

An Efficient Antilogarithmic Converter by Using Correction Scheme for DSP Processor

Durgesh Nandan

Department of Electronics & Communication Engineering, Aditya Engineering College, Surampalem 533437, Andhra Pradesh,

India

Corresponding Author Email: durgeshnandano51@gmail.com

https://doi.org/10.18280/ts.370110

ABSTRACT

Received: 14 August 2019

Accepted: 29 Decemebr 2019

 Digital Signal Processing (DSP) applications demand error-free and compact hardware

architecture of arithmetic operations. A logarithmic operation provides an efficient option

in place of binary arithmetic. In this paper, it is suggested that 11-region and 17-region error

correction schemes for developing an efficient antilogarithm converter. It is used for

developing the most accurate and compact logarithm multiplier which is used in the DSP

processor. Implementations of reported and proposed designs are investigate based on

accuracy and hardware overhead and it found outperform in comparisons of previously

reported designs. The proposed 11- region converter involves 61% less Area Delay Product

(ADP) and 49.82% less energy in comparisons of the reported 11-region antilogarithmic

converter and 17-region converter involves 48.02% less ADP and 32.53% less energy in

comparisons of the reported 14-region antilogarithmic converter. The proposed

antilogarithmic converter achieves 1.697% and 1.084% error for 11-region and 17-region

designs respectively than of reported designs of 1.876% and 1.351% for 11-region and 17-

region respectively.

Keywords:

antilogarithmic converter, computer

arithmetic, DSP processor, error analysis,

FIR filter, logarithmic converter,

logarithmic multiplication

1. INTRODUCTION

Many handheld and portable signal-processing devices are

parts of our daily life. The Digital signal processor and image

processor have required accurate and efficient arithmetic

operations for performing fast and efficient real-time

applications [1-9]. As its well-known thing, that multiplier is

the most utilized component in arithmetic operations. Many

researchers' efforts have been directed to develop an accurate

and efficient multiplier design [6-13]. Nowadays filters

applications required an efficient multiplier design. Especially,

FIR, FFT and DCT techniques want an efficient multiplier

design for performing well.
Traditional or reported multiplication was limiting

performance in terms of accuracy as well as hardware

overhead. Logarithm multiplier must have the potential to

become an option of a traditional multiplier for real-time

digital signal processor [14-19].

Logarithm multiplication operation can be performing in

three steps: (1) Conversion of any format numbers into

logarithmic numbers, (2) then performed addition on

logarithmic numbers, and then (3) convert back into initial

format numbers [8]. The pictorial representation of logarithm

multiplication is shown in Figure 1. Many methods regarding

binary to logarithmic conversion and vice versa have been

discussed in the last few years [18-35]. Error creates at the time

of logarithmic and antilogarithmic conversion [10]. It shows

the utility of an efficient and accurate logarithmic and

antilogarithmic conversion process. The frame of remaining

paper is as like: Systematic growth of literature is discussed in

Section 2. Proposed methodology and possible hardware

construction are discussed in Section 3. Results and

comparative analysis of reported and proposed design are

exploring in Section 4. At last, the pros corns of design are

concluded in Section 5.

Figure 1. Pictorial representation of logarithm multiplication

2. SYSTEMATIC GROWTH OF LITERATURE

From 1962, researchers were trying continuously to propose

error-free and hardware efficient approaches to get efficient

and accurate antilogarithm [5, 10, 27, 29-35]. The entire

antilogarithm converter process was adopted broadly in three

categories of methods. The first is called the polynomial

approximation-based method, second is called Read Only

Memory (ROM) based method and the third is called shift-

and-add based method. The general architecture of the

antilogarithm converter with a correction circuit is shown in

Figure 2. Mitchell’s proposed logarithmic and antilogarithmic

Traitement du Signal
Vol. 37, No. 1, February, 2020, pp. 77-83

Journal homepage: http://iieta.org/journals/ts

77

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.370110&domain=pdf

converters based on a one-region linear approximation scheme

in 1962 [10]. In 1970, Hall et al. proposed a 2-region and 4-

region antilogarithmic converter by using piecewise-linear

approximation schemes. Here, better accuracy achieved by the

penalty of hardware [5]. SanGregory was proposing a

correcting algorithm in 1999 by using mantissa’s four most

significant bits for correction which makes this algorithm

simple and fast [26]. Abed et al. were proposing a multi-region

correction antilogarithmic converter in 2003. It found low

errors but suffers from hardware overhead [27].

Figure 2. The general architecture of the antilogarithm

converter with error correction circuit

In 2006, Kim et al. have proposed the 8-region piecewise

linear approximation. It can reduce the approximation errors,

but suffers from hardware overhead due to many regions of

approximation [28]. A similar approach of 2-region bit-level

manipulation has been used to achieve accuracy for an

antilogarithmic converter [21, 22]. Kuo et al. have proposed 4-

region shift-and-add approximations based antilogarithmic

converter in 2012. It has near to 0.56 % error with tolerable

area overhead [30]. In 2016, Juang et al. have given two-region

antilogarithm approximation ranges -0.60 to 1.72 and ranges

over 2.3232 for antilogarithm converter [31]. Durgesh Nandan

et al. have suggested efficient hardware at the same error cost

in comparison of reported design in 2016 and 2017, [8, 32].

Kuo et al. have again suggested error minimization for multi

regions correction based on 11, 14 and 28-regions in 2016 with

efficient hardware architectures. It reduces error which results

from 1.8319%, 1.3436% and 0.6% [33]. Durgesh Nandan et al.

have suggested efficient hardware at the same error cost in

comparison to a reported design by Kuo et al. in 2017 for 11-

region [34]. Again in 2019, Durgesh et al. [35] have proposed

the compact and errorless 16-region error correction scheme

for antilogarithm converter which gives better results in terms

of hardware overhead as well as accuracy as compared to the

reported literature [30-34]. By using ROM, a fast and more

accurate conversion is possible. But, the hardware overhead

may tremendously higher while the bit width of inputs

increases [26, 31, 33]. On the other hand, the use of

polynomial approximations can reduce hardware, at the cost

of accuracy and speed. Many authors have reported an

improvement in accuracy with a trade-off among area, speed,

and power [26, 27, 30, 31, 33]. But the problem is that some

of them targeting the only accuracy while some others have

imposed large areas and long computation time. In other words,

they fail to establish design trade-off means error

minimization with an efficient architecture. Therefore,

suggesting 11-region and 17-region antilogarithm converter

design. It is efficient in terms of error and hardware

complexity.

3. PROPOSED METHODOLOGY AND HARDWARE

IMPLEMENTATION OF EFFICIENT

ANTILOGARITHM CONVERTERS

On behalf of reported design, it was found that error is not

uniform in some conditions. For error improving in any

straight line, there is a simple approach that can add the

difference of approximated value minus actual value. But in

many cases, the error varies in a different segment in different

percentage [30]. It can’t give a significant result. For the best

result, it can sub-divide the entire line into sub-regions and add

the mean difference of correction terms in a specified defined

range. But, increasing the number of sub-sections has reverse

relation with hardware. This research work focuses on error

minimization as well as significant hardware gain. The

proposed 11-region or 17-region has a proper selection of

fractional region which decides the error in that particular

region. It will offer high performance with a small

approximation error, shorter delay, and smaller hardware cost

compared to the methods [30-35].

It is desirable to have lower error possibility with a sum of

multiple regions error correction terms in a defined range.

Since we have to compare the performance of proposed

methods with reported methods; therefore, we take the same

design parameters. In this section, we present the proposed

antilogarithmic converters for 11-region and 17-region error

correction. Multi-region error correction adder and subtractor

circuit can be used to achieve better design trade-off among

accuracy, area consumptions and speed by using the proper

selection of fractional region decides the error in that particular

region. Deciding the fractional region is a key factor that

generates an error multiple of power 2 or as-near-possible to

that. Error decides the subtraction term. Since optimized

hardware gives an extra advantage to reported methods.

Therefore, we minimize hardware. We have a straight-line

ax+b. The entire straight line of the error correction scheme is

segmented into 11-region and 17-region. It lies between 0 and

1, and to add or subtract the corresponding error correction

scheme values. Here, it is worth mentioning that a small error

percentage at the first and last region was found so, there is no

need to apply the error correction scheme at these first and the

last region.

3.1 Proposed method

The proposed piecewise-linear approximation is given by

Eq. (1) and error percent is given in Eq. (2).

' 'Y 2 2k m= (1)

where, k is any integer and m lies between zero and one.

'

'

(1 ') 2
Percent Error (PER) () 100, 0 ' <1

2

m

m

m
m

+ −
=   (2)

Here, Percent Error (PER) is defined as the ratio of

difference of percentage of approximated value and actual

value and actual value. The approximation errors are obtained

by Mitchell’s method for each sub-region [10]. The input

78

format of ‘x’ for antilogarithmic conversion supposed to be

x=0.m-1 m2 m-3m-4 up to x-26. Here, we use only mantissa's four

most significant bits (MSB) for adjustment of the concatenated

result. Four bits of MSB can provide both accuracy and

hardware complexity but three or five bits of MSB fail to

provide an acceptable design trade-off. The mathematical

formulation of proposed antilogarithmic conversion and error

correction value is shown in Eqns. (3) and (4).

A p' '

p'

Antilog(A)=2 =2 2

2 (1 ' error correction value)

Where 0 x'<1

x

x



= + +



 (3)

Error correction value = c = 2 i

i

−
(4)

where, ‘i’ is a positive integer value.

The proposed 11 or 17 regions have the proper selection of

fractional region decides the error in that particular region.

Here key factor is that deciding the fractional region in that

way which generates an error which is multiple of power 2 or

as near possible to that. Error decides the subtraction term. For

hardware minimization, it gives an extra advantage to reported

methods. We suggest best-optimized hardware as with less

error. If we have selected other reasons then these may not be

able to full-fill the design trade-off. For example, if N = 17,

the ‘k’ can be partitioned into [0, 0.03), [0.03, 0.06), [0.06,

0.09), [0.09, 0.12), [0.12, 0.15), [0.15, 0.1875), [0.1875,

0.21875), [0.21875,0.25), [0.25, 0.3125), [0.3125, 0.375),

[0.375,0.6875), [0.6875,0.75), [0.75,0.8125), [0.8125,0.860),

[0.860,0.905), [0.905,0.955) and [0.955,1.00), respectively.

Here, we partitioned 'k' in a manner that creates the minimum

error. The fine-tuning process will be manually adjusted to get

the minimum total percent errors after obtaining the optimal

values of the error correction coefficient. We can also obtain

antilogarithmic conversions for 11-region and 17-region.

Antilogarithmic conversion is expressed in Eq. (5), with the

compensating values by using some algorithm as given in

Table 1 and Table 2.

p' ' p'

proposedA =2 2 2 (1 ' c), 0 x'<1x x  + +  (5)

The values of ‘X’ are set to ‘0’ and the values of ‘c’ for each

sub-region are given in Table 1 and Table 2.

Table 1. Parameters of the proposed converter using 11

region error correction schemes

Items Fractional region Error Subtraction terms

1 [0, 0.055) 0.0161 0

2 [0.055, 0.115) 0.0320 -(1/64)

3 [0.115, 0.186) 0.0483 -(1/32)

4 [0.186, 0.250) 0.0607 -(1/32+1/64)

5 [0.250, 0.360) 0.0765 -(1/16)

6 [0.360, 0.686) 0.771 -(1/16+1/64)

7 [0.686, 0.75) 0.0682 -(1/16)

8 [0.75,0.810) 0.0567 (1/32+1/64)

9 [0.810, 0.875) 0.0409 -(1/32)

10 [0.875, 0.955) 0.0164 -(1/64)

11 [0.955, 1) 0 0

According to Eq. (5), all the operations for compensation

are based on additions or subtractions, achieving simple and

feasible circuit implementations. It is noted in Eq. (3) that the

term (1 + x' + error correction value) multiplied by ‘2 p' ’can

be implemented with hard-wired connections of the

corresponding bits of the values (1 + x' + error correction

value). Thus, multiplication and shift operations may be

avoided. Since our algorithm produces the error correction

values to consider lower percent errors.

Table 2. Parameters of the proposed converter using 17

region error correction schemes

Table 3. Conditions to add the 11-region corrected values

m-1m-2

m-3m-4

Corrected value

for

antilogarithm

m-1m-2

m-3m-4

Corrected value for

antilogarithm

2-4 2-5 2-6 2-4 2-5 2-6

0000 0 0 0 1000 1 0 1

0001 0 0 1 1001 1 0 1

0010 0 1 0 1010 1 0 1

0011 0 1 1 1011 1 0 0

0100 1 0 0 1100 0 1 1

0101 1 0 0 1101 0 1 0

0110 1 0 1 1110 0 0 1

0111 1 0 1 1111 0 0 1

Table 4. Conditions to add the 17-region corrected values

m-1m-2

m-3m-4

Corrected value

for antilogarithm

m-1m-2

m-3m-4

Corrected value

 for antilogarithm

2-4 2-5 2-6 2-7 2-4 2-5 2-6 2-7

0000 0 0 0 0 1000 1 0 1 0

0001 0 0 1 0 1001 1 0 1 0

0010 0 1 0 0 1010 1 0 1 0

0011 0 1 1 0 1011 1 0 0 0

0100 1 0 0 0 1100 0 1 1 1

0101 1 0 0 1 1101 0 1 1 0

0110 1 0 1 0 1110 0 1 0 0

0111 1 0 1 0 1111 0 0 1 0

Therefore, antilogarithmic converters can achieve high

accuracy as compared to the reported methods [27, 31, 33].

The conditions are taken out as per the equation (5) to add the

corrected values. These conditions are based on the values of

‘c’ for each sub-region is given in Table 1 and Table 2. With

the help of Table 1 and Table 2, we draw the corrected values

of 2-4, 2-5, 2-6, and 2-7 for 11-region and 17-region, which are

shown in Table 3 and Table 4.

Items Fractional

Region

Error Subtraction

 terms

1 [0, 0.03) 0.0089 0

2 [0.03, 0.06) 0.0175 -(1/128)

3 [0.06, 0.09) 0.0256 -(1/64)

4 [0.09,0.12) 0.0332 -(1/64+1/128)

5 [0.12, 0.15) 0.0404 -(1/32)

6 [0.15, 0.1875) 0.0471 -(1/32+1/128)

7 [0.1875,0.21875) 0.0550 -(1/32+1/64)

8 [0.21875,0.25) 0.0607 -(1/32+1/64+1/128)

9 [0.25, 0.3125) 0.0706 -(1/16)

10 [0.3125, 0.375) 0.0781 -(1/16+1/128)

11 [0.375, 0.6875) 0.0770 -(1/16+1/64)

12 [0.6875, 0.75) 0.0682 -(1/16)

13 [0.75, 0.8125) 0.0562 -(1/32+1/64+1/128)

14 [0.8125,0.860) 0.0449 -(1/32+1/64)

15 [0.860,0.905) 0.0324 -(1/32)

16 [0.905,0.955) 0.0164 -(1/64)

17 [0.955,1) 0 0

79

3.2 Hardware implementation

The proposed antilogarithm converter architectures for 11-

region and 17-region with error correction schemes are shown

in Figure 3(a), (b) and 4 (a) show the architecture of sub-

component. Figure 3 (c) and 4 (b) show the main architecture

of the 11-region and 17-region with an error correction scheme.

(a)

(b)

(c)

Figure 3. (a), (b) are sub-components and (c) the proposed

architecture of the 11-region error correction scheme

(a)

(b)

Figure 4. (a) sub-components and (b) the proposed

architecture of the 17-region error correction scheme

4. ERROR ANALYSIS, SYNTHESIZE RESULTS, AND

COMPARISONS

Here, the main challenge is to reduce the error percentage

without the hardware penalty. It is well-known that on

increasing the number of partitions of antilogarithm converter

the error percentage is decreased at the cost of the hardware

penalty. In this section, we analyze the error, synthesis results,

and comparisons to present the proposed design as an error and

hardware efficient.

4.1 Error analysis

Error analysis can be evaluated by using three parameters,

the Maximum Positive Percent Error (MPPE), Maximum

Negative Percent Error (MPPE) and the Percentage Error

Range (PER). The results are shown in Table 5. The Table 5

shows that our proposed method for 11-region with error

correction scheme gives 1.441% in comparisons of Mitchell’s

6.1476%, Hall’s 2- regions 1.5042%, Abed & Siferd’s 2-

region 1.331%, Juang et al. 2-region 1.72% and Kuo et al. 11-

region 1.7327% MPPE. MNPE of -0.1436% in comparisons

of Mitchell’s 0%, Hall’s 2- region -1.1155%, Abed & Siferd

2-region -0.5631%, Juang et al. 2-region -0.6% and Kuo et al.

11-region -0.0992%.

Table 5. Comparison table of percent error for the proposed

antilogarithm converters for 11-region and 17-region with

error correction schemes

 Region MPPE MNPE PER

Mitchell 10 1 6.1476 0 6.1476

Hall 5 2 1.5042 -1.1155 2.6197

Abed & Siferd 27 2 1.331 -0.5631 1.8941

6 0.9572 -0.5786 1.5358

Juang 31 2 1.72 -0.6 2.3232

Kuo 33 11 1.7327 -0.0992 1.8319

14 1.2 -0.1436 1.3436

Proposed (11-Region) 11 1.554 -0.1436 1.697

Proposed (17-Region) 17 0.94 -0.1436 1.084

In terms of PER, we found that our proposed method for 11-

region with error correction scheme gives only 1.697% in

comparisons of Mitchell’s 6.1476%, Hall’s 2-regions

2.6197%, Abed & Siferd’s 2-region 1.8941%, Juang et al. 2-

region 2.3232% and Kuo et al. 11-region 1.8319%. Table 5

shows that our proposed method for 17-region with error

correction scheme gives 0.94% MPPE in comparisons of Abed

& Siferd’s 6 -region 0.9572%, and Kuo et al. 14-region 1.2%.

MNPE of -0.1436% in comparisons of Abed & Siferd’s 6-

region -0.5786% and Kuo et al. 14-region -0.1436%. In terms

of PER, we found that our proposed method for 17-region with

error correction scheme gives only 1.084% in comparisons of

Abed & Siferd’s 6-region 1.5358% and Kuo et al. 14-region

1.3436%. From Table 5 it is observed that the proposed

method has given less percentage error range in comparisons

of the reported designs. The proposed method for 11-region

with error correction scheme gives a 7.36% less percentage

error range in comparison to the latest design given by Kuo et

al. for 11-region with constant compensation scheme. The

proposed method for the 17-region error correction scheme

has a 19.32% less percentage error range in comparison to the

most recent design as proposed by Kuo et al. for 14-region

with constant compensation scheme.

N
-5

N
-6

N
-4

M.S H.SH.S F.S F.SF.S

-6m-5m-4m
-3m-2m

-1m

-6y
-5y-4y-3y-2y-1y

-0
Y

-7
m -9

m ...

-8
y -9

y ...

N
-7

-8
m

H.S

-7
y

1

80

Figure 5. Analysis of percent errors for proposed

antilogarithm converters for the 11-region error correction

scheme and the reported converter using the 11-region

constant compensation scheme

Figure 6. Analysis of percent errors for proposed

antilogarithm converters for 17-region error correction

schemes with reported converter using a 14-region constant

compensation scheme

Analysis of errors for the proposed antilogarithm converters

for 11-region and 17-region with error correction schemes and

the converter for 11-region and 14-region with constant

compensation schemes as proposed by Kuo is shown in Figure

5 and Figure 6.

All are MATLAB 12.1 version based simulation results and

with the help of the generated graph, we easily observed that

for every sub-region our proposed method has given less error

percentage than of the reported methods.

4.2 Hardware complexity

The theoretical analysis for hardware complexity is done as

a count of gates. The gate count for the proposed 11-region and

17-region with error correction scheme and reported structures

are listed in Table 6. Based on theoretical hardware

complexities analysis, we can say that the proposed

antilogarithm converter for 11-region and 17-region with an

error correction scheme is much hardware efficient in

comparison to reported antilogarithm converter for 11-region

and 14-region with constant compensation scheme.

Table 6. General comparison of hardware complexities of

reported and proposed 11 and 17-region error correction

schemes for antilogarithm converter

Structure Antilogarithm

Existing33

Antilogarithm

Proposed

11-region 14-region 11-region 17-region

AND 34 39 20 34

OR 15 17 7 12

NOT 25 27 17 21

XOR 12 14 10 11

4.3 Synthesis results

The reported antilogarithm converter for 11-region and 14-

region with constant compensation scheme and proposed

antilogarithm converter for 11-region and 17-region with error

correction scheme at 65 nm CMOS technology node at the

Synopsys Design Compiler has been designed and synthesized.

Synthesis results for various parameters are compared with the

reported antilogarithm converter for 11-region and 14-region

with constant compensation scheme as listed in Table 7. The

proposed 11-region antilogarithm converter involves 61% less

ADP and 49.82% energy in comparisons of reported 11-

regions antilogarithmic converter. The proposed 17-region

antilogarithm converter involves 48.02% less ADP and

32.53% energy in comparisons of the reported 14-region

antilogarithmic converter.

Table 7. Synopsys synthesis results for the proposed 11-region and 17-region with error correction circuits and the reported

structures for the antilogarithmic converter

Structure

DAT (ns)

Area

(µm2)

Power

(µW)

ADP

(µm2*ns)

% gain in

ADP

Energy

(n J)
% gain in EPS

Reported 31

(2-region)
0.66 111.96 3.3678 73.8936 ---------- 2222.74 ----------

Reported 33

(11-region)
0.81 203.04 4.068 164.46 --------- 3295.08 ----------

Reported 35

(11-region)
0.67 144.58 3.6171 96.86 ---------- 2423.45 -----------

Reported 33

(14-region)
0.83 223.56 4.6571 185.55 --------- 3864.48 ----------

Proposed

(11-region)
0.59 108.72 2.803 64.14 61 1653.77 49.82

Proposed

(17-region)
0.69 139.32 3.7791 96.13 48.02 2607.51 32.53

81

5. CONCLUSIONS

The proposed antilogarithmic converter for 11-region and

17-region is found a significant gain in terms of accuracy and

hardware. 11-region antilogarithmic converter gives a 7.36%

less percentage error range in comparison of reported design

given by Kuo et al. 17-region antilogarithmic converter

provides 19.32% less percentage error range in comparison of

the reported design is given by Kuo et al. for the 14- region

constant compensation scheme. 11-region antilogarithmic

converter gives 61% less ADP and 49.82% less energy in

comparisons of reported 11-regions antilogarithmic converter.

17-region antilogarithmic converter gives 48.02% less ADP

and 32.53% less energy in comparisons of the reported 14-

region antilogarithmic converter. The proposed converter

design is useful for real-time DSP and image applications.

ACKNOWLEDGMENT

This work was supported by the Jaypee University of

Engineering & Technology, Guna, Madhya Pradesh, India. Dr.

Jitendra Kanungo and Dr. Anurag Mahajan helped to improve

this article by their valuable suggestions.

REFERENCES

[1] Sun, Y., Kim, M.S. (2011). A high-performance 8-Tap

FIR filter using logarithmic number system. IEEE

International Conference on Communications (ICC), pp.

1-5. https://doi.org/10.1109/icc.2011.5962827

[2] Nam, B.G., Kim, H.J., Yoo, H.J. (2008). Power and area-

efficient unified computation of vector and elementary

functions for handheld 3D graphics systems. IEEE

Transactions on Computers, 57(4): 490-504.

https://doi.org/10.1109/TC.2008.12

[3] Basetas, C., Kouretas, I., Paliouras, V. (2007). Low-

power digital filtering based on the logarithmic number

system. Proc.17th Workshop Power and Timing

Modeling, Optimization and Simulation, pp. 546-555.

https://doi.org/10.1007/978-3-540-74442-9_53

[4] Kouretas, I., Basetas, C., Paliouras, V. (2013). Low-

power logarithmic number system addition/subtraction

and their impact on digital filters. IEEE Transactions on

Computers, 62(11): 2196-2209.

https://doi.org/10.1109/TC.2012.111
[5] Hall, E.L., Lynch, D.D., Dwyer III, S.J. (1970).

Generation of products and quotients using approximate

binary logarithms for digital filtering applications. IEEE

Trans. Computers, 55(2): 97-105.

https://doi.org/10.1109/T-C.1970.222874

[6] Mahalingam, V., Rangantathan, N. (2006). Improving

accuracy in Mitchell's logarithmic multiplication using

operand decomposition. IEEE Transactions on

Computers, 55(2): 1523-1535.

https://doi.org/10.1109/TC.2006.198

[7] Abid, Z., Dalia, A. El-Dib, Mudassir, R. (2016).

Modified operand decomposition multiplication for high

performance parallel multipliers. Journal of Circuits,

Systems, and Computers, 25(12).

https://doi.org/10.1142/S0218126616501498

[8] Nandan, D., Kanungo, J., Mahajan, A. (2017). An

efficient VLSI architecture design for logarithmic

multiplication by using the improved operand

decomposition. Integration, the VLSI Journal, 58: 134-

141. https://doi.org/10.1016/j.vlsi.2017.02.003

[9] Nandan, D., Kanungo, J., Mahajan, A. (2018). An error-

efficient gaussian filter for image processing by using the

expanded operand decomposition by using

multiplication. Journal of Ambient Intelligence and

Humanized Computing. https://doi.org/10.1007/s12652-

018-0933-x

[10] Mitchell, J.N. (1962). Computer multiplication and

division using binary logarithms. IRE Transactions on

Electronic Computers, 11(6): 512-517.

https://doi.org/10.1109/TEC.1962.5219391

[11] Brubaker, T.A., Becker, J.C. (1975). Multiplication using

logarithms implemented with read-only-memory. IEEE

Trans. Computers, 24(8): 761-766.

https://doi.org/10.1109/T-C.1975.224307

[12] Nandan, D., Kanungo, J., Mahajan, A. (2017). An

efficient VLSI architecture for iterative logarithmic

multiplier. IEEE 4th International Conference on Signal

Processing and Integrated Networks, pp. 419-423.

https://doi.org/10.1109/SPIN.2017.8049986

[13] Nandan, D., Mahajan, A., Kanungo, J., (2018). An

efficient architecture of iterative logarithmic multiplier.

International Journal of Engineering & Technology

(UAE), 7(2.16): 24-28.

https://doi.org/10.14419/ijet.v7i2.16.11410

[14] Naziri, S.Z.M., Ismail, R.C., Shakaff, A.Y.M. (2014).

The design revolution of logarithmic number system

architecture. IEEE International conference on Electrical,

Electronics and System Engineering, pp. 5-10.

https://doi.org/10.1109/ICEESE.2014.7154603

[15] Muscedere, R., Dimitrov, V., Jullien, G.A., Miller, C.W.

(2005). Efficient techniques for binary-to-multi digit

multi-dimensional logarithmic number system

conversion using range-addressable look-up tables. IEEE

Trans. Computers, 54(3): 257-272.

https://doi.org/10.1109/ASAP.2002.1030711

[16] Arnold, M.G., Collange, S. (2011). A real/complex

logarithmic number system ALU. IEEE Transactions on

Computers, 60(2): 202-213.

https://doi.org/10.1109/TC.2010.154

[17] Paliouras, V., Stouraitis, T. (2000). Logarithmic number

system for low-power arithmetic. Proc. Int’l Workshop -

Power and Timing Modeling, Optimization and

Simulation, pp. 285-294. https://doi.org/10.1007/3-540-

45373-3_30

[18] Johansson, K., Gustafsson, O., Wanhammar, L. (2008).

Implementation of elementary functions for logarithmic

number systems. IET Computer & Digital Techniques, 4:

295-230. https://doi.org/10.1049/iet-cdt:20070080

[19] Das, D., Mukhopadhyaya, K., Sinha, B.P. (1995).

Implementation of four common functions on an LNS

co-processor. IEEE Transactions on Computers, 44(1):

155-161. https://doi.org/10.1109/12.367997

[20] Abed, K.H., Sifred, R.E. (2003). CMOS VLSI

implementation of a low- power logarithmic converter.

IEEE Transactions on Computers, 52(11): 1421-1433.

https://doi.org/10.1109/TC.2003.1244940

[21] Low, J.Y.L., Jong, C.C. (2005). Unified Mitchell-based

approximation for efficient logarithmic conversion

circuit. IEEE Trans. Computers, 64: 1783-1797.

https://doi.org/10.1109/TC.2014.2329683

[22] Juang, T.B., Chen, S.H., Cheng, H.J. (2009). A lower

82

error and ROM-free logarithmic converter for digital

signal processing applications. IEEE Transactions on

Circuits and Systems II, 56(12): 931-935.

https://doi.org/10.1109/TCSII.2009.2035270

[23] Juang, T.B., Meher, P.K., Jan, K.S. (2011). High

performance logarithmic converters using novel two-

region bit-level manipulation schemes. IEEE

International Symposium on VLSI Design, Automation

and Test, pp. 1-4.

https://doi.org/10.1109/VDAT.2011.5783555

[24] Chaudhary, M., Lee, P. (2014). Two-stage logarithmic

converter with reduced memory requirements. IET

Comput Digit Tech, 8(1): 23-29.

https://doi.org/10.1049/iet-cdt.2012.0134

[25] Liu, C.W., Ou, S.H., Chang, K.C., Lin, T.C., Chen, S.K.

(2016). A low-error, cost-efficient design procedure for

evaluating logarithms to be used in a logarithmic

arithmetic processor. IEEE Trans Computer, 65(4):

1158-1164. https://doi.org/10.1109/TC.2015.2441696

[26] SanGregory, S.L., Siferd, R.E., Brother, C, Gallagher, D.

(1999). Low-power logarithm approximation with

CMOS VLSI implementation. IEEE Midwest Symp.

Circuits and Systems, pp. 388-391.

https://doi.org/10.1109/MWSCAS.1999.867287

[27] Abed, K.H., Sifred, R.E. (2003). CMOS VLSI

implementation of a low-power antilogarithmic

converter. IEEE Trans. Computers, 52: 1221-1228.

https://doi.org/10.1109/TC.2003.1228517

[28] Kim, H., Nam, B.G., Sohn, J.H., Woo, J.H., Yoo, H.J.

(2006). A 231-MHz, 2.18-mW 32-bit logarithmic

arithmetic unit for fixed-point 3-D graphics system.

IEEE Journal of Solid-State Circuits, 41(11): 2373-2381.

https://doi.org/10.1109/JSSC.2006.882887

[29] Paul, S., Jayakumar, N., Khatri, S.P. (2009). A fast

hardware approach for approximate, efficient logarithm

and antilogarithm computations. IEEE Transactions on

Very Large-Scale Integration Systems, 17(2): 269-277.

https://doi.org/10.1109/TVLSI.2008.2003481

[30] Kuo, C.T., Juang, T.B. (2012). A lower error

antilogarithmic converter using novel four-region

piecewise-linear approximation. IEEE Asia Pacific

Conference on Circuits and Systems, pp. 507-510.

https://doi.org/10.1109/APCCAS.2012.6419083

[31] Juang, T.B., Kuo, H.L., Jan, K.S. (2016). Lower-error

and area-efficient antilogarithmic converters with bit-

correction schemes. Journal of the Chinese Institute of

Engineers, 39(1): 57-63.

https://doi.org/10.1080/02533839.2015.1070692

[32] Nandan, D., Kanungo, J., Mahajan, A. (2016). An

efficient VLSI architecture design for antilogarithmic

converter by using the error correction scheme.

International Conference on Signal Processing (ICSP

2016), pp. 1-5. https://doi.org/10.1049/cp.2016.1445

[33] Kuo, C.T., Juang, T.B. (2016). Area-efficient and highly

accurate antilogarithmic converters with multiple regions

of constant compensation schemes. Microsystem

Technology, 22(1): 219-225.

https://doi.org/10.1007/s00542-016-3238-z

[34] Nandan, D., Mahajan, A., Kanungo, J. (2017). An

efficient antilogarithmic converter by using 11-regions

error correction scheme. IEEE 4th International

Conference on Signal Processing, Computing and

Control (ISPCC), pp. 118-121.

https://doi.org/10.1109/ISPCC.2017.8269661

[35] Nandan, D., Kumar, K., Kanungo, J., Mishra, R.K.

(2019). Compact and errorless 16-Region error

correction scheme for antilogarithm converter. IEEE

International Conference on Electrical, Electronics and

Computer Engineering (UPCON), pp. 1-5.

https://doi.org/10.1109/UPCON47278.2019.8980240

83

