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Considering the macroscopic kinetic analysis model is not applicable to the MEMS field, 

this paper establishes an effective method for analyzing the stochastic stability of micro-

components. Firstly, it establishes a dynamic governing equation for the double-layer micro-

plate simply supported on four sides based on the strain gradient theory and Hamilton’s 

variational principle; then, it analyzes the first passage failure of the double-layer micro-

plate in the piezoelectric model by using the stochastic average theory, and obtains the 

characteristic quantity of the first passage; finally, it compares the impacts of electrostatic 

excitation intensity on the first passage failure through numerical simulation. According to 

the results of the example analysis, even an excitation change that has a minimal impact on 

the overall failure process will significantly increase the probability of first passage failure 

in the rapid reliability degradation stage. The results obtained in this research can be used to 

extend the useful life of MEMS.  
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1. INTRODUCTION

The dynamics of micro-machinery is a science that studies 

the dynamic behaviors of mechanical systems in the medium 

and microscopic fields. With the research scope covering 

modeling and simulation of MEMS components, dynamic 

analysis and design, dynamics control, operational condition 

monitoring and fault diagnosis, it has very important 

theoretical significance and practical value. 

On the microscopic scale, a material will show very 

different physical properties from those on the macroscopic 

scale. Such phenomenon, which is common in microstructures, 

is referred to as scale effect. In order to overcome this problem 

(which traditional mechanics cannot solve), Mandlin [1] 

proposed the classical couple stress theory in 1963, in which, 

the classical strain is symmetric while the couple stress is 

asymmetrical; in 2002, Yang et al. [2] proposed an isotropic 

modified couple stress theory, which makes both strain and 

curvature symmetric; in 2009, Tsiatas [3] established the 

Kirchhoff micro-plate model based on this theory; and in 2014, 

Shaat et al. [4] analyzed the bending problem of the Kirchhoff 

nano-plates with surface effects. At this point, the micro 

mechanical model for isotropic materials based on the 

modified couple stress theory is basically completed. However, 

in actual practice, micro-materials often have two or more 

layers, and the interlayer anisotropic impacts cannot be dealt 

with by the modified couple stress method. To solve this 

problem, both Chinese and foreign scholars have done a lot of 

work in the development of new theories in recent years. In 

2010, Reddy et al. [5] proposed a nonlinear third-order theory 

for analyzing functionally graded material plates; In 2011, 

Chen et al. [6] proposed a stress gradient theory for anisotropic 

materials for the purpose of establishing a composite 

laminated beam model; in 2014, Li Anqing [7] figured out the 

number of independent high-order material constants in the 

isotropic strain gradient elasticity theory, which solved the 

basic theoretical problem in the constitutive relation. 

Reliability analysis is an indispensable part of material 

structure performance research. Now the theoretical basis for 

analyzing the reliability of stochastic dynamic systems from 

the perspective of first passage has been quite mature. In 2003, 

Zhu [8] established a complete process for studying the first 

passage failure problem; on this basis, in 2006, Li et al. [9] 

gave a method for solving the strong nonlinearity problem; in 

2010, Zhu et al. [10] put forward a method for transforming a 

stochastic dynamic system into a quasi-integrable Hamiltonian 

system; in 2016, Ding et al. [11] analyzed the pull-in effect of 

electrostatically excited microbeams and gave a solution to the 

work of the electrostatic force; in 2017, L. Homsi et al. [12] 

proposed a method for deriving the Duffing equation based on 

the Galerkin method. 

For basic structures like micro-plates and beam structures, 

the previous research mainly focused on the determination of 

static deformation and boundary conditions and the 

acquisition of vibration characteristics, etc., but rarely 

involves the life estimation and reliability analysis of these 

micro-structures in practice. This paper attempts to establish 

an effective method for assessing the reliability of MEMS 

components. By using the strain gradient theory and the 

stochastic averaging theory, it gives the first passage failure 

trend of the double-layer micro-plate, and then it compares the 

impacts of the electrostatic excitation with different intensities 

on the first passage of the double-layer micro-plate and 

specifies in which interval it is the most suitable to take 

measures to improve the performance of the double-layer 

micro-plate. This is a supplement to the reliability research of 

MEMS. 
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2. KINETIC MODEL FOR THE DOUBLE-LAYER 

MICRO-PLATE 

 

(1) Figure 1 shows an isotropic linear elastic double-layer 

micro-plate simply supported on four sides, with the upper and 

lower layers coinciding with each other. The plate has a length 

of a and a width of b. The thickness of the upper layer is h1, 

and that of the lower layer is h2. The plate is under a uniform 

load of q(x,y,t) in the vertical direction. Suppose that the 

neutral plane is at a distance of d from the contact surface. The 

displacement field is given based on the basic assumptions of 

the Kirchhoff plate: 

(2)  
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are the axial displacements on the contact surface. 

 

 

 

Figure 1. Geometric diagram of the double-layer micro-plate 

simply supported on four sides 

 

According to the Cosserat theory with three high-order 

material parameters established based on the strain gradient 

theory in [7], for an isotropic linear elastic material, the strain 

energy density function of the modified couple stress is: 
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where, l0, l1, and l2 are the scale parameters of the material; and 

λ and μ are the Lame coefficients. 

Substitute non-zero strain and strain gradient tensor into the 

above equation to obtain the strain energy density of a single 

layer. Then calculate the integral sum of the strain energy 

functions of the two layers to obtain the strain energy of the 

double-layer micro-plate. 
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where, L1 and L2 are respectively the strain energy density 

functions of the upper and the lower plates. 

In the electrostatic actuated model shown in Figure 2, the 

upper polar plate is a double-layer micro-plate simply 

supported on four sides, subjected to an electrostatic force of 

q(x,y,t) in the vertical direction, and the lower plate is fixed. 

The distance between the two plates is g. 

 

 

 

Figure 2. Electrostatic actuated model 

 

The kinetic energy of the double-layer micro-plate is:  
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where, w =
𝜕𝑤

𝜕𝑡
, and 𝜌1 and 𝜌2 are the density of the upper and 

lower plates, respectively. 

The work of the electrostatic force is:  
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The electrostatic force q consists of the electrostatic 

actuation force qe, the film damping force qc and the noise term 

q,𝛿(𝑡): 
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When the upper and lower polar plates completely coincide 

with each other [14]: 
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In the case of AC loading [11]:  
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where, q,  is the noise amplitude; 𝛿(𝑡)  the Gaussian white 

noise with a mean of 0 and an intensity of 2D; 𝜀0  the 

permittivity of vacuum, 𝜀𝑠 the air viscosity coefficient, Z(t) the 

on-load voltage, 𝑣𝑎𝑐  the on-load voltage amplitude, and w  

the frequency of the on-load voltage. 
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Apply Hamilton’s principle:  
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Substitute equations 3-5 into the above equation and 

observe the transverse vibration in the vertical direction to 

obtain the governing equation for the lateral vibration of the 

double-layer micro-plate: 
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where,  
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𝐸1, 𝜇1, 𝜆1, 𝑙0(1), 𝑙1(1) and 𝑙2(1) are the material parameters 

of the upper plate, and 𝐸2 , 𝜇2 , 𝜆2 , 𝑙0(2) , 𝑙1(2)  and 𝑙2(2)  are 

those of the lower plate. 

The corresponding boundary conditions are: 
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3. DERIVATION OF THE HAMILTON 

DIFFERENTIAL EQUATION 

 

Considering the boundary conditions of the double-layer 

micro-plate simply supported on four sides, the flexural trial 

function that satisfies the boundary conditions is selected, as 

below: 
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Substitute the above equation into governing equation (2-

10) and apply the Galerkin integral: 
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Simplify the above equation to obtain the Duffing equation 

for the double-layer micro-plate:  
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4. CALCULATION OF THE CHARACTERISTIC 

QUANTITY OF THE FIRST PASSAGE 

 

Let q=K and p=K, and the Hamiltonian equations for the 

movement of the governing system are obtained:  
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Considering the quasi non-integrable Hamiltonian system 

with dissipation under the actuation of the electrostatic force, 

from the stochastic averaging principle of the quasi non-

integrable Hamiltonian system, it can be seen that the vibration 

system converges to the one-dimensional diffusion process, 

and its drift and diffusion coefficients are: 
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The integral domain is:  
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Take the Hamiltonian function from equation (13) as 

follows:  
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Let p=-Rsinx and q=Rcosx, and substitute them into the 

above equation to simplify the Hamiltonian equation as 

follows:  
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Substitute the positive root  
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and p and q back into equation (15) to obtain the drift and 

diffusion coefficients:  
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According to the conclusion given in [15], when the 

Hamilton function tends to be 0 , H0=0 is the first kind of 

singularity and is a flow point. The corresponding drift and 

diffusion indices and characteristic values are: 
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H0=0 means entering the boundary. The trivial solution to 

the system does not have a stable probability, and thus there is 

the first passage problem. 

 

 

5. EXAMPLE ANALYSIS 

 

Take the physical parameters of the double-layer micro-

plate under the actuation by the electrostatic force as follows: 

a = 30μm,b = 20μm, ℎ1 = 0.8μm, ℎ2 = 1.6μm, 𝑔 = 12μm, 

𝐸1 = 130GPa , 𝐸2 = 85GPa , 𝑙1(1) = 𝑙2(1) = 𝑙3(1) = 5.9μm , 

𝑙1(2) = 𝑙2(2) = 𝑙3(2) = 7.8μm, λ1 = λ2 = 0.3, μ1 = μ2 = 0.5, 

H0=0.001, q’=1, ρ1 = ρ2 = 2.6 × 103𝑘𝑔/𝑚3 , ε0 = 8.85 ×
10−12 and ε𝑠 = 2 × 10−5. 

Solve the generalized Kolmogorov equation to obtain the k 

-th moment of the first passage time. Let k=1, and we have 

Pontryagin’s equation describing the average first passage 

time, which is of the greatest interest in practice: 
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Figure 3. Average first passage time under electrostatic 

excitation with different intensities 

 

Figure 3 shows the relationship between the first passage 

time 𝜇1(𝐻0)  and the total energy 𝐻0  of the system under 

different intensities of electrostatic excitation. As the total 

energy of the system increases, the first passage takes less and 

less time on average and will fail before the total energy 

reaches the right boundary. When the excitation intensifies, 

the total energy accumulation rate of the system will increase 

and will pass the safety domain earlier. In order to more clearly 

describe the first passage phenomenon, the drift and diffusion 

coefficients are substituted into the Kolmogorov backward 

equation to obtain the conditional reliability function R(t): 
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Figure 4. Conditional reliability function under electrostatic 

excitation with different intensities 

 

For a particular system, the time corresponding to the 

allowed range of the conditional reliability function is the 

design life. It can be seen from the simulation results in Fig. 4 

that the reliability function decreases slowly within a certain 

period after the system is just put into use, and the system is 

the most stable at this time; as the service time increases, the 

degradation speed increases gradually; when the failure region 

is approached, the degradation speed slows down again, which 

is in line with the practical application experience. When the 

input excitation increases, the image degradation rate 

increases and the system fails earlier. Although the overall gap 

is still small, it already shows the impact of small excitation 

changes on the local reliability of the system. The conditional 

probability density function of the first passage time   is 

further introduced: 
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Figure 5. Conditional probability density of the first passage 

time under electrostatic excitation with different intensities 

 

In the physical sense, the conditional probability density of 

the first passage time refers to the conditional probability 

density of the system damage at a certain point in time. It can 

be seen from the simulation results in Figure 5 that larger 

excitation corresponds to a higher and earlier peak. The 

vibration state of the system near the peak is the most complex, 

and the probability of first passage failure is the highest. It is 

worth noting that the peak value corresponding to Z=1.2V is 

close to twice that when, indicating that when the system 

reliability is rapidly reduced, even a small excitation change to 

the overall failure process will bring about a very significant 

local difference. 

 

 

7. CONCLUSIONS 

 

This paper compares the average first passage time 𝜇1(𝐻0), 
the conditional reliability function R(t) and the conditional 

probability density of the first passage time 𝑝(𝜏|𝐻0)  under 

excitation with different intensities, respectively, and obtains 

the following conclusions: 

(1) As the service time of the piezoelectric system increases, 

the degradation rate of the structural reliability is slow first, 

and then increases and at last slows down again. 

(2) Although a small change in the excitation intensity has 

no obvious effect on the overall failure process, when the 

system enters the stage of rapid reliability degradation, a 

minimal excitation change can bring a huge difference in peak 

values. 

(3) For a MEMS system, the vicinity of the peak 𝑝(𝜏|𝐻0) is 

a dangerous interval where first passage failure is likely to 

occur, and also the best range for eliminating vibration 

deformation, achieving precise positioning control and 

improving the smooth operation of the system. 

This paper establishes a method for analyzing the first 

passage failures of micro-components. The research results 

obtained can be used as reference in the reliability analysis of 

piezoelectric thin-plate structures in engineering practice. 
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