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 Conflict is an inevitable feature of human endeavor. The conflict analysis has great 

theoretical and practical significance. Some scholars have discussed three-way decision in 

conflict analysis with probabilistic rough set (RS) over two universes, but have not probed 

deep into the fuzzy rough set (FRS) for conflict analysis. To make up for the gap, this paper 

firstly introduces the concepts and properties of conflict information system (CIS) and 

probabilistic CIS over two universes. Next, a brand-new system called FRS-CIS was 

established, followed by the construction of probability measure function and two novel 

mappings in the probabilistic FRS-CIS over two universes. Furthermore, the authors 

discussed the properties of probability measure and the lower and upper approximations of 

𝑌  with parameters 𝛼  and 𝛽  corresponding to each mapping. Finally, (0,1)-probabilistic 

FRS and 0.5-probabilistic FRS were presented for the FRS-CIS and explained with 

examples, according to the three-way decision theoretic RS under the CIS over two 

universes. The research results shed new light to solving the FRS under FRS-CIS over two 

universes. 
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1. INTRODUCTION 

 

Conflict is inevitable in many fields of human endeavor, 

namely, business and governmental negotiations, political and 

legal disputes, labor management, military operations, service 

and physical resources, commercial security policies, 

information decisions, water resource allocation, and risk 

control [1-14]. Therefore, it is very important to analyze and 

resolve conflicts in an accurate manner. So far, many models 

and methods have been developed for conflict analysis [2-7, 

15, 16, 19-23]. 

Since the late 1990s, the rough set (RS) has been applied to 

conflict resolution and decision-making. Based on the RST, Z. 

Pawlak [4, 5] outlined a novel approach for conflict analysis. 

Later, various scholars have identified the limitations of 

Pawlak’s conflict analysis model, and made many attempts to 

improve the model. First, Ramanna et al. [2] extended the RS-

based conflict model to a complex conflict model. Next, Zhu 

and Wang [6] proposed the concept of associated conflict, and 

developed an approach for associated conflict analysis, using 

covering-based granular computing. Soon, Liu et al. [7] 

introduced a comprehensive strategy for associated conflict 

analysis through covering-based granular computing. Deja 

and Ślęak [16] described the nature of conflicts and several 

solutions to the fundamental problems of conflicts, and 

defined conflict situation models that clearly illustrate conflict 

components.  

Pawlak’s RS theory might be invalid if there are two or 

more correlated universes, such as investment plan [17] and 

medical diagnosis [18]. Despite their correlations, investor 

(sufferer) and project (symptom) belong to different universes. 

Therefore, it is necessary to promote RS-based conflict model 

to multiple universes. Drawing on the RS theory, B.Z. Sun et 

al. [19, 20] extended Pawlak’s conflict analysis model to two 

universes, and also combined probabilistic rough set with 

three-way decision, creating a new conflict analysis model. 

The RS-based conflict analysis is critical to decision-

making. Lang et al. [21] presented the concepts of probabilistic 

conflict set, neutral set and allied conflict set, calculated the 

thresholds of conflict analysis with the decision theoretic RST, 

and designed incremental algorithms for the said sets in 

dynamic information system. With the aid of group decision 

theory, Lang et al. [22] also introduced methods to compute 

positive, neutral and negative alliances for conflicts in 

Pythagorean fuzzy information systems. Later, Lang et al. [23] 

proposed the concepts of agreement, disagreement and neutral 

subsets of a strategy with two evaluation functions, put 

forward a three-way decisions-based conflict analysis models 

to trisect the universe of agents, and employed a pair of two-

way decisions models to interpret the mechanism of the three-

way decision rules for an agent. 

The fuzzy set (FS) and RS can effectively handle conflicts 

under uncertainty. So far, many have analyzed conflicts based 

on the RS or FS, but few have tackled conflict analysis from 

the perspective of FRS (FRS). To make up for this gap, this 

paper mainly investigates conflict analysis based on three-way 

decision FRS over two universes. Inspired by the RS-based 

decision rules proposed by Sun et al. [20] for conflict over two 

universes, the authors presented the decision rules for conflict 

based on the FRS over two universes, and then developed a 

three-way decision model of (0,1)-probabilistic FRS and 0.5-

probabilistic FRS. 

The reminder of this paper is organized as follows: Section 

2 reviews the CIS over two universes and introduces the FRS-
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CIS over two universes; Section 3 presents the three-way 

decision theoretic RS under the CIS over two universes, and 

illustrates the three-way decision models of (0,1)-probabilistic 

FRS and 0.5-probabilistic FRS with examples; Section 4 sums 

up the research findings. 

 

 

2. PRELIMINARIES 

 

This section introduces the concepts of the CIS and 

probabilistic CIS over two universes, and explains the lower 

and upper approximations of any feasible consensus strategy 

based on probabilistic CIS over two universes. In addition, the 

FRS-CIS and probabilistic FRS-CIS were defined over two 

universes, and the lower and upper approximations of any 

feasible consensus strategy were given under the probabilistic 

FRS-CIS over two universes. 

 

2.1 The CIS 

 

The Middle East conflict is a classic example of RST-based 

conflict analysis [3-5, 18, 21, 24]. The conflict involves six 

agents and five issues. The universe of agents can be expressed 

as = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6} , where 𝑢1 - 𝑢6  are Israel, Egypt, 

Palestine, Jordan, Syria and Saudi Arabia, respectively; the 

universe of issues can be expressed as 𝑉 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5}, 

where 𝑎1-𝑎5 are setting up an autonomous Palestinian state in 

the West Bank and Gaza, keeping the Israeli military outposts 

along the Jordan River, acknowledging Israeli occupation of 

East Jerusalem, keeping the Israeli military outposts on the 

Golan Heights, and granting citizenship to Palestinian 

refugees in Arab countries. The attitudes of each agent to the 

six issues can be summed up as the CIS in Table 1.  

 

Table 1. The CIS of the Middle East conflict 

 

U/V a1 a2 a3 a4 a5 

u1 − + + + + 

u2 + 0 − − − 

u3 + − − − 0 

u3 0 − − 0 − 

u5 + − − − − 

u6 0 + − 0 + 

Note: −, + and 0 mean the agent in the corresponding row disagrees with, 

agrees with and remains neutral about the issue in the corresponding column, 
respectively.  

 

Definition 2.1 [20] Let 𝑈 be the universe of all agents and 

𝑉 be the universe of all issues in a conflict. Then, the CIS of 

the conflict can be expressed as (𝑈, 𝑉). 

Definition 2.2 [20] The probabilistic CIS over two 

universes can be defined as a quadruple (𝑈, 𝑉, 𝐹, 𝑃), where 

𝑈 = {𝑢1, 𝑢2, ⋯ , 𝑢𝑚} is the universe of all agents of a conflict, 

𝑉 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑛} is the universe of all issues of the conflict, 

𝐹 = {𝐹+, 𝐹−}  is two set-valued mappings from 𝑈  to 𝑉 

( 𝐹+,  𝐹−: 𝑈 → 2𝑉  ( 2𝑉 = {𝑋1, 𝑋2, ⋯ , 𝑋2|𝑉|}  is all subsets of 

universe 𝑉  with 2𝑉  states)), and 𝑃  is a probability measure 

defined on the σ  algebra over {𝐹+(𝑢)|𝑢 ∈ 𝑈} ⊆ 2𝑉  on 

universe 𝑉. 

Definition 2.3 [20] Let (𝑈, 𝑉, 𝐹, 𝑃) be a probabilistic CIS 

over two universes. For any subset𝑋 ∈ 2𝑉 , 𝑋  is called the 

feasible consensus strategy for a conflict. In other words, the 

optimal strategy is a subset of 𝑉 which satisfies the preset rule 

or criterion for all agents with respect to the conflict. 

Definition 2.4 [20] Let (𝑈, 𝑉, 𝐹, 𝑃) be a probabilistic CIS 

over two universes. Then, 𝐹+(𝑢𝑖) =

{𝑎𝑗|𝑎𝑗(𝑢𝑖) = +, 𝑎𝑗 ∈ 𝑉}, 𝑢𝑖 ∈ 𝑈 and 𝐹−(𝑢𝑖) =

{𝑎𝑗|𝑎𝑗(𝑢𝑖) = −, 𝑎𝑗 ∈ 𝑉}, 𝑢𝑖 ∈ 𝑈 are defined as the subsets of 

issues agreed and disagreed by agent 𝑢𝑖  over universe 𝑉 , 

respectively. 

Let (𝑈, 𝑉, 𝐹, 𝑃) be a probabilistic CIS over two universes. 

For any 0 ≤ 𝛽 < 𝛼 ≤ 1  and any feasible consensus 

strategy𝑋 ∈ 2𝑉 , the lower and upper approximations of 𝑋 

about (𝑈, 𝑉, 𝐹, 𝑃) with respect to parameters 𝛼 and 𝛽 for 𝐹 =
{𝐹+, 𝐹−}  can be expressed as 𝐴𝑝𝑟𝑃

+(𝑋) =

{𝑢𝑖 ∈ 𝑈|𝑃(𝑋|𝐹+(𝑢𝑖)) ≥ 𝛼}, 𝐴𝑝𝑟
𝑃

+
(𝑋) =

{𝑢𝑖 ∈ 𝑈|𝑃(𝑋|𝐹+(𝑢𝑖)) > 𝛽}  and 𝐴𝑝𝑟𝑃
−(𝑋) =

{𝑢𝑖 ∈ 𝑈|𝑃(𝑋|𝐹−(𝑢𝑖)) ≥ 𝛼}, 𝐴𝑝𝑟
𝑃

−
(𝑋) =

{𝑢𝑖 ∈ 𝑈|𝑃(𝑋|𝐹−(𝑢𝑖)) > 𝛽}, respectively. 

If 𝐴𝑝𝑟𝑃
+(𝑋) ≠ 𝐴𝑝𝑟

𝑃

+
(𝑋) or 𝐴𝑝𝑟𝑃

−(𝑋) ≠ 𝐴𝑝𝑟
𝑃

−
(𝑋), then the 

intervals (𝐴𝑝𝑟𝑃
+(𝑋), 𝐴𝑝𝑟

𝑃

+
(𝑋))  and (𝐴𝑝𝑟𝑃

−(𝑋), 𝐴𝑝𝑟
𝑃

−
(𝑋)) 

are the probabilistic RSs of the CIS over two universes, 

respectively. 

 

2.2 The FRS-CIS 

 

Drawing on the above concepts of RST-based conflict 

analysis, this subsection defines the concepts of FRS-based 

conflict analysis. The FRS-CIS was discussed as follows: 

Let 𝑈 = {𝑢1, 𝑢2, ⋯ , 𝑢𝑚} be the universe of all investors and 

𝑉 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑛} be the universe of all projects in a conflict 

[17]. Then, the likelihood for each investor to choose each 

project can be summed up as a CIS (Table 2). 

 

Table 2. The CIS for conflict between investors on projects 

 

U/V a1 a2 a3 a4 a5 a6 

u1 0.85 0.25 0.75 0.20 0 0.80 

u2 0.55 0.75 0.20 0.75 0.85 0.55 

u3 0.45 0.15 0.90 0.20 0.25 0.60 

u4 0.50 0.20 0.85 0.75 0.90 0.60 

u5 0.20 0.90 0.30 0.80 0.75 0.30 

u6 0.55 0.45 0.30 0.75 0.90 0.50 

u7 0.80 0.70 0.90 0.40 0 0.75 

u8 0.30 0.70 1 0.45 0 0.75 

u9 0.90 0.25 0.20 0.30 1 0.40 

u10 0.80 0.40 0.90 0 0.80 0.80 

Note: 0, 1 and (0, 1) mean the investor corresponding row disagrees with, 
agrees with and remains neutral about the project in the corresponding column, 

respectively; the value in (0, 1) is positively correlated with the likelihood for 

the investor to choose the project.  

 

Obviously, the traditional CIS cannot describe the conflict 

between investors on projects. Therefore, it is necessary to 

provide the FRS-CIS over two universes. 

Definition 2.5 Let 𝑈 be the universe of all investors, 𝑉 be 

the universe of all projects, and 𝐹  be the fuzzy relation 

between 𝑈  and 𝑉 . Then, the FRS-CIS can be expressed as 

(𝑈, 𝑉, 𝐹). 
Definition 2.6 The probabilistic FRS-CIS over two 

universes can be defined as (𝑈, 𝑉, 𝐹, 𝑓, 𝑃) , where 𝑈 =
{𝑢1, 𝑢2, ⋯ , 𝑢𝑚}  is the universe of all investors of an FRS 

conflict, 𝑉 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑛} is the universe of all projects of 

the FRS conflict, 𝑓 = {𝑓+, 𝑓−}  is two set-valued mappings 

from 𝑈  to 𝑉  ( 𝑓+, 𝑓−: 𝑈 → 2𝑉  ( 2𝑉 = {𝑌1, 𝑌2, ⋯ , 𝑌2|𝑉|}  is all 
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subsets of universe 𝑉 with 2𝑉 states)), and 𝑃 is a probability 

measure. 

For any set of projects 𝑌 ∈ 2𝑉  in the FRS conflict 
(𝑈, 𝑉, 𝐹, 𝑓, 𝑃), the lower and upper approximations for 𝑓 =
{𝑓+, 𝑓−} can be respectively defined as: 

𝐴𝑝𝑟𝑓
+(𝑌) = {𝑢𝑖 ∈ 𝑈|𝑓+(𝑢𝑖) ⊆ 𝑌}, 𝐴𝑝𝑟

𝑓

+
(𝑌) =

{𝑢𝑖 ∈ 𝑈|𝑓+(𝑢𝑖) ∩ 𝑌 ≠ ∅},  

𝐴𝑝𝑟𝑓
−(𝑌) = {𝑢𝑖 ∈ 𝑈|𝑓−(𝑢𝑖) ⊆ 𝑌}, 𝐴𝑝𝑟

𝑓

−
(𝑌) =

{𝑢𝑖 ∈ 𝑈|𝑓−(𝑢𝑖) ∩ 𝑌 ≠ ∅}. 

Furthermore, it is easy to find that the following relations 

are valid: 

𝐴𝑝𝑟𝑓
+(𝑌) ⊆ 𝐴𝑝𝑟

𝑓

+
(𝑌); 

𝐴𝑝𝑟𝑓
−(𝑌) ⊆ 𝐴𝑝𝑟

𝑓

−
(𝑌); 

𝐴𝑝𝑟𝑓
+(𝑌) ∩ 𝐴𝑝𝑟𝑓

−(𝑌) = ∅; 

𝐴𝑝𝑟
𝑓

+
(𝑌) ∩ 𝐴𝑝𝑟

𝑓

−
(𝑌) = ∅. 

Proposition 2.1 Let (𝑈, 𝑉, 𝐹, 𝑓, 𝑃) be a probabilistic FRS-

CIS over two universes. For any 𝑌 ∈ 2𝑉 , the following 

properties are valid: 

(1) 𝐴𝑝𝑟𝑓
+(∅) = 𝐴𝑝𝑟

𝑓

+
(∅) = ∅, 𝐴𝑝𝑟𝑓

−(∅) = 𝐴𝑝𝑟
𝑓

−
(∅) = ∅, 

(2)𝐴𝑝𝑟𝑓
+(𝑌) ⊈ 𝑌, 𝐴𝑝𝑟𝑓

−(𝑌) ⊈ 𝑌, 

(3) 𝐴𝑝𝑟
𝑓

+
(𝑌) ⊉ 𝑌, 𝐴𝑝𝑟

𝑓

−
(𝑌) ⊉ 𝑌, 

(4)  𝐴𝑝𝑟𝑓
+(𝑉 − 𝑌) = 𝑈 − 𝐴𝑝𝑟

𝑓

+
(𝑌), 𝐴𝑝𝑟𝑓

−(𝑉 − 𝑌) = 𝑈 −

𝐴𝑝𝑟
𝑓

−
(𝑌). 

Proof 2.1 Since (1)-(3) are obviously valid, the following is 

the proof of (4): 

Let 𝑌 ∈ 2𝑉, 

𝐴𝑝𝑟𝑓
+(𝑉 − 𝑌) = {𝑢𝑖 ∈ 𝑈|𝑓+(𝑢𝑖) ⊆ 𝑈 − 𝑌} =

{𝑢𝑖 ∈ 𝑈|𝑓+(𝑢𝑖) ⊈ 𝑌} = {𝑢𝑖 ∈ 𝑈|𝑓+(𝑢𝑖) ∩ 𝑌 = ∅} = 𝑈 −

{𝑢𝑖 ∈ 𝑈|𝑓+(𝑢𝑖) ∩ 𝑌 ≠ ∅} = 𝑈 − 𝐴𝑝𝑟
𝑓

+
(𝑌). 

Then, 𝐴𝑝𝑟𝑓
−(𝑉 − 𝑌) = 𝑈 − 𝐴𝑝𝑟

𝑓

−
(𝑌)  can be proved in a 

similar manner. 

Definition 2.7 Let (𝑈, 𝑉, 𝐹, 𝑓, 𝑃)  be a probabilistic FRS-

CIS over two universes. For any subset 𝑌 ∈ 2𝑉, 𝑌 is called the 

feasible consensus strategy for an FRS conflict. In other words, 

the optimal strategy is a subset of 𝑉 which satisfies the preset 

rule or criterion for all investors with respect to the FRS 

conflict. 

According to Zhao et al. [17], (𝑈, 𝑉, 𝐹, 𝑓, 𝑃)  is a 

generalized fuzzy probabilistic approximation space, where 𝑈 

(𝑈 = {𝑢1, 𝑢2, ⋯ , 𝑢𝑚}) and 𝑉 are two universes of discourse, 𝑅 

is a fuzzy relation from 𝑈 to 𝑉, 𝑃(𝑋|[𝑥]𝑅) =
∑ 𝑅(𝑢𝑖)𝑝𝑖𝑢𝑖∈𝑋

∑ 𝑅(𝑢𝑖)𝑝𝑖𝑢𝑖∈𝑈
 and 

𝑃(𝑋𝑐|[𝑥]𝑅) =
∑ 𝑅(𝑢𝑖)𝑝𝑖𝑢𝑖∈𝑋𝑐

∑ 𝑅(𝑢𝑖)𝑝𝑖𝑢𝑖∈𝑈
 ( 𝑝𝑖 = P(𝑢𝑖) ). Then, the 

probability measure can be defined as follows based on FRS-

CIS over two universes: 

Definition 2.8 Let (𝑈, 𝑉, 𝐹, 𝑓, 𝑃)  be a probabilistic FRS-

CIS over two universes, where 𝑈 = {𝑢1, 𝑢2, ⋯ , 𝑢𝑚} and 𝑉 =
{𝑎1, 𝑎2, ⋯ , 𝑎𝑛}  are two finite sets, 𝑌 ∈ 2𝑉  be the feasible 

consensus strategy,  𝑓+, 𝑓−: 𝑈 → 2𝑉  and 𝑝𝑖 = P(𝑎𝑖).  Then, 

the probability measure can be computed by: 

 

𝑃(𝑓+(𝑢𝑖)|𝑌) =
∑ 𝑎𝑗(𝑢𝑖)𝑝𝑗𝑎𝑗∈𝑓+(𝑢𝑖)

∑ 𝑎𝑗(𝑢𝑖)𝑝𝑗𝑎𝑗∈𝑌

 (1) 

 

𝑃(𝑓−(𝑢𝑖)|𝑌) =
∑ 𝑎𝑗(𝑢𝑖)𝑝𝑗𝑎𝑗∈𝑓−(𝑢𝑖)

∑ 𝑎𝑗(𝑢𝑖)𝑝𝑗𝑎𝑗∈𝑌

 (2) 

 

The above definition shows that 𝑃(𝑓+(𝑢𝑖)|𝑌) = 0  if 

∑ 𝑎𝑗(𝑢𝑖)𝑝𝑗𝑎𝑗∈𝑓+(𝑢𝑖) = 0 , and 𝑃(𝑓+(𝑢𝑖)|𝑌) = 1  if 

∑ 𝑎𝑗(𝑢𝑖)𝑝𝑗𝑎𝑗∈𝑓+(𝑢𝑖) = ∑ 𝑎𝑗(𝑢𝑖)𝑝𝑗𝑎𝑗∈𝑌 .  

The same conclusion can be drawn for 𝑃(𝑓−(𝑢𝑖)|𝑌). 

Remark For a given FRS conflict, there might be 𝑓+(𝑢𝑖) =
∅  and 𝑓−(𝑢𝑖) = ∅ . Thus, 𝑃(𝑓+(𝑢𝑖)|𝑌) = 0  and 

𝑃(𝑓−(𝑢𝑖)|𝑌) = 1 are defined separately. 

Proposition 2.2 Let (𝑈, 𝑉, 𝐹, 𝑓, 𝑃) be a probabilistic FRS-

CIS over two universes. For 𝑌 ∈ 2𝑉, we have: 

(1) 𝑃(𝑓+(𝑢𝑖)|𝑌) + 𝑃((𝑓+(𝑢𝑖))
𝑐
|𝑌) = 1, 𝑃(𝑓−(𝑢𝑖)|𝑌) +

𝑃((𝑓−(𝑢𝑖))
𝑐
|𝑌) = 1, 

(2) 𝑃(𝑓+(𝑢𝑖)|𝑌) +  𝑃(𝑓−(𝑢𝑖)|𝑌) = 1. 

The above properties are obviously valid. 

Definition 2.9 Let (𝑈, 𝑉, 𝐹, 𝑓, 𝑃)  be a probabilistic FRS-

CIS over two universes. Then, the subsets of projects agreed 

and disagreed by investor 𝑢𝑖  over universe 𝑉  can be 

respectively expressed as:  

 

𝑓+(𝑢𝑖) = {𝑎𝑗|𝑎𝑗(𝑢𝑖) = 1, 𝑎𝑗 ∈ 𝑉}, 𝑢𝑖 ∈ 𝑈 (3) 

 

𝑓−(𝑢𝑖) = {𝑎𝑗|𝑎𝑗(𝑢𝑖) = 0, 𝑎𝑗 ∈ 𝑉}, 𝑢𝑖 ∈ 𝑈 (4) 

 

For any 0 ≤ 𝛽 < 𝛼 ≤ 1 , the lower and upper 

approximations of the feasible consensus strategy 𝑌  about 

(𝑈, 𝑉, 𝐹, 𝑓, 𝑃)  with respect to parameters 𝛼  and 𝛽  can be 

respectively expressed as: 

𝐴𝑝𝑟𝑃
+(𝑌) = {𝑢𝑖 ∈ 𝑈|𝑃(𝑓+(𝑢𝑖)|𝑌) ≥ 𝛼}, 𝐴𝑝𝑟

𝑃

+
(𝑌) =

{𝑢𝑖 ∈ 𝑈|𝑃(𝑓+(𝑢𝑖)|𝑌) > 𝛽},  

𝐴𝑝𝑟𝑃
−(𝑌) = {𝑢𝑖 ∈ 𝑈|𝑃(𝑓−(𝑢𝑖)|𝑌) ≥ 𝛼}, 𝐴𝑝𝑟

𝑃

−
(𝑌) =

{𝑢𝑖 ∈ 𝑈|𝑃(𝑓−(𝑢𝑖)|𝑌) > 𝛽}. 

If 𝐴𝑝𝑟𝑃
+(𝑌) ≠ 𝐴𝑝𝑟

𝑃

+
(𝑌) or 𝐴𝑝𝑟𝑃

−(𝑌) ≠ 𝐴𝑝𝑟
𝑃

−
(𝑌), then the 

interval (𝐴𝑝𝑟𝑃
+(𝑌), 𝐴𝑝𝑟

𝑃

+
(𝑌)) or (𝐴𝑝𝑟𝑃

−(𝑌), 𝐴𝑝𝑟
𝑃

−
(𝑌)) is the 

(0,1)-probabilistic FRS of the FRS-CIS over two universes. 

Example 1 Let 𝑈 = {𝑢1, 𝑢2, ⋯ , 𝑢10} be the set of sufferers 

and 𝑉 = {𝑎1, 𝑎2, ⋯ , 𝑎5} be the set of symptoms [25]. If the 

probability distribution on 𝑉 is {0.2,0.2,0.1,0.2,0.3}, then the 

likelihood for each sufferer to have each symptom can be 

illustrated by the fuzzy CIS in Table 3. 

 

Table 3. The fuzzy CIS for the conflict between sufferers on 

symptoms 

 

U/V a1 a2 a3 a4 a5 

u1 0.85 0.25 0.77 0.17 0 

u2 0.62 0.74 0.17 0.53 0.81 

u3 0.45 0.10 0.89 0.18 0.24 

u4 0.47 0.17 0.83 0.74 0.91 

u5 0.20 0.90 0.30 0.80 0.75 

u6 0.81 0.30 0.30 0.82 0.90 

u7 0.82 0.70 0.87 0.40 0 

u8 0.31 0.73 1 0.44 0 

u9 0.91 0.25 0.20 0.30 1 

u10 0.82 0.40 0.90 0 0.78 
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The following can be derived from the set-valued mappings 

𝑓 = {𝑓+, 𝑓−} from 𝑈 to 𝑉 (𝑓+(𝑢𝑖) = {𝑎𝑗|𝑎𝑗(𝑢𝑖) = 1, 𝑎𝑗 ∈ 𝑉}, 

𝑢𝑖 ∈ 𝑈 and 𝑓−(𝑢𝑖) = {𝑎𝑗|𝑎𝑗(𝑢𝑖) = 0, 𝑎𝑗 ∈ 𝑉}, 𝑢𝑖 ∈ 𝑈): 

𝑓+(𝑢1) = ∅, 𝑓+(𝑢2) = ∅, 𝑓+(𝑢3) = ∅, 𝑓+(𝑢4) =
∅, 𝑓+(𝑢5) = ∅, 

𝑓+(𝑢6) = ∅, 𝑓+(𝑢7) = ∅, 𝑓+(𝑢8) = {(𝑎3, 1)}, 𝑓+(𝑢9) =
{(𝑎5, 1)}, 𝑓+(𝑢10) = ∅. 

𝑓−(𝑢1) = {(𝑎5, 0)}, 𝑓−(𝑢2) = ∅, 𝑓−(𝑢3) = ∅, 𝑓−(𝑢4) =
∅, 𝑓−(𝑢5) = ∅, 

𝑓−(𝑢6) = ∅, 𝑓−(𝑢7) = {(𝑎5, 0)}, 𝑓−(𝑢8) =
{(𝑎5, 0)}, 𝑓−(𝑢9) = ∅, 𝑓−(𝑢10) = {(𝑎4, 0)}. 

Let 𝑌 = 𝑉  be the feasible consensus strategy, then the 

probability measure can be calculated for each 𝑢𝑖 ∈ 𝑈 by (1) 

and (2): 

𝑃(𝑓+(𝑢1)|𝑌) = 0, 𝑃(𝑓+(𝑢2)|𝑌) = 0, 𝑃(𝑓+(𝑢3)|𝑌) =
0, 𝑃(𝑓+(𝑢4)|𝑌) = 0, 

𝑃(𝑓+(𝑢5)|𝑌) = 0, 𝑃(𝑓+(𝑢6)|𝑌) = 0, 𝑃(𝑓+(𝑢7)|𝑌) =

0, 𝑃(𝑓+(𝑢8)|𝑌) =
0.1×1

0.396
= 0.2525, 

𝑃(𝑓+(𝑢9)|𝑌) =
0.3×1

0.612
= 0.4902, 𝑃(𝑓+(𝑢10)|𝑌) = 0. 

𝑃(𝑓−(𝑢1)|𝑌) = 0, 𝑃(𝑓−(𝑢2)|𝑌) = 1, 𝑃(𝑓−(𝑢3)|𝑌) =
1, 𝑃(𝑓−(𝑢4)|𝑌) = 1, 

𝑃(𝑓−(𝑢5)|𝑌) = 1, 𝑃(𝑓−(𝑢6)|𝑌) = 1, 𝑃(𝑓−(𝑢7)|𝑌) =
0, 𝑃(𝑓−(𝑢8)|𝑌) = 0, 

𝑃(𝑓−(𝑢9)|𝑌) = 1, 𝑃(𝑓−(𝑢10)|𝑌) = 0. 

The above 𝑓+(𝑢𝑖)  and 𝑓−(𝑢𝑖)  are too strict and lack 

tolerance. Considering the 0.5-probabilistic RS [26], the set-

valued mappings 𝑓+, 𝑓−: 𝑈 → 2𝑉 can be respectively defined 

as: 

Definition 2.10 Let (𝑈, 𝑉, 𝐹, 𝑓, 𝑃) be a probabilistic FRS-

CIS over two universes. Then, the subsets of projects agreed 

and disagreed by investor 𝑢𝑖  over universe 𝑉  can be 

respectively expressed as:  

 

𝑓+(𝑢𝑖) = {𝑎𝑗|𝑎𝑗(𝑢𝑖) ≥ 0.5, 𝑎𝑗 ∈ 𝑉}, 𝑢𝑖 ∈ 𝑈 (5) 

 

𝑓−(𝑢𝑖) = {𝑎𝑗|𝑎𝑗(𝑢𝑖) < 0.5, 𝑎𝑗 ∈ 𝑉}, 𝑢𝑖 ∈ 𝑈 (6) 

 

The lower and upper approximations of the feasible 

consensus strategy 𝑌  about (𝑈, 𝑉, 𝐹, 𝑓, 𝑃)  with respect to 

parameters 𝛼 and 𝛽 can be respectively expressed as: 

𝐴𝑝𝑟𝑃
+(𝑌) = {𝑢𝑖 ∈ 𝑈|𝑃(𝑓+(𝑢𝑖)|𝑌) ≥ 𝛼}, 𝐴𝑝𝑟

𝑃

+
(𝑌) =

{𝑢𝑖 ∈ 𝑈|𝑃(𝑓+(𝑢𝑖)|𝑌) > 𝛽} ,  𝐴𝑝𝑟𝑃
−(𝑌) =

{𝑢𝑖 ∈ 𝑈|𝑃(𝑓−(𝑢𝑖)|𝑌) ≥ 𝛼}, 𝐴𝑝𝑟
𝑃

−
(𝑌) =

{𝑢𝑖 ∈ 𝑈|𝑃(𝑓−(𝑢𝑖)|𝑌) > 𝛽}. 

If 𝐴𝑝𝑟𝑃
+(𝑌) ≠ 𝐴𝑝𝑟

𝑃

+
(𝑌) or 𝐴𝑝𝑟𝑃

−(𝑌) ≠ 𝐴𝑝𝑟
𝑃

−
(𝑌), then the 

interval (𝐴𝑝𝑟𝑃
+(𝑌), 𝐴𝑝𝑟

𝑃

+
(𝑌)) or (𝐴𝑝𝑟𝑃

−(𝑌), 𝐴𝑝𝑟
𝑃

−
(𝑌)) is the 

0.5-probabilistic FRS of the FRS-CIS over two universes. 

Example 2 (Continued from Example 1) The following can 

be derived from the set-valued mappings 𝑓 = {𝑓+, 𝑓−} from 

𝑈  to 𝑉  ( 𝑓+(𝑢𝑖) = {𝑎𝑗|𝑎𝑗(𝑢𝑖) ≥ 0.5, 𝑎𝑗 ∈ 𝑉}, 𝑢𝑖 ∈ 𝑈  and 

𝑓−(𝑢𝑖) = {𝑎𝑗|𝑎𝑗(𝑢𝑖) < 0.5, 𝑎𝑗 ∈ 𝑉}, 𝑢𝑖 ∈ 𝑈): 

𝑓+(𝑢1) = {(𝑎1, 0.85), (𝑎3, 0.77)}, 

𝑓+(𝑢2) =
{(𝑎1, 0.62), (𝑎2, 0.74), (𝑎4, 0.53), (𝑎5, 0.81)}, 𝑓+(𝑢3) =
{(𝑎3, 0.89)}, 

𝑓+(𝑢4) = {(𝑎3, 0.83), (𝑎4, 0.74), (𝑎5, 0.91)}, 

𝑓+(𝑢5) = {(𝑎2, 0.90), (𝑎4, 0.80), (𝑎5, 0.75)}, 

𝑓+(𝑢6) = {(𝑎1, 0.81), (𝑎4, 0.82), (𝑎5, 0.90)}, 

𝑓+(𝑢7) = {(𝑎1, 0.82), (𝑎2, 0.70), (𝑎3, 0.87)}, 𝑓+(𝑢8) =
{(𝑎2, 0.73), (𝑎3, 1)}, 

𝑓+(𝑢9) = {(𝑎1, 0.91), (𝑎5, 1)}, 𝑓+(𝑢10) =
{(𝑎1, 0.82), (𝑎3, 0.90), (𝑎5, 0.78)}. 

𝑓−(𝑢1) = {(𝑎2, 0.25), (𝑎4, 0.17), (𝑎5, 0)}, 𝑓−(𝑢2) =
{(𝑎3, 0.17)}, 

𝑓−(𝑢3) = {(𝑎1, 0.45), (𝑎2, 0.10), (𝑎4, 0.18), (𝑎5, 0.24)}, 

𝑓−(𝑢4) = {(𝑎1, 0.47), (𝑎2, 0.17)}, 𝑓−(𝑢5) =
{(𝑎1, 0.20), (𝑎3, 0.30)}, 

𝑓−(𝑢6) = {(𝑎2, 0.30), (𝑎3, 0.30)}, 𝑓−(𝑢7) =
{(𝑎4, 0.40), (𝑎5, 0)}, 

𝑓−(𝑢8) = {(𝑎1, 0.31), (𝑎2, 0.44), (𝑎5, 0)}, 𝑓−(𝑢9) =
{(𝑎2, 0.25), (𝑎3, 0.20), (𝑎4, 0.30)}, 

𝑓−(𝑢10) = {(𝑎2, 0.40), (𝑎4, 0)}. 

Let 𝑌 = 𝑉  be the feasible consensus strategy, then the 

probability measure can be calculated for each 𝑢𝑖 ∈ 𝑈 by (1) 

and (2): 

𝑃(𝑓+(𝑢1)|𝑌) = 0.7462, 𝑃(𝑓+(𝑢2)|𝑌) =
0.9734, 𝑃(𝑓+(𝑢3)|𝑌) = 0.2899, 

𝑃(𝑓+(𝑢4)|𝑌) = 0.7975, 𝑃(𝑓+(𝑢5)|𝑌) =
0.8898, 𝑃(𝑓+(𝑢6)|𝑌) = 0.8688, 

𝑃(𝑓+(𝑢7)|𝑌) = 0.8301, 𝑃(𝑓+(𝑢8)|𝑌) =
0.6212, 𝑃(𝑓+(𝑢9)|𝑌) = 0.7876, 

𝑃(𝑓+(𝑢10)|𝑌) = 0.8592. 

𝑃(𝑓−(𝑢1)|𝑌) = 0.2538, 𝑃(𝑓−(𝑢2)|𝑌) =
0.0266, 𝑃(𝑓−(𝑢3)|𝑌) = 0.7101, 

𝑃(𝑓−(𝑢4)|𝑌) = 0.2025, 𝑃(𝑓−(𝑢5)|𝑌) =
0.1102, 𝑃(𝑓−(𝑢6)|𝑌) = 0.1312, 

𝑃(𝑓−(𝑢7)|𝑌) = 0.1699, 𝑃(𝑓−(𝑢8)|𝑌) =
0.3788, 𝑃(𝑓−(𝑢9)|𝑌) = 0.2124, 

𝑃(𝑓−(𝑢10)|𝑌) = 0.1408. 

 

 

3. THREE-WAY DECISION THEORETIC FRS UNDER 

FRS-CIS OVER TWO UNIVERSES 

 

This section introduces the three-way decision theoretic RS 

under the CIS over two universes, and then sets up the three-

way decision models of (0,1)-probabilistic FRS and 0.5-

probabilistic FRS. 

 

3.1 The three-way decision theoretic RS under the CIS 

over two universes 

 

The decision rules for probabilistic RS of the CIS over two 

universes were presented, according to the decision-theoretic 

framework for probabilistic RS proposed by Yao et al. [26, 27] 

based on the Bayesian decision procedure. 

Suppose 𝑈 and 𝑉 are the agent set and issue set of a conflict, 

respectively, and 𝑋 ∈ 2𝑉  is a feasible consensus strategy of 

the conflict. Let 𝐴 = {𝑑1, 𝑑2, 𝑑3}  be the three decisions of 

agent 𝑢𝑖 ∈ 𝑈  over the feasible consensus strategy 𝑋 : 

agreement, disagreement and neutrality. In the case of 𝑋, the 

cost or risk to agree, disagree or stay neutral can be 

respectively denoted as λ11 = 𝜆(𝑑1|𝑋) , λ21 = 𝜆(𝑑2|𝑋)  and 

λ31 = 𝜆(𝑑3|𝑋); in the case of 𝑋𝑐 , the cost or risk to agree, 

disagree or stay neutral can be respectively denoted as λ12 =
𝜆(𝑑1|𝑋𝑐), λ22 = 𝜆(𝑑2|𝑋𝑐) and λ32 = 𝜆(𝑑3|𝑋𝑐). 

Based on the rough set under the CIS over two universes, 

the expected risk 𝑅⋄(𝑑𝑡|𝑢𝑖)(⋄∈ {+, −}, 𝑡 = 1,2,3)  of any 

agent 𝑢𝑖 ∈ 𝑈 to agree with, disagree with or stay neutral to the 

feasible consensus strategy 𝑋 can be expressed as:  
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𝑅+(𝑑1|𝑢𝑖) = 𝑅(𝑑1|𝐹+(𝑢𝑖)) =

𝜆(𝑑1|𝑋)𝑃(𝑋|𝐹+(𝑢𝑖)) + 𝜆(𝑑1|𝑋𝑐)𝑃(𝑋𝑐|𝐹+(𝑢𝑖)), 
(7) 

  

𝑅+(𝑑2|𝑢𝑖) = 𝑅(𝑑2|𝐹+(𝑢𝑖)) =

𝜆(𝑑2|𝑋)𝑃(𝑋|𝐹+(𝑢𝑖)) + 𝜆(𝑑2|𝑋𝑐)𝑃(𝑋𝑐|𝐹+(𝑢𝑖)), 
(8) 

 

𝑅+(𝑑3|𝑢𝑖) = 𝑅(𝑑3|𝐹+(𝑢𝑖))

= 𝜆(𝑑3|𝑋)𝑃(𝑋|𝐹+(𝑢𝑖))

+ 𝜆(𝑑3|𝑋𝑐)𝑃(𝑋𝑐|𝐹+(𝑢𝑖)) 

(9) 

 

and 

 

𝑅−(𝑑1|𝑢𝑖) = 𝑅(𝑑1|𝐹−(𝑢𝑖)) =

𝜆(𝑑1|𝑋)𝑃(𝑋|𝐹−(𝑢𝑖)) + 𝜆(𝑑1|𝑋𝑐)𝑃(𝑋𝑐|𝐹−(𝑢𝑖)), 
(10) 

 

𝑅−(𝑑2|𝑢𝑖) = 𝑅(𝑑2|𝐹−(𝑢𝑖))

= 𝜆(𝑑2|𝑋)𝑃(𝑋|𝐹−(𝑢𝑖))

+ 𝜆(𝑑2|𝑋𝑐)𝑃(𝑋𝑐|𝐹−(𝑢𝑖)) 

(11) 

 

𝑅−(𝑑3|𝑢𝑖) = 𝑅(𝑑3|𝐹−(𝑢𝑖))

= 𝜆(𝑑3|𝑋)𝑃(𝑋|𝐹−(𝑢𝑖))

+ 𝜆(𝑑3|𝑋𝑐)𝑃(𝑋𝑐|𝐹−(𝑢𝑖)) 

(12) 

 

Here, the relation for λ𝑖𝑗(𝑖 = 1,2,3, 𝑗 = 1,2) is assumed as 

follows: 

 

λ11 ≤ λ31 < λ21, λ12 > λ32 ≥ λ22 (13) 

 

For any agent 𝑢𝑖 ∈ 𝑈, the minimum risk decision rules for 

𝐹+(𝑢𝑖) = {𝑎𝑗|𝑎𝑗(𝑢𝑖) = +, 𝑎𝑗 ∈ 𝑉}, 𝑢𝑖 ∈ 𝑈  based on the RS 

under the CIS over two universes can be derived from the 

Bayesian decision procedure over two universes[28, 29]: 

(P1) Making the decision Pos𝑃
+(𝑋)  if 𝑅(𝑑1|𝐹+(𝑢𝑖)) <

𝑅(𝑑2|𝐹+(𝑢𝑖)) and 𝑅(𝑑1|𝐹+(𝑢𝑖)) < 𝑅(𝑑3|𝐹+(𝑢𝑖)); 

(N1) Making the decision Neg𝑃
+(𝑋)  if 𝑅(𝑑2|𝐹+(𝑢𝑖)) <

𝑅(𝑑1|𝐹+(𝑢𝑖)) and 𝑅(𝑑2|𝐹+(𝑢𝑖)) < 𝑅(𝑑3|𝐹+(𝑢𝑖)); 

(B1) Making the decision Bn𝑃
+(𝑋)  if 𝑅(𝑑3|𝐹+(𝑢𝑖)) <

𝑅(𝑑1|𝐹+(𝑢𝑖)) and 𝑅(𝑑3|𝐹+(𝑢𝑖)) < 𝑅(𝑑2|𝐹+(𝑢𝑖)); 

Based on the RS under the CIS over two universes, the 

minimum risk decision rules (P1), (N1) and (B1) can be 

written as follows for any agent 𝑢𝑖 ∈ 𝑈: 

(P2) Making the decision Pos𝑃
+(𝑋)  if 𝑃(𝑋|𝐹+(𝑢𝑖)) ≥ 𝛼 

and 𝑃(𝑋|𝐹+(𝑢𝑖)) ≥ 𝛾; 

(N2) Making the decision Neg𝑃
+(𝑋)  if 𝑃(𝑋|𝐹+(𝑢𝑖)) ≤ 𝛽 

and 𝑃(𝑋|𝐹+(𝑢𝑖)) < 𝛾; 

(B2) Making the decision Bn𝑃
+(𝑋) if 𝑃(𝑋|𝐹+(𝑢𝑖)) < 𝛼 and 

𝑃(𝑋|𝐹+(𝑢𝑖)) > 𝛽. 

where, 

 

α =
λ12 − λ32

(λ12 − λ32) + (λ31 − λ11)
 (14) 

 

β =
λ32 − λ22

(λ32 − λ22) + (λ21 − λ31)
 (15) 

 

γ =
λ12 − λ22

(λ12 − λ22) + (λ21 − λ11)
 (16) 

 

and satisfies 0 ≤ 𝛽 < 𝛼 ≤ 1. 

By the principle of three-way decision [4, 28], the following 

equations can be derived from the RS under the CIS: 

(P3) Agreement (Decision positive region): 

Pos𝑃
+(𝑋) = 𝐴𝑝𝑟𝑃

+(𝑋) = {𝑢𝑖 ∈ 𝑈|𝑃(𝑋|𝐹+(𝑢𝑖)) ≥ 𝛼}, 

(B3) Neutrality (Decision boundary region): 

Bn𝑃
+(𝑋) = {𝑢𝑖 ∈ 𝑈|𝛽 < 𝑃(𝑋|𝐹+(𝑢𝑖)) < 𝛼}, 

(N3) Disagreement (Decision negative region): 

Neg𝑃
+(𝑋) = {𝑢𝑖 ∈ 𝑈|𝑃(𝑋|𝐹+(𝑢𝑖)) ≤ 𝛽}. 

Based on the RS under the CIS, the following equations can 

be derived for 𝑅−(𝑑1|𝑢𝑖), 𝑅−(𝑑2|𝑢𝑖) and 𝑅−(𝑑3|𝑢𝑖):  

(P3’) Agreement (Decision positive region): 

Pos𝑃
−(𝑋) = 𝐴𝑝𝑟𝑃

−(𝑋) = {𝑢𝑖 ∈ 𝑈|𝑃(𝑋|𝐹−(𝑢𝑖)) ≥ 𝛼}, 

(B3’) Neutrality (Decision boundary region): 

Bn𝑃
−(𝑋) = {𝑢𝑖 ∈ 𝑈|𝛽 < 𝑃(𝑋|𝐹−(𝑢𝑖)) < 𝛼}, 

(N3’) Disagreement (Decision negative region): 

Neg𝑃
−(𝑋) = {𝑢𝑖 ∈ 𝑈|𝑃(𝑋|𝐹−(𝑢𝑖)) ≤ 𝛽}. 

Both the set of agreed issues 𝐹+(𝑢𝑖) and the set of disagreed 

issues 𝐹−(𝑢𝑖)  contain decision rules in the CIS over two 

universes. Therefore, the decision rules in the two set-valued 

mappings should be considered. For 0 ≤ 𝛽 < 𝛼 ≤ 1 , any 

agent 𝑢𝑖 ∈ 𝑈 and any feasible consensus strategy 𝑋 ∈ 2𝑉, the 

following decision rules are available for the RS under the CIS: 

(P4) If 𝑃(𝑋|𝐹+(𝑢𝑖)) ≥ 𝛼  and 𝑃(𝑋|𝐹−(𝑢𝑖)) ≤ 𝛽 , then 

agent 𝑢𝑖 agrees with the feasible consensus strategy 𝑋; 

(N4) If 𝑃(𝑋|𝐹+(𝑢𝑖)) ≤ 𝛽  and 𝑃(𝑋|𝐹−(𝑢𝑖)) ≥ 𝛼 , then 

agent 𝑢𝑖 disagrees with the feasible consensus strategy 𝑋; 

(B4) If 𝛽 < 𝑃(𝑋|𝐹+(𝑢𝑖)) < 𝛼 and 𝛽 < 𝑃(𝑋|𝐹−(𝑢𝑖)) < 𝛼, 

then agent 𝑢𝑖  remains neutral to the feasible consensus 

strategy 𝑋. 

 

3.2 Three-way decision model of (0,1)-probabilistic FRS 

under FRS-CIS over two universes 

 

This sub-section discusses the principle and framework of 

three-way decision model of (0, 1)-probabilistic FRS in the 

FRS-CIS. 

Suppose 𝑈 and 𝑉 are the investor set and project set of an 

FRS conflict, respectively, and 𝑌 ∈ 2𝑉 is a feasible consensus 

strategy of the conflict. Let 𝐴 = {𝑑1, 𝑑2, 𝑑3}  be the three 

decisions of agent 𝑢𝑖 ∈ 𝑈 over the feasible consensus strategy 

𝑌: agreement, disagreement and neutrality. In the case of 𝑓+, 

the cost or risk to agree, disagree or stay neutral can be 

respectively denoted as λ11 = 𝜆(𝑑1|𝑓+), λ21 = 𝜆(𝑑2|𝑓+) and 

λ31 = 𝜆(𝑑3|𝑓+); in the case of (𝑓+)𝑐, the cost or risk to agree, 

disagree or stay neutral can be respectively denoted as λ12 =
𝜆(𝑑1|(𝑓+)𝑐), λ22 = 𝜆(𝑑2|(𝑓+)𝑐) and λ32 = 𝜆(𝑑3|(𝑓+)𝑐). 

Based on the (0,1)-probabilistic FRS under FRS-CIS over 

two universes, the expected risk 𝑅⋄(𝑑𝑡|𝑢𝑖)(⋄∈ {+, −}, 𝑡 =
1,2,3) of any investor 𝑢𝑖 ∈ 𝑈 to agree with, disagree with or 

stay neutral to the feasible consensus strategy 𝑌  can be 

expressed as:  

 

𝑅+(𝑑1|𝑢𝑖)

= 𝜆(𝑑1|𝑓+(𝑢𝑖))𝑃(𝑓+(𝑢𝑖)|𝑌)

+ 𝜆(𝑑1|(𝑓+(𝑢𝑖))
𝑐
)𝑃((𝑓+(𝑢𝑖))

𝑐
|𝑌) 

(17) 

 

𝑅+(𝑑2|𝑢𝑖) = 𝜆(𝑑2|𝑓+(𝑢𝑖))𝑃(𝑓+(𝑢𝑖)|𝑌) +

𝜆(𝑑2|(𝑓+(𝑢𝑖))
𝑐
)𝑃((𝑓+(𝑢𝑖))

𝑐
|𝑌), 

(18) 
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𝑅+(𝑑3|𝑢𝑖)

= 𝜆(𝑑3|𝑓+(𝑢𝑖))𝑃(𝑓+(𝑢𝑖)|𝑌)

+ 𝜆(𝑑3|(𝑓+(𝑢𝑖))
𝑐
)𝑃((𝑓+(𝑢𝑖))

𝑐
|𝑌) 

(19) 

 

and 

𝑅−(𝑑1|𝑢𝑖)

= 𝜆(𝑑1|𝑓−(𝑢𝑖))𝑃(𝑓−(𝑢𝑖)|𝑌)

+ 𝜆(𝑑1|(𝑓−(𝑢𝑖))
𝑐
)𝑃((𝑓−(𝑢𝑖))

𝑐
|𝑌) 

(20) 

 

𝑅−(𝑑2|𝑢𝑖)

= 𝜆(𝑑2|𝑓−(𝑢𝑖))𝑃(𝑓−(𝑢𝑖)|𝑌)

+ 𝜆(𝑑2|(𝑓−(𝑢𝑖))
𝑐
)𝑃((𝑓−(𝑢𝑖))

𝑐
|𝑌) 

(21) 

 

𝑅−(𝑑3|𝑢𝑖)

= 𝜆(𝑑3|𝑓−(𝑢𝑖))𝑃(𝑓−(𝑢𝑖)|𝑌)

+ 𝜆(𝑑3|(𝑓−(𝑢𝑖))
𝑐
)𝑃((𝑓−(𝑢𝑖))

𝑐
|𝑌) 

(22) 

 

Here, the relation for λ𝑖𝑗(𝑖 = 1,2,3, 𝑗 = 1,2) is assumed as 

follows: 

 

𝜆11 ≤ 𝜆31 < 𝜆21, 𝜆12 > 𝜆32 ≥ 𝜆22 (23) 

 

For any investor 𝑢𝑖 ∈ 𝑈, the minimum risk decision rules 

for 𝑓+(𝑢𝑖) = {𝑎𝑗|𝑎𝑗(𝑢𝑖) = 1, 𝑎𝑗 ∈ 𝑉}, 𝑢𝑖 ∈ 𝑈  based on the 

(0,1)-probabilistic FRS under FRS-CIS over two universes 

can be derived from the Bayesian decision procedure over two 

universes [28, 29]: 

(P1) Making the decision Pos𝑃
+(𝑋)  if 𝑅+(𝑑1|𝑢𝑖) <

𝑅+(𝑑2|𝑢𝑖) and 𝑅+(𝑑1|𝑢𝑖) < 𝑅+(𝑑3|𝑢𝑖); 

(N1) Making the decision Neg𝑃
+(𝑋)  if 𝑅+(𝑑2|𝑢𝑖) <

𝑅+(𝑑1|𝑢𝑖) and 𝑅+(𝑑2|𝑢𝑖) < 𝑅+(𝑑3|𝑢𝑖); 

(B1) Making the decision Bn𝑃
+(𝑋)  if 𝑅+(𝑑3|𝑢𝑖) <

𝑅+(𝑑1|𝑢𝑖) and 𝑅+(𝑑3|𝑢𝑖) < 𝑅+(𝑑2|𝑢𝑖); 

Based on the (0,1)-probabilistic FRS under FRS-CIS over 

two universes, the minimum risk decision rules (P1), (N1) and 

(B1) can be written as follows for any agent 𝑢𝑖 ∈ 𝑈: 

(P2) Making the decision Pos𝑃
+(𝑋)  if 𝑃(𝑓+(𝑢𝑖)|𝑌) ≥ 𝛼 

and 𝑃(𝑓+(𝑢𝑖)|𝑌) ≥ 𝛾; 

(N2) Making the decision Neg𝑃
+(𝑋)  if 𝑃(𝑓+(𝑢𝑖)|𝑌) ≤ 𝛽 

and 𝑃(𝑓+(𝑢𝑖)|𝑌) < 𝛾; 

(B2) Making the decision Bn𝑃
+(𝑋) if 𝑃(𝑓+(𝑢𝑖)|𝑌) < 𝛼 and 

𝑃(𝑓+(𝑢𝑖)|𝑌) > 𝛽. 

where, 

 

α =
λ12 − λ32

(λ12 − λ32) + (λ31 − λ11)
 (24) 

 

β =
λ32 − λ22

(λ32 − λ22) + (λ21 − λ31)
 (25) 

 

γ =
λ12 − λ22

(λ12 − λ22) + (λ21 − λ11)
 (26) 

 

and satisfies the condition of 0 ≤ 𝛽 < 𝛼 ≤ 1. 

By the principle of three-way decision [4, 28], the following 

equations can be derived from the (0,1) -probabilistic FRS 

under FRS-CIS over two universes: 

(P3) Agreement (Decision positive region): 

Pos𝑃
+(𝑌) = {𝑢𝑖 ∈ 𝑈|𝑃(𝑓+(𝑢𝑖)|𝑌) ≥ 𝛼}, 

(B3) Neutrality (Decision boundary region): 

Bn𝑃
+(𝑌) = {𝑢𝑖 ∈ 𝑈|𝛽 < 𝑃(𝑓+(𝑢𝑖)|𝑌) < 𝛼}, 

(N3) Disagreement (Decision negative region): 

Neg𝑃
+(𝑌) = {𝑢𝑖 ∈ 𝑈|𝑃(𝑓+(𝑢𝑖)|𝑌) ≤ 𝛽}. 

Based on the (0,1)-probabilistic FRS under FRS-CIS over 

two universes, the following equations can be derived for 

𝑅−(𝑑1|𝑢𝑖), 𝑅−(𝑑2|𝑢𝑖) and 𝑅−(𝑑3|𝑢𝑖):  

(P3’) Agreement (Decision positive region): 

Pos𝑃
−(𝑌) = {𝑢𝑖 ∈ 𝑈|𝑃(𝑓−(𝑢𝑖)|𝑌) ≥ 𝛼}, 

(B3’) Neutrality (Decision boundary region): 

 Bn𝑃
−(𝑌) = {𝑢𝑖 ∈ 𝑈|𝛽 < 𝑃(𝑓−(𝑢𝑖)|𝑌) < 𝛼}, 

(N3’) Disagreement (Decision negative region): 

Neg𝑃
−(𝑌) = {𝑢𝑖 ∈ 𝑈|𝑃(𝑓−(𝑢𝑖)|𝑌) ≤ 𝛽}. 

Both the set of agreed issues 𝑓+(𝑢𝑖) and the set of disagreed 

issues𝑓−(𝑢𝑖) contain decision rules in the FRS-CIS over two 

universes. Therefore, the decision rules in the two set-valued 

mappings should be considered. For 0 ≤ 𝛽 < 𝛼 ≤ 1 , any 

investor 𝑢𝑖 ∈ 𝑈 and any feasible consensus strategy 𝑌 ∈ 2𝑉 , 

the following decision rules are available for the (0,1) -

probabilistic FRS under FRS-CIS over two universes: 

(P4) If 𝑃(𝑓+(𝑢𝑖)|𝑌) ≥ 𝛼  and 𝑃(𝑓−(𝑢𝑖)|𝑌) ≤ 𝛽 , then the 

investor 𝑢𝑖 agrees with the feasible consensus strategy 𝑌; 

(N4) If 𝑃(𝑓+(𝑢𝑖)|𝑌) ≤ 𝛽 and 𝑃(𝑓−(𝑢𝑖)|𝑌) ≥ 𝛼, then the 

investor 𝑢𝑖 disagrees with the feasible consensus strategy 𝑌; 

(B4) For 𝑢𝑖 ∈ 𝑈 satisfying neither (P4) nor (N4), then the 

investor 𝑢𝑖 remains neutral to the feasible consensus strategy 

𝑌. 

Example 3 (Continued from Example 1) The risks of 

making different decisions can be empirically determined as: 

λ11 = 0.35, λ21 = 0.75, λ31 = 0.65, λ12 = 0.8, λ22 =
0.12, λ32 = 0.2. 

The loss function satisfies formula (23). By formulas (24) 

and (25), we have 𝛼 = 0.6667 and 𝛽 = 0.4444. 

The following results can be derived from minimum risk 

decision rules and the principle of three-way decision based on 

(0,1)-probabilistic FRS under the FRS-CIS over two universes: 

Pos𝑃
+(𝑌) = ∅, Bn𝑃

+(𝑌) = {𝑢9}, Neg𝑃
+(𝑌) =

{𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8, 𝑢10}. 

Pos𝑃
−(𝑌) = {𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢9}, Bn𝑃

−(𝑌) =
∅, Neg𝑃

−(𝑌) = {𝑢1, 𝑢7, 𝑢8, 𝑢10}. 

According to the above decision rules, no sufferer agrees 

with the feasible consensus strategy 𝑌, sufferers 𝑢2, 𝑢3, 𝑢4, 𝑢5 

and 𝑢6  disagree with the feasible consensus strategy 𝑌, and 

sufferers 𝑢1, 𝑢7, 𝑢8, 𝑢9 and 𝑢10 remain neutral to the feasible 

consensus strategy 𝑌. 

 

3.3 Three-way decision model of 0.5-probabilistic FRS 

under FRS-CIS over two universes 

 

Considering all the information for the FRS-CIS over two 

universes, 0.5-probabilistic FRS is more accurate than the 
(0,1)-probabilistic FRS in classification. The expected risks 

and decision rules of 0.5-probabilistic FRS are similar to those 

of (0,1)-probabilistic FRS. 

For 0 ≤ 𝛽 < 𝛼 ≤ 1, any investor 𝑢𝑖 ∈ 𝑈 and any feasible 

consensus strategy 𝑌 ∈ 2𝑉 , the following decision rules are 

available for 0.5-probabilistic FRS under FRS-CIS over two 

universes: 

(P5) If 𝑃(𝑓+(𝑢𝑖)|𝑌) ≥ 𝛼 and 𝑃(𝑓−(𝑢𝑖)|𝑌) ≤ 𝛽, then then 

agent 𝑢𝑖 agrees with the feasible consensus strategy 𝑌; 

(N5) If 𝑃(𝑓+(𝑢𝑖)|𝑌) ≤ 𝛽 and 𝑃(𝑓−(𝑢𝑖)|𝑌) ≥ 𝛼, then then 

agent 𝑢𝑖 disagrees with the feasible consensus strategy 𝑌; 

(B5) For 𝑢𝑖 ∈ 𝑈 satisfying neither (P5) nor (N5), then then 

agent 𝑢𝑖 remains neutral to the feasible consensus strategy 𝑌. 

Example 4 (Continued from Example 2) The risks of 
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making different decisions are similar to those in example 3. 

Therefore, we have 𝛼 = 0.6667 and 𝛽 = 0.4444. 

The following results can be derived from minimum risk 

decision rules and the principle of three-way decision based on 

0.5-probabilistic FRS under the FRS-CIS over two universes: 

Pos𝑃
+(𝑌) = {𝑢1, 𝑢2, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢9, 𝑢10}, Bn𝑃

+(𝑌) =
{𝑢8}, Neg𝑃

+(𝑌) = {𝑢3}. 

Pos𝑃
−(𝑌) = {𝑢3}, Bn𝑃

−(𝑌) = ∅, Neg𝑃
−(𝑌) =

{𝑢1, 𝑢2, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8, 𝑢9, 𝑢10}. 

According to the above decision rules, sufferers 

𝑢1, 𝑢2, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢9  and 𝑢10  agree with the feasible 

consensus strategy 𝑌 , sufferer 𝑢3  disagrees with feasible 

consensus strategy 𝑌, and sufferer 𝑢8 remains neutral to the 

feasible consensus strategy 𝑌. 

 

 

4. CONCLUSIONS 

 

The paper investigates the FRS under the FRS-CIS over two 

universes, a generalization of the Pawlak’s conflict analysis 

model. Firstly, the investor (patient) and project (symptom) 

were treated as two independent universes, and two set-valued 

mappings were established to illustrate the relation between 

the two universes: (0,1) -probabilistic FRS and 0.5-

probabilistic FRS under FRS-CIS over two universes. 

Furthermore, the expected losses and decision rules of the two 

probabilistic FRSs were derived based on FRS-CIS over two 

universes. The research results shed new light to solving the 

FRS under FRS-CIS over two universes. The future research 

will explore the decision rules of inter-valued and intuition 

FRS for conflict analysis over two universes. 
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