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Nowadays, controlling dynamics of renewable resources such as fishery and forestry is the 

major environmental challenge. In this regard, this research study was aimed to find the 

facile tool by using mathematical modeling to study and monitor the dynamics of the 

system consisting of two regions: one is reserved region and the other is unreserved region. 

Holling type II functional response is considered to formulate the model. The boundedness 

of the solution of the model is discussed. The model has been analyzed by finding the 

existence of equilibrium points and also the conditions of stability and instability of the 

system has been derived. Finally, the reliability of the analytical model was confirmed with 

the numerical simulations. 

Keywords: 

mathematical model, prey-predator model, 

Renewable resource, stability, nonlinear 

differential equation 

1. INTRODUCTION

Renewable resources are under extreme pressure 

worldwide in spite of taking efforts to design regulation to 

control the excessive and unsustainable exploitation. Fish is a 

renewable but finite resource. With the rapid growth of 

industrialization and population, the exploitation of fisheries 

has increased significantly. Although exploitation of 

resources is essential for the growth and development of a 

country, unplanned exploitation eventually leads to the 

extinction of the resources. Consequently, this will affect the 

growth and survival of species depending on the resource. 

From this point of view, it is a major challenge to manage 

renewable resources for the sustainable development of the 

country. 

Mathematical modeling can play a significant role in the 

efficient and sustainable management of renewable resources. 

It is mainly used to describe the real phenomena leading to 

design better prediction, prevention, management and control 

techniques. Several well documented mathematical models 

regarding real life problems can be found in [1-7]. 

During the last few decades, mathematical models 

regarding renewable fishery resource management have been 

described. Mathematical modeling in harvesting of fisheries 

was studied first by Clark [5]. Biswas et al. presented a 

model for fishery resource with reserve area [1]. They 

studied the dynamics of a fishery resource in a two patch 

environment: a free fishing zone and a reserved zone where 

fishing is not allowed. Dubey et al. [6] presented a model for 

fishery resource with reserve area. They studied the dynamics 

of a fishery resource in a two patch environment: a free 

fishing zone and a reserved zone where fishing is not allowed. 

An optimal harvesting strategy is also derived using 

Pontryagin’s Maximum Principle.  Chaudhury [9] analyzed 

the dynamic optimization of combined harvesting of a two 

species fishery. Kar [10] presented a model for fishery 

resource with reserved area and facing prey-predator 

interaction. He considered that predation takes place in the 

unreserved zone. Local and global stability, optimal 

harvesting policy are also discussed. Roy et al. [11] 

investigated the effects of two predators on a prey population. 

They considered different types of functional responses to 

formulate the model. 

From the literature discussed above and to the best of our 

views, a model for the cultivation of black tiger prawn was 

proposed and the work of Biswas et al. [1] was extended in 

this study. The dynamics of single species fishery in reserved 

and unreserved zone were discussed in the work but the 

effect of predation that the species might face in the 

unreserved zone were not studied. Also, it was considered 

that fish population can migrate from unreserved to reserved 

zone and vice versa. The effect of predation on the fish 

production was aimed to study and the migration from 

reserved to unreserved area was also restricted in this present 

work.  In this paper, a mathematical model of a prey predator 

fishery was proposed with the help of system of nonlinear 

differential equation. It was considered that the fish species 

in the unreserved area were related in prey predator 

relationship. Holling type II functional response was taken 

into account to study the interaction between prey and 

predator fish species. Harvesting was permissible only in the 

unreserved region. Predation and harvesting were restricted 

in the reserved regions. To analyze the model, the existence 

of equilibrium points, dynamical behavior of the points and 

also the stability and instability conditions were discussed. 

Finally, numerical simulations were carried out to verify the 

analytical result of our proposed model. 

2. MODEL FORMULATION

We consider a three compartmental model of fishery 

consisting of two zones: one is reserved where only prey 

species can reside while the other is unreserved zone where 

both prey and predator species can reside. Harvesting is 

permissible in unreserved zone but it is prohibited in reserved 
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zone. The prey species can migrate from unreserved to 

reserved area while the vice versa is restricted. Keeping all 

these in view, the schematic diagram of the interaction 

among the fish species and predator in two zones has been 

shown in Figure 1. 

 
Figure 1. Compartmental fishery of prey predator fishery in 

different zones 
 

Taking the diagram represented in Figure 1 into 

consideration, the mathematical model of the prey predator 

fishery can be written as 

 

( ) 1 31 1
1 1 1

1 1

1
mx xdx x

r x qE x
dt k a x

 
 

= − − + + − 
+ 

                      (1) 

                                                                                           

2 2
2 2 2 2 1

2

1          
dx x

r x x x x
dt k

  
 

= − − − + 
 

                      (2) 

                                                                                              

3 3 1 3
3 3 1 3

3 1

1  
dx x nx x

r x x
dt k a x


 

= − + − 
+ 

                                    (3)  

                                                                                                     

( ) ( ) ( )1 2 3with 0 0,  0 0 and 0 0.x x x                               (4) 

                                                                                                       

Here, 𝑥1(𝑡)  denotes the biomass density of prey fish 

species (black tiger prawn) in unreserved zone, 

𝑥2(𝑡) represents the biomass density of same species in 

reserved zone and 𝑥3(𝑡)  denotes the biomass density of 

predator fish species in unreserved zone. In this model, it is 

considered that the predator consumes the prey population as 

an alternative food.  Here, 1r , 2r  and 3r represents the 

intrinsic growth rate of the prey and predator species in both 

zone respectively. 1k , 2k and 3k  are the environment carrying 

capacity of prey and the predator species respectively. 

Therefore,  
𝑟𝑖𝑥𝑖

2

𝑘𝑖
, (𝑖 = 1,2,3) is the amount by which the fish 

species decrease due to the interaction among themselves. 

Let E  be the total effort applied for harvesting the prey 

population in the unreserved area and q is the catch ability 

coefficient,   be the migration rate of the prey from 

unreserved to reserved area. We consider 𝜇  is the natural 

death rate of the species in the unreserved area. Therefore, 
(𝜇 + 𝜎 + 𝑞𝐸)𝑥1  is the number of prey population that has 

been decreased from unreserved area due to fishing, 

migration and death rate.  Let 𝑚 be the depletion rate of prey 

species due to predation and 𝑛 be the growth rate of the 

predator due to consumption. So, 
𝑚𝑥1𝑥3

𝑎+𝑥1
 is the depleted 

number of prey due to the interaction with predator species. 

Here, a denotes the saturation constant. Let 𝛽  be the death 

rate of prey in reserved area due to disease and 𝛼 be the rate 

at which the prey population may be stolen due to insecurity. 

The term (𝛼 + 𝛽)𝑥2 denotes the number by which the prey 

population decreases from the reserved area. In this prey 

predator system, we have considered Holling type II 

functional response to show the interaction between prey and 

predator species.  

 

 

3. MODEL ANALYSIS 
 

The model (1)-(3) had been analyzed in order to describe 

the dynamics of the fish species. For the analysis of the 

model the following studies were considered: 

 

3.1 Boundedness of the model 

 

To prove that the model system is biologically well posed 

the following Lemma was to be satisfied. 

Lemma 1: The set  

 

( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3, , : ,0x x x w t x t x t x t w t




 
 = = + +   

 
  

 

attracts all solutions initiating in the interior of the positive 

orthant, where 𝜂 is a constant and 

 

𝜇 =
𝑘1

4𝑟1
(𝑟1 + 𝜂 − 𝜇 − 𝑞𝐸)2 +

𝑘2

4𝑟2
(𝑟2 + 𝜂 − 𝛽 − 𝛼)2 +

𝑘3

4𝑟3
(𝑟3 + 𝜂)2. 

 

Proof: Let, ( ) ( ) ( ) ( )1 2 3 ,  0w t x t x t x t = + +   be a constant. 

Then we can write, 

 

( ) ( )

( ) ( )

2 21 2
1 1 1 2 2 2

1 2

21 3 3
3 1 3 3

1 3

r rdw
w r qE x x r x x

dt k k

x x r
m n r x x

a x k

     

 

+ = + − − − + + − − −

− − + + − −
+

  

 

Since 𝑚 is the depletion rate coefficient of prey due to its 

intake by the predator and n is the growth rate coefficient of 

predator due to its interaction with their prey, so it is assumed 

that 𝑚 ≥ 𝑛. Now   is chosen such that 0 < 𝜂 < 𝛽1. 

 

( ) ( )

( )

2 21 2
1 2

1 2

23
3

3

4 4

4

k kdw
w r qE r

dt r r

k
r

r

     



+  + − − + + − −

+ +

 

 

By using differential inequality, we get, 

 

 0 < 𝑤(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) ≤
𝛿

𝜂
(1 − 𝑒−𝜂𝑡) +

(𝑥1(0), 𝑥2(0), 𝑥3(0))𝑒−𝜂𝑡 . 

 

Taking limit as 𝑡 → ∞, we get, 0 < 𝑤(𝑡) ≤
𝛿

𝜂
. 
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3.2 Positivity of the solution of the model  

 

Lemma 2:  For ( ) ( ) ( )1 2 30 0, 0 0, 0 0x x x   , the solutions 

( ) ( ) ( )1 2 3, ,x t x t x t  are all non-negative for all 0t  . 

Proof: For positivity, equation (2.1) can be written as, 

( )1
1

dx
qE x

dt
  − + + 1

1

dx
kdt

x
  − where,

( )k qE = + + 1 1
ktx c e−  , where 1c  is an integrating 

constant. Applying the initial condition, at ( )10, 0 0t x=  , 

we get, ( )1 10x c= . Putting the value of 1c  in the equation, 

we get, ( ) ( )1 1 0 ktx t x e− . When ( )1, 0t x t→  . Therefore 

( )1x t  is positive for all 0t  . Again equation (2.2) can be 

written as ( )2
2

dx
x

dt
  − + 2

2

dx
Ldt

x
  − , where 

( )L  = + . Integrating we get, ( )2 2
Ltx t c e− , where 2c  is 

an integrating constant. Applying the initial condition, at 

( )20, 0 0t x=  , we get, ( )2 20x c= . Putting the value of 2c , 

we get, ( ) ( )2 2 0 Ltx t x e− . When ( )2,  0t x t→  . Hence

( )2x t  is positive for all 0t  . To prove that ( )3x t  is 

positive, equation (2.3) is written as, 3
1 3

dx
x

dt
 −

3
1

3

dx
dt

x
  − . Integrating 𝑥3(𝑡) ≥ 𝑐3𝑒−𝛽1𝑡, where 3c  is an 

integrating constant. Now, at ( )30, 0 0.t x=    

So, ( )3 30 .x c=  

Putting the value of 3c , we obtain, ( ) ( ) 1
3 3 0

t
x t x e

−
 . At 

( )3,  0t x t→  . Therefore, ( )3x t  is positive for all 0t  . 

Hence this completes the proof. 

 

3.3 Existence of equilibria 

 

Let ( )1 2, ,0x x  be the positive solution of the equations (1) 

and (2) 

 
2

1 1
1 1

1

0
r x

x
k

 − =                                                                      (5) 

                                                                                                                                                  
2

2 2 2
2 2 1

2

=0         
dx r x

x x
dt k

 = − +                                       (6) 

                                                                                                                 

where, 1 1r qE  = − − − and 2 2r  = − − . From (5), 

we get, 1 1
1 1

1

0,
k

x x
r


= = . Putting the value of 1x in (6), we 

get, �̄�2 =
𝜑2±√𝜑2

2+
4𝜎𝑟2𝑘1𝜑1

𝑟1𝑘2
2𝑟2
𝑘2

 

Again, let (𝑥1
∗, 𝑥2

∗, 𝑥3
∗)  be the positive solution of the 

equations 
 

2
1 31 1

1 1
1 1

0
mx xr x

x
k a x

 − − =
+

                                                      (7) 

2
2 2

2 2 1
2

=0         
r x

x x
k

 − +                                                  (8) 

                                                                                                                              
2

1 3 3 3
3 3

1 3

0
nx x r x

x
a x k

 + − =
+

                                                     (9)  

                                                                                                

where, 3 3 1r = − . Equation (9) yields 

 

3 3 3 1 3
3 3 3 1 1

3 3

0,  0
ar x r x x

x a x nx
k k

 = + − − + =

3 3 3 3
1

3 3 3 3 3

ar x a k
x

k nk r x










−
 =

+ −
. 

 

Using the value of 1x   in equation (8), we get 

 
𝑟2𝑥2

∗2

𝑘2
− 𝜑2𝑥2

∗ − 𝜎 (
𝑎𝑟3𝑥3

∗−𝑎𝜑3𝑘3

𝜑3𝑘3+𝑛𝑘3−𝑟3𝑥3
∗) =0.  

 

This equation will have a positive solution if 𝜑2 ≥ 0 ⇒
𝑟2 − 𝛼 − 𝛽 ≥ 0. Finally from equation (3.3), we obtain 

 

1 1 1
3 1

1

a x r x
x

m k


 


 +
= − 

 
 

 

 

Hence the equilibrium points of the system are 

( )1 2 1 2 3 1 2 3(0,0,0), ( , ,0) and  , ,P P x x P x x x   . 

 

3.3 Stability analysis at steady state 

 

The Jacobean of the system is 

  

( )1 2 3, ,J x x x =

( )
( )

( )

31 1 1
1 2

1 11

2 2
2

2

3

2

1

2
r - - -             0                   -

2
                               r - -                              0

                       0                        

amxr x mx
qE

k a xa x

r x

k

anx

a x

 

  

+ +
++

−

+

3 3
3 1

3

2
             r -

r x

k


 
 
 
 
 
 
 
 −
 
 

 

( )

( )1

2

3 1

r            0                       0

 0,0,0                                r -                0

   0                                0                     r

qE

J

 

  



 − + +
 

 = − 
 −
 

 

 

Then the characteristics equation of the matrix with 

eigenvalue  is 

 

( )1

2

3 1

r -            0                         0

                               r -                0 0

   0                                0                     r

qE

J I

  

    

 

− + +

− = − − =

− −

 

( )1 2 3 1r - 0,  r - 0 or r 0qE        − + + = − − = − − =  

( )1 1 2 2 3 3 1r ,  r -   and rqE        = − + + = − = −  

 

123



 

The eigenvalue  of the matrix determines the stability of 

the states. Depending on  , the stability conditions are: 1. if 

the eigenvalue 0  , then the steady state is unstable, 2. if 

the eigenvalue 0  , then the system is stable. 

In the following lemma, we show that 𝑃3(𝑥1
∗, 𝑥2

∗, 𝑥3
∗)is 

locally asymptotically stable. 

Lemma 3. The equilibrium point 𝑃3(𝑥1
∗, 𝑥2

∗, 𝑥3
∗) is always 

locally asymptotically stable. 

Proof: Let, the three functions be 

( ) ( ) ( )1 2 3 1 2 3 1 2 3, , , , ,  and , ,u u x x x v v x x x w w x x x= = =  of 

the system (2.1)-(2.3). Then the Jacobean at 𝑃3(𝑥1
∗, 𝑥2

∗, 𝑥3
∗) 

is 

 

𝐽(𝑥1
∗, 𝑥2

∗, 𝑥3
∗) =  

( )
( )

( )

31 1 1
1 2

1 1
1

2 2
2

2

3

2

1

2
r - - -       0                       

2
                                             r - -                0

                                         0 

amxr x mx
qE

k a xa x

r x

k

anx

a x

 

  

 










+ +
++

−

+

3 3
3 1

3

2
               r -

r x

k




 
 
 
 
 
 
 
 
 

−
 
 
 

 

Then the characteristics equation of the matrix with 

eigenvalue  is 

 
|𝐽 − 𝜆𝐼| = 0

( )
( )

( )

31 1 1
1 2

1 1
1

2 2
2

2

3

2

1

2
r - - - -      0                         -

2
                                               r - -             0

                                      

amxr x mx
qE

k a xa x

r x

k

anx

a x

  

   

 










+ +
++

− −

+

3 3
3 1

3

2
    0                    r -

r x

k
 



− −

= 0

 

( )
( )

( )

31 1 2 2
1 22

1 2
1

3 3 31 2 2
3 1 22

3 21
1

2 2
r - - - - r - -

2 2
r - r - -

amxr x r x
qE

k k
a x

r x anxmx r x

k ka x a x

     

    

 



  




 
  

 + + − −   
  +

 

 
      

− − + − −           +      +
 

= 0 

( )( )( ) ( )1 2 3 4 2- 0A A A A A    − − + − =  

3 2
1 2 3 0a a a   + + + =                                                (10)     

                                                                                                                                                                                                               

where,  

 

( ) ( ) ( )1 1 2 3 2 1 2 2 3 3 1 4 3 1 2 3 2 4, ,a A A A a A A A A A A A a A A A A A= − + − = + + + = − + , 

( )
( )

( )

31 1 2 2
1 1 2 22

1 2
1

3 3 31
3 3 1 4 2

3 1
1

2 2
r - - - ,  r - - ,  

2
r - ,  

amxr x r x
A qE A

k k
a x

r x anxmx
A A

k a x a x

   



 



 




= + + = −

+

 
  

= − =    +  +
 

 

 

By Routh-Hurwitch criterion, all the eigenvalues of (3.7) 

have negative real roots if and only if 𝑎1 > 0, 𝑎3 > 0, and 
𝑎1𝑎2 > 𝑎3. 

Then the equilibrium point 𝑃3(𝑥1
∗, 𝑥2

∗, 𝑥3
∗)  is locally 

asymptotically stable. 

 

 

4. NUMERICAL SIMULATIONS 

 

In this section, some numerical simulations of our 

proposed model were presented to investigate the dynamical 

behavior of the model. To do these simulations, MATLAB 

ode45 solver was used. The description and values of all 

parameters used in our proposed model are presented in 

Table 1. 

 

Table 1. Description of parameters and their values 

 

Symbols Description of parameters Values 

1r  

2r  

 

3r  

 
  

  

  

1  

  

 
m  

 
n  

 
a  

1k  

 

2k  

 

3k  

intrinsic growth rate of black tiger 

prawn in unreserved area 

intrinsic growth rate of black tiger 

prawn in reserved area  

intrinsic growth rate of predator 

population in unreserved area 

migration rate 

decay rate due to being stolen 

(illegal pouching) 

death rate due to disease 

death rate of predator 

death rate of prey in unreserved 

area 

depletion rate of prey due to the 

predation 

growth rate of predator due to 

predation 

saturation constant 

carrying capacity of black tiger 

prawn in unreserved area 

carrying capacity of black tiger 

prawn in reserved area 

carrying capacity of predator 

population in unreserved area 

5 

 

6 

 

1.5 

 

2.5 

0.2 

 

0.9 

0.05 

0.02 

 

     0.5 

 

0.05 

 

20 

100 

 

 

200 

 

100 

 

 
 

Figure 2. Variation of population with time (70 days)  

 

A time interval of 70 days was considered to show the 

dynamics. The figures displayed depict the densities of fish 

and predator population in reserved and unreserved area and 

shows where the population increases and decreases within 

70 days. Figures 4.3-4.14 show the variation of black tiger 

prawn and predator population in two zones for changing 

values of different parameters. 
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The Figure 2 represents that fish population first increases, 

then decreases and finally grows at a constant rate in the 

unreserved area and the species in the reserved area first 

increases, then shows a slight decrease and finally grows at a 

constant rate. The predator population shows an increasing 

effect for the above values of the parameter.  

 

 
 

Figure 3. Variation of population with time (70) days for 

0.9, 0.5m n= =  keeping all values same 

 

Figure 3 illustrates that for the increasing values of 

depletion rate and growth rate due to predation, the black 

tiger prawn in the unreserved area increases in the first 9 days, 

then decreases for after 9 days and at last it extinct while in 

the reserved area it shows a slight changing effect.  The 

figure also shows that the predator population increases for 

the parameter values. 

 

 
 

Figure 4. Variation of black tiger prawn inreserved area for 

different values of   
 

 
 

Figure 5. Variation of black tiger prawn in reserved area for 

different values of   
 

 
 

Figure 6. Variation of black tiger prawn in unreserved area 

for different values of n  
 

 
 

Figure 7. Variation of black tiger prawn in reserved area for 

different values of n  
 

 
 

Figure 8. Variation of predator population in unreserved area 

for different values of n  

 

 
 

Figure 9. Variation of black tiger prawn for different values 

of m  
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Figure 10. Variation of black tiger prawn in reserved area for 

different values of m  
 

 
 

Figure 11. Variation of predator in the unreserved area for 

different values of 𝒎 

 

The change in the biomass density of black tiger prawn in 

the two zones for increasing values of   has been 

represented in Figures 4 and 5. The fish population in the 

unreserved area decreases for the increasing value of 

migration rate while population in reserved area shows an 

increasing effect.  

Figures 6-8 show the variation of fish and predator 

population for different values of consumption rate due to 

predation. It is seen from the Figures that black tiger prawn 

in both zones decreases and predator population increases 

due to the increasing values of 𝒏. 

The variation of fish and predator population for different 

values of depletion rate due to predation is represented in 

Figures 9-11. It is seen from the figures that black tiger 

prawn in both zones decreases and predator population 

increases due to the increasing values of 𝑚 . The fish 

population in unreserved area extinct after 50 days as 

depletion rate increases. 

In Figures 12 and 13, we observe that fish population 

decreases from the unreserved area while the population 

increases in reserved area due to the increasing values of 

fishing or harvesting rate.  

Figures 14 and 15 indicate the variation of black tiger 

prawn in reserved area for the changing values of the rate at 

which the species are stolen and death rate. Both the figures 

show a decreasing effect for the increasing values of 𝛼 and 𝛽.  

Some arbitrary data are assumed for describing the phase 

diagram of the system. Using the Maple2018 software, we 

have analyzed the stability analysis of the fishery model. The 

phase diagram of the model in presence and absence of 

predator in both reserved and unreserved area has been 

analyzed for the system. Figures 16 and 17 describe the phase 

diagram of the system. 

 
 

Figure 12. Variation of black tiger prawn in unreserved area 

for different values of E  
 

 
 

Figure 13. Variation of black tiger prawn in reserved area for 

different values of E  
 

 
 

Figure 14 Variation of black tiger prawn in the reserved area 

for different values of 𝜶 

 

 
 

Figure 15. Variation of black tiger prawn in reserved area for 

different values of   
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Figure 16. Phase space diagram of the system in the presence 

of predator in the unreserved area with the parameter values 

1 11,  7,  6,  6,  7,r k m n a= = = = =  

3 3 9,  0.2,  0.4,  0.2,  0.3,  qE 0.2k r   = = = = = =  

 

 
 

Figure 17. Phase space diagram of the system in the absence 

of predator in the unreserved and reserved area with the 

parameter values 1 1 2 21,  7,  9,  0.5,  0.2,r k k r = = = = =  

0.4,  qE 0.2, 0.2, 0.1  = = = =  

 

 

5. CONCLUTION 

 

Considering two ecosystems, a mathematical model of 

fishery has been formulated in this paper. We have analyzed 

the behavior of the model, focusing on the parameters that 

are mainly responsible for the production and reduction of 

black tiger prawn. The numerical results reveal that the high 

mortality rate, fishing rate and predation rate of black tiger 

prawn in the unreserved area have a decreasing effect on the 

species in the reserved area. It also shows that the number of 

black tiger prawn increases in the reserved area due to the 

high migration from the unreserved area. When predation 

increases, the number of black tiger prawn in both reserved 

and unreserved area reduces by a significant amount. It is 

also evident from the simulations that the production of black 

tiger prawn in the reserved area decreases due to death from 

different diseases and for being stolen in absence of security. 

The main conclusion based on the result is that it is possible 

to maximize the production of black tiger prawn by proper 

management and thus it can play a significant role in the 

economy of a country.  
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