𝐴�̃�×�̃�  (�̃� is the number of nodes), add the 

feature constant signal multiplier k, and then 𝐴 = [𝐴; 𝑘] ∈
𝐴(�̃�+1)×�̃� , among which 𝑘 ∈ 𝑅1×�̃� . mSDA [11] was used to 

optimize feature targets. 

(2) Perform noise reduction for m times, and obtain the 

target optimization result as shown in Eq. (10): 
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𝑚

𝑖=1 𝐹
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 (10) 

 

where, Ai is the i-th version of A after adding the signal 

multiplier k, K is the feature matrix of the resource multiplied 

signal, and F is the process of multiple feature noise reductions. 

(3) Perform multiple iterations of the features on a row basis 

to generate a revenue matrix M that has both the unique 

revenue characteristics and the common characteristics among 

the revenues, as shown in Eqns. (11) and (12): 

 

],...,[
~1 ni AAh =  

(11) 

 

];...;[ 0 ghhM =  
(12) 

 

where, hi is the income data source for the i-th group and M is 

the overall revenue matrix generated by all the g groups. 

(4) Measure the expected value of node income. During the 

network evolution, nodes generate certain expectations based 

on their own conditions and the surrounding environment, in 

order to motivate the active networks of the nodes. In the game 

process, define the node i's revenue expectations as shown in 

Eq. (13): 

 

𝐸(𝑀𝑖𝑗) =
𝑘𝑖𝑗 • 𝑚𝑖𝑗
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(13) 

 

 

4. GROUP EVOLUTION RULES 

 

The rules are set to guide the nodes and generate different 

"reward" feedback. This can further regulate the behavior of 

the nodes, prevent negative migration, and achieve 

consistency of the overall interests of the nodes and the group. 

 

4.1 Grouping rules 

 

The nodes 𝑁1, 𝑁2, . . . , 𝑁𝑛  were arranged according to the 

revenues: 𝑀(1) ≥ 𝑀(2) ≥. . . ≥ 𝑀(𝑛) from large to small. Using 

the idea of equal sharing, n nodes were divided into ⌈√𝑛⌉ 

groups. 

𝑀(1+(𝑙−1)•⌈√𝑛⌉), . . . , 𝑀(𝑙•⌈√𝑛⌉)  (1) If 𝑛 ⌈√𝑛⌉⁄  is an integer, 

distribute the 𝑛 ⌈√𝑛⌉⁄  nodes into the l-th group, l=1,2,…, ⌈√𝑛⌉, 

according to the revenues from large to small,  

𝑀(1+(𝑙−1)•|𝑛/⌈√𝑛⌉|), . . . , 𝑀(𝑙•|𝑛/⌈√𝑛⌉|)  (2) If 𝑛 ⌈√𝑛⌉⁄  is not an 

integer, then distribute the 𝑛 ⌈√𝑛⌉⁄  nodes into the l-th group, 

l=1,2,…,  ⌈√𝑛⌉ − 1, according to the revenue from large to 

small, 

(3) The ⌈√𝑛⌉-th group is allocated with the remaining nodes. 

 

4.2 Initialization of group evolution  

 

At the beginning of the evolution, at t=0, the nodes were 

evenly distributed to groups. To ensure the connectivity 

between the nodes and the group, there was at least one 

connected edge between the groups. According to the principle 

of clustering together, the services received by the nodes in the 

group Gi were mainly from the group inside, and the nodes in 

the group had to provide services to their upper nodes to obtain 

multiple benefits, thereby improving the overall efficiency. 

It’s also agreed that when the average revenue Gi of the group 

is greater than the group Gj, the service level and response 

speed of the nodes in this group shall be higher than Gj. 

 

4.3 Dynamic adjustment of group nodes  

 

4.3.1 Overall analysis 

According to their features, nodes with similar revenues and 

similar behavioral capabilities and behavioral characteristics 

were placed in the same group G. A large number of 

independent revenue factors of this type of nodes 

comprehensively affected the overall revenue of the group, 

while the individual revenue of each node played a minor role 

in the group. The influencing process of this random change 

approximately follows a normal distribution. Its 

characteristics are shown in Eqns. (14) and (15): 
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∑ 𝑋𝑘
⌊𝑛/⌈√𝑛⌉⌋

𝑘=1

√𝑛𝜎
~

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑙𝑦
𝑁(0,1) (14) 

 

𝜎 = √
1

𝑚𝐺 − 1
∑(𝐸(𝑀𝑖) − 𝐸(𝐺))

𝑚𝐺

𝑖=1

 (15) 

 

where, σ is the threshold of group adjustment. 

 

4.3.2 Node adjustment 

Within unit time, node i was allocated to a group G 

according to its revenue, that is, exchanging resources with the 

mG nodes in the group. It also sent out requests for service 

connections from other groups with a small probability. The 

rules of node adjustment are as follows: 

(1) Within the group, if the node incomes are 𝐸(𝑀𝑖) <
𝐸(𝐺) − 𝜎, the node is downgraded to the next group and stops 

applying for service requests from the community and the 

higher-level community; 

(2) Within the group, if the node incomes are 𝐸(𝑀𝑖) >
𝐸(𝐺) + 𝜎, the node is ascended to the previous group, and 

stops applying for service requests from this community and 

lower-level community to apply for a service request. 

Based on this rule, about 31.74% of the nodes in each group 

can be upgraded or descended. 

 

 

5. CONSTRAINT RULE SETTING 

 

5.1 Response service rules 

 

Nodes were aggregated according to the principle of 

clustering. Nodes in the same group provided services to each 

other, while the group escorts the nodes. The incentive rules 

are explained as follows: 

(1) If 𝐸(𝑀𝑖) > 𝐸(𝑀𝑗) > 𝐸(𝐺), it means that node j in the 

same group has most likely enjoyed the service of node i 

before, and when node i has a service request, node j must 

respond accordingly. 

(2) If 𝐸(𝑀𝑗) ≥ 𝐸(𝑀𝑖) > 𝐸(𝐺), it means that it is less likely 

that node j in the same group has enjoyed the service provided 

by node i, but node i has made a certain contribution to the 

group, although the contribution is smaller than node j; when 

i has requested service, Node j should respond to the service 

of node i with a probability of 𝛥 =
𝐸(𝑀𝑖)

𝐸(𝑀𝑗)
; when the probability 

value 𝛥 is smaller, the probability of responding to the service 

is lower. 

(3) If 𝐸(𝑀𝑖) ≥ 𝐸(𝐺) − 𝜎 > 𝐸(𝑀𝑗), j hasn’t had the same 

level of service request as node I, and node j needs to be 

downgraded to the next group. Its service should be obtained 

from the downgraded group or a lower level group. 

(4) The newly added nodes are likely to be free-riding nodes, 

or malicious nodes that constantly change identities repeatedly 

and join the network to avoid providing high-quality services 

or system punishment for a long time. In this study, the 

strategy adopted was for the system to preemptively prevent 

such nodes from enjoying any network services, assign such 

nodes to the lowest group, and starting upgrading from the 

lowest group. 

 

 

5.2 Query message and forwarding rules 

 

Set message forwarding rules based on the revenue 

expectations of the group. Set the message forwarding 

probability 𝑝𝑗𝑖 as shown in Eq. (16): 
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(1) If the message can be queried in the same group, no 

forwarding is required. The length of the query propagation 

path is 0, the probability of message forwarding is 0, and the 

response probability is 1. 

(2) If the message can be queried in the upper-level group, 

and 𝐸(𝐺𝑖) > 𝐸(𝐺𝑗), then the group Gj will unconditionally 

forward the query message with a higher income than its own 

group, and it’s also agreed that with the number of forwarding 

times increasing, the propagation path shall be longer, and the 

response probability at this time is smaller. 

(3) If the message can be queried in the lower group, that is, 

𝐸(𝐺𝑖) > 𝐸(𝐺𝑗), the group Gi will not forward the message; at 

this time, the query propagation path length is 𝑗 − 𝑖, and the 

response probability is 1. 

 

 

6. SIMULATION EXPERIMENTS 

 

Based on the mechanism described in this paper, a 

simulation environment was constructed to test the 

performance. The simulation scenario was filing sharing and 

file download; the criterion is whether the file download is 

successful. Considering malicious behaviors such as malicious 

nodes and node bias, the following three types of nodes were 

designed according to design requirements: 

(1) Unified cooperative nodes (UC). No matter what 

strategy other type of node adopts, this type of node always 

provides good service and honest evaluation, and there is no 

dynamic behavior and collusion behavior. 

(2) General cooperative nodes (RC). These nodes strictly 

follow the rules proposed, but there may be a situation where 

the negative offset is intensified, when high-quality services 

cannot be obtained for a long time. 

(3) Unified uncooperative nodes (UN). This type of nodes 

does not provide shared files, or only share a small number of 

file nodes that can be hardly accessed by anyone, regardless of 

any strategy adopted by the other type of nodes. In fact they 

are nodes and malicious nodes, of which the malicious nodes 

have two typical and complex collusion attacks: first, 

according to the role assignments, some malicious nodes are 

responsible for improving the evaluation of certain malicious 

nodes, increasing the revenue of such nodes in a deceiving way, 

and achieving their group improvement of efficiency and 

speed; second, the nodes regularly exchange roles to maintain 

their respective high node and group returns, thereby 

deceiving high-quality services and exacerbating the bias of 

rational cooperation nodes. 
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There were 600 network nodes in the simulation 

environment, of which 120 were UC nodes at the 20% 

threshold. The total number of files was 1,200, and the number 

of connections between nodes was 3 to 5, and the number of 

groups was 25. Then, 1,200 files were randomly distributed to 

600 nodes, and each file was guaranteed to be owned by at 

least one UC node. During the simulation process, each node 

made a download request for 10 files. Next, the node receiving 

the request could respond to it, and from all the responding 

nodes select the node with the highest revenues in the same 

group or a higher-level group for file download. If it succeeds, 

the node owns the file; otherwise, it cannot. Considering group 

deception and negative offset of nodes, several cycles were 

used in the simulation analysis to take the average value. The 

simulation also used Inter i7-9700 3GHZ CPU, 8G memory, 

PeerSim platform, and C++ language. For comparison, the 

method in literature 7 was also implemented. Table 1 lists the 

designed simulation parameters.  

 

Table 1. Simulation parameters 

 
Parameter type Name Value 

Network 

environment 

Total nodes 600 

Node degree 3-5 

Initial topological 

structure 

Random 

topology 

Nodes Node types UC\ RC\ UN 

Number of groups 25 

Cycles of service 

request 

time/hour 

Response cycle of 

services 

time/hour 

Files Total files 1200 

Distribution of shared 

files 

Uniform 

random  

Thresholds α 0.2 

 

6.1 Revenue simulation of various nodes 

 

In the experiment, it’s assumed that the ratio of UC, RC, and 

UN nodes was 1: 1: 1, that is, 200 nodes of each type. The 

simulation results are shown in Figure 1. 

 

  
 

Figure 1. Performance comparison for the three types of 

nodes 

 

At the initial stage of the simulation, all nodes in the 

network were not differentiated and did not provide 

differentiated services. So, it could not effectively perform 

game evolution, and differentiate the service levels. At this 

time, the UC and RC nodes were in a fully cooperative state 

and working hard to serve the UN nodes, while the UN node 

contributed the files that have a small number or is rarely 

accessed, and cannot effectively serve the UC and RC nodes, 

so that the UC and RC nodes will lose their bandwidth and 

computing power but obtaining no services. Therefore, the 

average revenue of UN nodes was much higher than that of 

UC and RC nodes. 

As the simulation continued, it’s also found that the node 

revenues with large contributions increased, and the 

differentiation mechanism took effect. Then, the UC node with 

relatively low revenue might continue to provide services for 

the UN node, the RC node chose to reject the UN service 

request, and the revenue of the UN node decreased 

significantly. The revenue of the UC and RC nodes increased, 

but that of the UC node showed a slow trend. After 20 cycles, 

the RC node had the highest return, verifying the effectiveness 

of the differentiation mechanism, and accelerating the bias of 

the RC node; whereas, the average revenue of UC nodes was 

slightly lower than that of UN, indicating that there are many 

UN nodes in the network. Even if not providing any service, 

the revenues of UN nodes are equal to or slightly higher than 

those nodes that strive to provide services. This is also the 

reason why in P2P most nodes choose to free-riding. 

 

6.2 Simulating the change law of UN nodes 

 

6.2.1 Ratio setting of initial nodes  

In reality, the number of UC nodes is very small, not 

exceeding 20%, so the ratio of UC nodes was set to 5%. The 

number of UN nodes is far more than 50%. Therefore, by 

constantly changing the ratios of UN nodes (10%-80%), the 

authors calculated the average revenue value of various types 

of nodes and the bias of RC nodes. 

 

6.2.2 Analysis for the average revenue of the three types of 

nodes before the use of incentives 

The average revenues of the three types of nodes before the 

use of measures are shown in Figure 2(a). 

 

 
(a) Before the use of incentives 

 
(b) After the use of incentives 

 

Figure 2. Comparison of the average revenue between the 

three types of nodes under different ratios of UN nodes 
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(1) With the ratio of UN nodes between 10% and 30%, the 

average revenue of three types of nodes was around 4, which 

indicates a good state of cooperation. Also, UC and RC nodes 

make larger contributions, and remain a balance between the 

returns and contributions. 

(2) With the ratio of UC nodes increasing (from 30% to 

80%), the average revenue of RC nodes still remained the 

same, because RC nodes establish connections with each other 

and provide services to each other, and the average revenue of 

RC nodes varies with UN. However, the UC nodes frequently 

responded to the UN nodes for a long time, causing excessive 

load and heavy congestion, which decreased its average 

returns significantly. For UN nodes, because they have not 

been served by the UC node for a long time, their average 

return value also fell at the same rate as UC nodes. 

 

6.2.3 Analysis for the average revenue of the three types of 

nodes after the use of incentives 

The average returns of the three types of nodes after the used 

of incentives are shown in Figure 2 (b). 

(1) With the ratio of UN nodes between 10% and 30%, once 

a UN node was found, the non-cooperation and non-response 

strategy were adopted immediately. At this time, the UC and 

RC nodes have made great contributions and are still in a good 

cooperative state; the average revenue of nodes was also 

around 4. But, once a free-riding situation was found in the 

UN node, its average revenue immediately dropped to about 2. 

(2) With the ratio of UC nodes increasing (from 30% to 

80%), the nodes with more contributions were closely 

connected in the form of group, and they provided services to 

each other through intra-group connections. Especially for UC 

nodes, they have great contributions and their service object is 

also a UC node or an RC node with the same contribution, so 

the average revenue of the UC node steadily rose to 5.2, which 

not only avoids the overload caused by frequent response to 

the UN node, but also enables the UC node itself to obtain 

high-quality services. Nevertheless, the UN nodes were both 

free-riding nodes and whitewashed malicious nodes. 

Therefore, the system preemptively assigned the UN nodes to 

low-revenue groups and prevented them from sharing any 

resources from the UC and RC. As a result, the UN nodes can 

only obtain inferior services internally, and their average 

returns dropped to almost 0. 

(3) The use of incentives has intensified the bias of RC 

nodes. They have moved closer to UC nodes and tended to be 

similar to UC behavior patterns in order to obtain efficient 

services and efficient services, and thus contribute to the 

system. RC nodes have an upward trend, from an initial 4.3 to 

a later 4.5. 

(4) Even if there was a group deception behavior by some 

malicious nodes, they might have obtained a high return from 

the role assignments in the early stage of formation through 

the collusion attack of other malicious nodes or group 

deception, and then allocated to the higher-level group during 

the group initialization process. However, according to the 

adjustment rules, the service objects of such nodes were not in 

the group or the upper-level group, and their revenue would 

quickly fall below the threshold of the average revenue level 

of the group, so they were re-adjusted to the low-income group. 

This type of nodes is mainly a group with low return 

evaluation. Due to the low evaluation weights of the group, it 

is very unlikely that the node level can be improved through 

the evaluation within the group. Therefore, this type of node 

has been in low-revenue group for a long time. For this, the 

collusion nodes were either isolated or withdraw from the 

malicious group because of its own interests, and took active 

actions to obtain higher returns, which has also proven to be 

correct in real life. 

 

6.3 Network feature measurement 

 

At the initial stage, 600 nodes were divided into 25 groups, 

and each group had 24 nodes. Also, each node was set to be 

connected with other nodes at a probability of 0.1. Then, 

related analysis was conducted on the force distribution of 

stabilized network nodes, network stability, and the overall 

network benefits. 

(1) Analysis of node forces 

If a node has a greater force on other nodes, it shall be more 

important. Figure 3 shows the acting force of nodes in the 

stabilized evolution environment with n=600 and 80% of free-

riding nodes. It can be seen from the figure that only a small 

number of nodes had stronger forces (72 nodes with the force 

greater than 0.6), and it accounted for 12% of the total, without 

exceeding 20%; most nodes were weak as free-riding nodes. 

Besides, there were 262 nodes with the force [0.2, 0.4], and 

concentrated near the mean (0.307), accounting for 42% of the 

overall distribution. This is not only consistent with Pareto's 

law in reality, but also with the characteristics of scale-free 

networks. 

 

 
 

Figure 3. The acting force of network nodes in the stabilized 

evolution environment 

 

(2) Analysis of network stability 

The revenues of nodes are closely related to node 

preferences, node cooperation, and factors affecting the 

network environment. The network environment parameters 

have a great impact on network stability. If nodes can set 

reasonable network parameters to automatically adjust 

policies and expectations, they can obtain higher returns and 

better adaptability, and then maintain the effectiveness and 

stability of network. 

At the beginning of the evolution, the use of random 

selection strategy could ensure a high frequency of 

cooperation. However, with the increase in the proportion of 

UN nodes, RC nodes might have short-term betrayal, but for 

personal interests, they chose to give up the betrayal behaviors 

and work with RC or UC nodes to ensure that the benefits are 

multiplied. Figure 4 shows the influence of the multiplication 
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factor k and noise T on the correlation coefficient ρ. Initially, 

the small k has a large impact on ρ; when it becomes large, it 

doesn’t; also, when the noise T is small, it is not conducive to 

network stability, but the stable network has a weak effect on 

T.  

 

 
 

Figure 4. Comparison on impact analysis of different 

parameters under evolutionarily stable environment 

 

(3) Comparative analysis of overall network revenue 

To clearly reflect the overall network revenue of the three 

types of nodes (UN, RC, and UC) under different proportions, 

the authors set three network environments dominated by 

different nodes; network X: UC node 20%, RC20%, UN60%; 

network Y: UC node 20%, RC60%, UN20%; network Z: UC 

node 60%, RC20%, UN20%. Their overall revenue of the 

stabilized network was then calculated.  

It can be seen from Figure 5 that the X network mainly 

included free-riding nodes and malicious nodes, and its overall 

revenue was extremely low, much lower than the Y network 

and the Z network; the Z network was mainly the UC node, 

and its overall network revenue was close to 5; the overall 

revenue of Y network mainly dominated by RC was higher 

than that of Z network. This indicates that the method 

proposed in this paper can exacerbate the bias of RC nodes, 

which shall obtain poor service because the malicious nodes 

are mainly in the low-income group despite the collusion 

attacks of the malicious nodes. 

 

 
 

Figure 5. Comparison for the overall network revenue based 

on different proportion of nodes 

 

Meanwhile, Figure 5 also shows that compared with the 

methods in Literature 7, the overall revenue obtained by our 

method is slightly higher, when the sum of UC nodes and RC 

nodes accounted for a high proportion in the network; the 

overall venue obtained by the method of Literature 7 is higher 

than our method, when UN nodes occupy a relatively high 

proportion in the network, This means that the method 

proposed in this paper is superior to that in Literature 7 in 

terms of motivating the bias of RC nodes, but slightly poorer 

than literature 7 in the restriction of UN nodes. 

 

 

7. CONCLUSIONS  

 

From the perspective of evolution, this paper proposes an 

incentive mechanism for P2P network based on feature 

weighting and game theory. This mechanism first uses the five 

comprehensive coefficients of node degree, node clustering 

coefficient, local clustering coefficient, all clustering 

coefficients, and correlation coefficients to form a feature 

clustering matrix through linear fusion; then, in order to 

maximize the overall revenue, a sparse matrix of revenue was 

generated through feature classification, noise reduction, 

mapping and iteration, highlighting the status of fully 

cooperative nodes; afterwards, combining group evolution and 

constraint rule sets, the authors determined group node 

dynamic adjustment rules, response service rules, and message 

query and forwarding rules, to maximize service efficiency; 

finally, a multi-layered P2P dynamic service system was 

constructed to promote the active evolution of nodes, and 

avoid the negative migration. This study provides an effective 

idea for stimulating node behaviors, reducing negative node 

migration, and excellent node selection. However, due to the 

complexity of node behaviors in a P2P environment, it is 

almost impossible to fully describe and identify all the 

behaviors of nodes. Therefore, next study should focus on how 

to measure network performance, refine rules, increase the 

number of simulated nodes, and expand the network scale to 

make it closer to a real network, in order to satisfy the more 

complex and changing needs in reality. 
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