
A Deep Learning Model for Striae Identification in End Images of Float Glass 

Dabing Jin1,2, Shiqing Xu1, Lianjie Tong1, Linyu Wu3, Shimin Liu1* 

1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China 
2 North China Institute of Aerospace Engineering, Langfang 065000, China 
3 Hebei CSG Glass Co., Ltd., 28 Baihe Road Yongqing Industrial Park, Langfang 065600, China 

Corresponding Author Email: lsm@ysu.edu.cn 

https://doi.org/10.18280/ts.370111 ABSTRACT 

Received: 24 September 2019 

Accepted: 3 January 2020 

For float glass, there is a correlation between the striae in end image and the manufacturing 

process. If clearly understood, the correlation helps to optimize and fine-tune the 

manufacturing process of float glass. This paper attempts to extract the striae from the end 

image of float glass with deep learning (DL) neural network (NN). For this purpose, an 

image segmentation model was established based on improved U-Net, a fully convolutional 

network (FCN), and used to accurately divide the glass liquid on the end image into different 

layers. Firstly, the improved U-Net model was constructed to extract the striae from each 

liquid layer on the end image. Next, the activation function and convolutional mode of the 

improved U-Net model were optimized to enhance the segmentation accuracy and shorten 

the training/prediction time. Finally, the proposed model was tested on the float glass 

production line of Hebei CSG Glass Co., Ltd. The test results show that our model achieved 

an accuracy of 94%. The research findings lay a solid basis for striae identification on end 

image of float glass, and provide guidance for optimization and fine-tuning of float glass 

manufacturing process. 
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1. INTRODUCTION

For float glass, there is a correlation between the striae in 

end image and the manufacturing process [1, 2]. If clearly 

understood, the correlation could greatly facilitate the 

diagnosis of manufacturing problems of float glass. For 

example, Liu [3] identified the basic structure of the end image 

of float glass (the glass liquid flowing out of the furnace has 

three layers, which respectively correspond to the three 

circulations in the furnace), and then proposed a regulation 

method for the melting process of float glass based on striae 

detection. Therefore, the homogenization failure of the glass 

liquid can be traced back to specific parts in the furnace, 

according to the striae on the end of float glass. In this way, 

the technological process of the furnace can be evaluated early 

and fine-tuned accurately to restore the stability and normality 

of float glass manufacturing, promoting the regulation of the 

melting process of float glass [1]. 

In general, the striae in end images of float glass are 

analyzed by experienced process experts. However, the expert 

analysis consumes lots of labor and time. Sometimes, the striae 

are difficult to identify or incorrectly identified, because of the 

experience difference between the experts and the limitations 

of their knowledge. The defects of expert analysis can be 

overcome by computer segmentation, which features high 

objectivity, fast data processing and good reproducibility. The 

various methods for image segmentation can be roughly 

divided into conventional methods and deep learning (DL) 

methods. 

Each image contains three levels of semantics: low-level, 

intermediate-level and high-level. The low-level semantics 

(e.g. color, texture and shape) are adopted by the conventional 

image segmentation methods. Thresholding, region growing 

and edge detection [4, 5] are the most popular conventional 

methods for image segmentation. Yao [6] proposed an online 

identification method for glass surface defects, based on 

Otsu’s method and the Hessian blob algorithm. Li et al. [7] 

compensated the image under non-uniform illumination 

through top-hat transform of grayscale morphology, obtained 

a binary image by global image thresholding using Otsu’s 

method, and designed an algorithm for interconnected areas to 

optimize the features of low-contrast surface defects. However, 

the conventional image segmentation methods cannot achieve 

a good effect on the striae in the end image of float glass, 

owing to the discontinuous edges between liquid layers, the 

irregular shape of the image and the changing brightness with 

shooting devices. 

Thanks to the development of DL theories, the DL-based 

techniques for image recognition, detection and semantic 

segmentation have gradually replaced the artificial strategies. 

Image semantic segmentation is an important research 

direction in computer vision and an essential part of image 

understanding. Convolutional neural network (CNN), a typical 

DL technique, provides a powerful tool for feature extraction. 

This technique has been successfully applied in various fields, 

namely, automatic pilot, medical image diagnosis, product 

defect detection, speech recognition, and agricultural product 

classification [8, 9]. Xiong et al. [10] developed a detection 

method for glass surface defects based on multiscale CNN, 

which can accurately identify the surface defects of glass, 

especially starches and impurities. Luo et al. [11] combined 

the improved dynamic thresholding and backpropagation 

neural network (BPNN) to detect the glass surface defects. 

Nevertheless, there is little report on DL-based striae detection 
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in end image of float glass. 

For the following reasons, it is very difficult to 

automatically segment the liquid flow in end image of float 

glass: (1) The end images captured by different striaescopes 

vary greatly from each other, under the effects of light 

intensity and irradiation uniformity; (2) In the end image of 

float glass, the liquid has obscure layers and disconnected 

edges, adding to the difficulty in striae detection; (3) There is 

no clear boundary between each liquid layer and the 

surrounding textures. 

The accuracy of melting fault diagnosis is critical to the 

manufacturing efficiency of float glass, and the economic 

profit of the manufacturer. To achieve an accurate diagnosis, 

it is imperative to classify the glass liquid at the end into 

different layers automatically by computer technology. 

Drawing on the previous results on float glass melting, this 

paper introduces computer vision technique to classify the 

liquid layers and identify the striae in the end image. Based on 

the correspondence between liquid layers and circulations in 

the furnace, a series of end images with striae tags were 

combined into a dataset. On this basis, a neural network (NN) 

model was established and trained, and used to identify and 

diagnose the faults on the subsequent images. 

Our research was carried out in the following steps: Firstly, 

the experts tagged the series of end images; the tagged 

information includes the layers of glass liquid and the 

manufacturing processes corresponding to the striae. Then, the 

original end images and the tagged data were integrated into a 

dataset. After that, a DL network model was set up, and the 

DL network was trained by the dataset to find the striae in the 

end images; the model structure and parameters were 

determined after repeated trainings and fine-tunings. Finally, 

the model with the selected structure and parameters was 

applied to predict and identify the striae in other end images of 

float glass. 

The remainder of this paper is organized as follows: Section 

2 introduces the data collection, data preprocessing and 

construction of the dataset; Section 3 develops a liquid layer 

segmentation method for end image of float glass based on 

improved U-Net, a fully convolutional network (FCN); 

Section 4 verifies the proposed method through several tests; 

Section 5 puts forward the conclusions. 

 

 

2. DATA COLLECTION AND PREPROCESSING 

 

Our dataset covers 1,000 typical end images of float glass, 

which were collected from the float glass production line of 

Hebei CSG Glass Co., Ltd. To ensure the robustness and 

reliability of our model, the images were selected on different 

days under different manufacturing states. In each image, the 

striae on each liquid layer were tagged by experts. Then, the 

tagged data were put into our dataset, and used for model 

training. The data were collected and preprocessed in the 

following steps: 

(1) Image collection 

The end images were collected from float glass, using a self-

developed striaescope. The triaescope consists of a light 

source system, a motor control system, an imaging system, and 

a computer software system. Specifically, the light source 

system generates parallel lights to irradiate the end surface of 

float glass sample; the motor control system performs logical 

control of the trolley carrying the sample; the imaging system 

shoots the end image of the sample with a charge-coupled 

device (CCD) lens and an optical lens; the computer software 

system coordinates the work of each system. Striaescopes have 

been adopted by hundreds of manufacturers around the world, 

because they can capture high-quality end images of glasses.  

(2) Image normalization 

The collected images often vary greatly in scale due to the 

difference in manufacturing device and glass thickness. 

However, the input data of the CNN must have the same 

dimension. Thus, the different images need to be converted 

into the same scale.  

The float glass produced by Hebei CSG Glass Co., Ltd. is 

4m-wide and 15mm-thick. The images collected by our 

striaescope were generally 300×4,000 in size. However, the 

image size might deviate from the standard size, under the 

effect of lens magnification of the imaging system. To solve 

the problem, all the images were normalized to 300×4,000. 

The normalization could distort the images and destroy their 

original features, because the images have different aspect 

ratios. Therefore, the images were resized with the short side 

as the benchmark, and the empty parts were filled with white 

color. 

(3) Image tagging 

The three layers of glass liquid on the normalized images 

were manually identified and tagged by experts. Since the 

glass liquid has three layers, the pixels on the middle layer 

were colored white, while those on the upper and lower layers 

were colored black. The tagged images were saved in the 

Masks folder with the same names of the original images, 

while the original images were all stored in the Images folder. 

 

 

 
 

Figure 1. Original end image 

 

 
 

Figure 2. Tagged end image 
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One of the original end images is presented in Figure 1, and 

the corresponding tagged image is displayed in Figure 2. As 

shown in Figure 2, the tagged end image is a binary image 

divided into three layers based on the features of glass liquid: 

the upper black layer, the middle white layer and the lower 

black layer. Thus, the division of liquid layers is a binary 

classification problem. 

(4) Dataset division 

The dataset was divided into a training set, a verification set 

and a test set at the ratio of 6:2:2. The training set (6,00 images) 

was used to train our model; the test set was used to verify the 

effect of the model trained by each batch of training images 

(the model structure was then adjusted based on the 

verification results); the test set was used to verify the 

effectiveness of the trained model.  

(5) Data enhancement 

The number of images in the training set is too few to 

prevent overfitting. This calls for data enhancement of the 

training set. To expand the data samples, the images in the 

training set were subjected to enhancement operations like 

translation, brightening, shading, scaling and adding salt-and-

pepper noise. Neither rotation nor chrominance adjustment 

was adopted, because the layers of glass liquid depend on 

vertical positions and the original images are grayscale images. 

To ensure the randomness of enhanced data, the brightness 

level, shading position and scaling were generated randomly; 

the tags on the images to be translated and scaled were also 

subjected to translation and scaling; the tags on the images to 

be brightened or shaded were not changed. 

First, 200 images were randomly selected from the 600 

images in the training set. Each image was modified with 20 

random brightening parameters. The brightening adds 4,000 

images to the training set.  

Second, 200 images were randomly selected from the 

training set. Each image was shaded in 10 random areas (the 

size and location of each area were randomly generated). The 

shading adds 2,000 images to the training set. 

Third, 100 images were randomly selected from the training 

set. Each image was added with salt-and-pepper noises 9 times. 

The noise addition adds 900 images to the training set. 

In this way, the size of the training set was expanded from 

600 images to 7,500 images. The data in verification set and 

test set were not enhanced, for the two sets were used to 

evaluate the actual performance of our model. After data 

preprocessing, the authors obtained a training set of 7,500 

images, a verification set of 200 images, and a test set of 200 

images. 

 

 

3. U-NET-BASED CLASSIFICATION OF GLASS 

LIQUID LAYERS 

 

3.1 Structure of U-Net model 

 

Each layer of glass liquid takes a specific texture, direction 

and form on the end image of float glass. There are clear 

boundaries between different layers, but the boundaries are 

sometimes discontinuous. Therefore, the different layers of 

glass liquid can be extracted through semantic segmentation. 

The popular ways of semantic segmentation include the FCN, 

SegNet, DeepLab [12, 13]. 

This paper adopts the U-Net, a typical FCN, for image 

segmentation. The FCN can realize pixel-level segmentation 

of images, providing a suitable tool for semantic segmentation. 

In classic CNN, a fixed-length eigenvector is outputted by the 

fully-connected layer after the convolutional layer, and then 

classified by SoftMax [14-16]. By contrast, the FCN can 

process image inputs of multiple dimensions. In the FCN, the 

feature maps from the convolutional layer are up-sampled in 

the deconvolution layer, and restored to the size of the original 

images. In this way, the spatial information of the original 

images is preserved, and each pixel can be predicted. Finally, 

the up-sampled feature maps are subjected to pixel-level 

classification. 

The FCN-based image segmentation can be divided into 

two simple phases. In the first phase, each input image passes 

through a series of convolutional layers and pooling layers, 

which is similar to that of the CNN [17, 18]. The two kinds of 

layers reduce the spatial dimension of the image, and generate 

an abstract feature map in the light of local patterns. This 

process is also known as encoding.  

In the second phase, the feature map from the encoder is up-

sampled by a series of transposed convolutional layers 

(deconvolution layers), such that the feature map has the same 

size as the input image. This process is also known as decoding. 

Figure 3 shows the height H and width W of the feature map 

after passing through each layer in the FCN. 

 

 
Figure 3. Structure of the FCN 

 

The decoding phase outputs an H ×W×C feature map, where 

C is the hyper-parameter. Then, the C channel is combined 

with n channels on the level of pixels, where n is the number 

of object categories. The pixel-level feature fusion is realized 

through dimensionality reduction by a 1×1 kernel. 

The FCN is the first DL-based image segmentation method. 

Its merit lies in the realization of end-to-end segmentation [19, 

20]. However, the details of FCN image segmentation are not 

good enough, for failing to consider the spatial correlation 

between pixels. To refine the details, this paper improves the 

U-Net (Figure 4). 
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Figure 4. Structure of the U-Net 

 

As shown in Figure 4, the U-Net consists of two parts: the 

feature extraction part on the left, and the up-sampling part on 

the right. The former part contains a series of convolutional 

layers and pooling layers. The feature map changes to a new 

dimension after passing through each pooling layer. In total, 

there are 5 dimensions in the former part. The latter part 

includes a series of deconvolution layers. After each up-

sampling, the dimension of the feature map is fused (stitched) 

with that of the feature map in the corresponding channel of 

the former part. 

 

3.2 Improved U-Net 

 

In the CNN, the area on the original image that corresponds 

to the pixels on the output feature map is called the receptive 

field. The larger the kernel is, the wider the receptive field, and 

the richer the output information. Therefore, large kernels are 

suitable for extracting features from large regions [21-23]. 

In the end image of float glass, each stria runs through the 

entire image from left to right, creating a large feature region. 

Large kernels could work effectively on such a large feature 

region. Nevertheless, large kernels increase the number of 

training parameters, which consume a high computing power 

and hinders model convergence. To overcome the defects, this 

paper introduces dilated convolution to the U-Net. 

Dilated convolution is produced by adding holes with zero 

weight to the standard convolution. These holes do not 

participate in the convolutional operation [24, 25]. The 

addition of these holes can expand the receptive field of the 

kernel without increasing the number of parameters. 

Three kinds of 3×3 kernels are presented in Figure 5. In 

Figure 5(a), the kernel has an expansion ratio of 1, and a 

receptive field of 3×3; this kernel is equivalent to a standard 

kernel. Figure 5(b) shows a perforated kernel with an 

expansion ratio of 2 and a receptive field of 5×5; only the black 

elements are involved in convolutional operation, i.e. all 

elements are of zero weight except the nine black ones. Figure 

5(c) presents a perforated kernel with an expansion ratio of 3 

and a receptive field of 7×7. 

The receptive field of a kernel increases with expansion 

ratio. However, a larger expansion ratio is not necessarily 

better. Dilated convolution performs sparse convolutional 

operation on images. If the expansion ratio is too large, the 

kernel will emphasize on global information over local details. 

 

 
(a) Expansion ratio=1 

 
(b) Expansion ratio=2 

 
(c) Expansion ratio=3 

 

Figure 5. Perforated kernels 

 

The proposed dilated U-Net provides a contraction path to 

extract image features and an expansion path to restore to the 

size of original image. Unlike the original U-Net, the dilated 

U-Net replaces the standard kernels with perforated ones. To 

prevent the vanishing gradient problem, batch normalization 

(BN) layers were added to normalize the convolutional outputs 

in batches, thus enhancing gradient and speeding up 

convergence. 
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Figure 6. Structure of dilated U-Net 

 
Note: Dilated-CONV is dilated convolution; BN is batch normalization; ReLU is the nonlinear activation function; MaxPooling is the pooling layer; UpSample is 

up-sampling; Concate is information fusion (concatenation), i.e. the corresponding feature maps on the contraction and expansion paths are superimposed to 

integrate contextual features; SoftMax is the classifier that normalizes multiple neuron outputs to (0, 1), i.e. the probabilities the input image belongs to different 
categories.  

 

As shown in Figure 6, the multi-scale structure is suitable 

for segmenting ultra-large images. Hence, the dilated U-Net 

applies well to the classification of glass liquid layers. 

However, two more problems must be solved: the high 

computing load and over-fitting. The former problem arises 

from the numerous training parameters, which are resulted 

from the large scale of end images; the latter problem is 

attributable to the small training set.  

To solve the problems, a dropout layer was added to each 

pooling layer in the dilated U-Net. The basic idea of dropout 

is as follows: During the training, some neurons are filtered 

out from each batch at a random probability; only the 

parameters corresponding to the remaining neurons are trained 

[26]. The removed neurons have a gradient of zero, and their 

parameters will not be updated. However, all the neurons 

should participate in the computation during the test phase. 

Here, a total of 485,673 parameters need to be trained, at the 

dropout ratio of 0.5. 

During the training, the initial learning rate was set to 1×10-

5, the weight attenuation rate to 1×10-4, and the momentum 

parameter to 0.85. The kernels were initialized with Gaussian 

distribution N(0, 0.1). The improved U-Net was optimized by 

stochastic gradient descent (SGD). The “stochastic” means a 

part of dataset is stochastically selected for computation, i.e. a 

batch version of gradient descent. The SGD supports the 

momentum parameter and learns the attenuation rate. 

Instead of computing the loss on all training data, the SGD 

algorithm calculates the loss based on a randomly selected part 

of the data [27, 28]. This speeds up the parameter update in 

each iteration. However, a small loss in some data does not 

necessarily mean the loss in all data is small. As the result, the 

SGD algorithm sometimes cannot converge to the global 

optimal solution [29]. Considering the memory limit of 

computer and experimental results, the authors decided to 

contain 32 images in each batch of training samples, aiming to 

clarify the direction of gradient descent, control training 

oscillations and reduce the number of iterations. 

The image segmentation problem is actually a binary 

classification of each pixel. Thus, the logarithmic loss function, 

i.e. binary cross entropy function, was adopted as the objective 

function [30]. For the binary classification problem, there are 

two possible categories for each image. Let p and 1-p be the 

probabilities for the image to fall into the two categories, 

respectively. Then, the objective function can be defined as: 

 

 )1log()1()log(L pypy −−+−=  
 

where, y is the label of each sample (y=1 for the positive 

category; y=0 for the negative category); p is the probability 

that a sample is predicted as a positive one. 

 

3.3 Evaluation indices 

 

The image segmentation effect of the improved U-Net was 

evaluated by the metrics for binary classification, namely, 

accuracy, error rate, sensitivity, specificity, recall, precision 
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and F-measure. Let true positive (TP) be the number of 

positive samples predicted as positive; true negative (TN) be 

the number of negative samples predicted as negative; false 

positive (FP) be the number of negative samples predicted as 

positive; false negative (FN) be the number of positive 

samples predicted as negative. Then, the six evaluation indices 

can be described as follows: 

(1) Accuracy 

This common evaluation index describes the proportion of 

correctly classified samples. The higher the accuracy, the 

better is the effect of image segmentation. The accuracy can 

be calculated by: 

 

FNFPTNTP

TNTP

+++

+
=Accuracy

 
 

(2) Error rate 

Contrary to accuracy, the error rate refers to the proportion 

of incorrectly classified samples: 

 

FNFPTNTP

FNFP
Rate

+++

+
=Error

 
 

The error rate and the accuracy are mutually exclusive 

events. Hence, it is only necessary to compute the accuracy. 

(3) Sensitivity 

This metric represents the proportion of correctly classified 

positive samples, and measures the recognition ability of the 

classifier of positive samples. The sensitivity can be calculated 

by: 

 

Sensitivity
TP

P
=

 
 

(4) Specificity 

This metric represents the proportion of correctly classified 

negative samples, and measures the recognition ability of the 

classifier of negative samples. The specificity can be 

calculated by: 

 

N

TN
=ySpecificit

 
 

(5) Recall 

Being a measure of coverage, recall reflects how many 

positive samples are classified as positive. This index is the 

same as sensitivity. 

(6) Precision 

Precision refers to the proportion of correctly classified 

positive samples: 

 

FPTP

TP

+
=Precision

 
 

(7) F-measure 

The F-measure is the weighted harmonic mean of accuracy 

and recall: 

 

)(α

*)1α(
F

2

2

RP

RP

+

+
=

 
 

where, α=1. The F-measure is the combined result of accuracy 

and recall. The improved U-Net is effective if the F-measure 

is high. 

 

 

4. EXPERIMENTAL VERIFICATION 

 

4.1 Experimental environment 

 

Our DL model operates under the DL frameworks of 

TensorFlow and Keras. The CNN was trained on Nvidia Tesla 

v100 GPU, and data enhancement module was processed on 

OpenCV, a library of programming functions, under Python 

3.6. The areas of the three liquid layers were computed by the 

find Contour in OpenCV. 

 

4.2 Experimental results 

 

A total of 1,000 end images of float glass were selected and 

divided into a training set, a verification set and a test set. The 

training set was subjected to data enhancement, and expanded 

to 7,500 images. These images were imported to the improved 

U-Net for training. The accuracies and losses of the training 

set and validation set after 35 rounds of training are shown in 

Figures 7 and 8, respectively. 

 

 
 

Figure 7. The accuracy curves of training and validation sets 

 

 
 

Figure 8. The loss curves of training and validation sets 

 

As shown in Figure 7, the accuracy of our model on the 

training set was on the rise after 35 rounds of training, but did 

not increase on the verification set after 20 rounds. The loss 

curves in Figure 8 indicate that the loss function continued to 

decline on the training set, but stopped decreasing on the 

verification set after 20 rounds. It can be concluded that, after 

20 rounds of training, the network suffered from over-fitting, 

and the final accuracy of our model was about 94%. Therefore, 

the parameters after 20 rounds of training were taken as the 
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final parameters of our model. 

To verify the performance of our model in classifying gas 

liquid layers, the manual segmentation results of end images 

on float glass were taken as the reference, and the mean values 

of accuracy, F-measure and precision were computed based on 

the automatic segmentation results on 200 test images. The 

results of the improved U-Net were compared with those of 

the classic image segmentation methods, namely, edge 

detection, FCN and classic U-Net. As shown in Table 1, the 

improved U-Net outperformed the three contrastive models; 

On the 200 test images, our model achieved an accuracy of 

94%, an F-measure was 79% and a precision of 81%. 

The performance of our model in classifying gas liquid 

layers was further evaluated against the FCN and classic U-

Net, based on the mean Dice coefficient (DC) and intersection 

over union (IoU) on automatic segmentation results on 200 test 

images. DC describes the ratio of the overlapping area 

between automatic segmentation and manual segmentation to 

the total area. The IoU is the intersection over union between 

the areas of automatic segmentation and manual segmentation. 

In ideal scenario, the intersection and union completely 

overlap each other, and the IoU equals 1. The DC and IoU 

values in Table 2 demonstrate that the improved U-Net 

achieved good segmentation accuracy, shedding new light on 

liquid layer classification of end images of float glass. 

 

Table 1. Comparison of image segmentation results 

 
 Accuracy F-measure Precision 

Edge detection 0.63202 0.61232 0.7233 

FCN 0.84234 0.72132 0.8120 

U-Net 0.91784 0.7556 0.7921 

Improved U-Net 0.94151 0.79213 0.8143 

 

Table 2. Comparison of different metrics 

 
Metrics FCN U-Net Improved U-Net 

DC 0.8323 0.9123 0.9432 

IoU 0.8146 0.9103 0.9384 

 

To validate the prediction effect, the improved U-Net was 

applied to segment two randomly selected end images of float 

glass (Figures 9a and 9c), which differ in striae thickness. The 

prediction results of the improved U-Net on the random 

images are displayed in Figures 9b and 9d. 

 

 
 

Figure 9. Prediction results on random images 

 

As shown in Figure 9, the improved U-Net classified the 

glass liquid into three layers. The area ratio between the three 

layers was 11:19:24 and 18:10:23 in the two end images. This 

ratio helps to reveal the technical features of float glass. In 

Figure 9a, the first layer takes up a small portion and obeys a 

non-uniform distribution. This means occlusions may exist in 

the glass liquid. In Figure 9c, the third layer accounts for a 

large portion, a sign of large tensile stress. Under large tensile 

stress, the glass products have a relatively low quality and 

grade, despite the high output. The manufacturer should adjust 

the tensile stress to strike a balance between output, quality 

and economic benefit. Moreover, the same defect in different 

layers corresponds to different technical parameters. The 

classification of glass liquid layers lays a solid basis for the 

diagnosis on the correspondence between end images and 

techniques of float glass. 

 

 

5. CONCLUSIONS 

 

This paper applies a DL model to classify the liquid layers 

on end images of float glass, and establishes an image 

recognition system that characterizes the homogenization 

quality of float glass.  

Firstly, the U-Net model was adopted to extract the image 

features of liquid flow on different layers. This model was 

selected for several reasons. First, the multi-scale structure 

brings good feature expression ability. Next, the U-Net 

supports training with input images of different scales, and 

thus tolerates the inconsistent size of images on different types 

of glasses. To promote generalization ability, the small dataset 

was expanded by data enhancement. In addition, the dropout 

layers were added to the U-Net to reduce the number of 

training parameters, shorten the training and prediction time 

and improve the model availability. 

The improved U-Net was applied to segment 100 actual end 

images of float glass in the test set. The accuracy, F-measure 

and precision reached 94%, 79% and 81%, respectively. The 

experimental results show that the improved U-Net satisfies 

the demand for actual production, and visually displays the 

technical features of float glass, laying a solid basis for the 

diagnosis of float glass production techniques. 
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