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 In this study, the internal or superficial cracks that may occur during the production of 

ceramic plates were determined using the impact noise method. In the industry, ceramic 

materials are frequently used in areas such as kitchenware and construction. Many different 

methods are used in the quality control processes of ceramic materials. In this study, the 

sound produced by the impact applied to the ceramic material was analyzed. As a result of 

the analysis, the material was found to be undamaged or damaged. This method is called the 

Impulse Noise method. In this study, damaged and undamaged ceramic plates with different 

cracks were selected and impact plates were applied to the plates by impact pendulum. The 

ceramic plates used in the application have the same characteristics and dimensions 

produced by the same company of the same type. The noise generated as a result of the 

impact applied to a determined point on the tested materials was examined by Wigner-Ville 

method which is one of the time-frequency analysis methods. In addition, bispectrum and 

trispectrum analyzes, which are high-order spectral analysis (HOSA) methods, were used. 

Statistically, signal analysis with running minimum and maximum, mean value and peak to 

RMS examinations were also added. The applied methods give good results in 

differentiating between undamaged and damaged ceramic plates. 
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1. INTRODUCTION 

 

Inorganic compounds made by metals or semi-metals with 

non-metallic elements are called ceramics. A wide range of 

inorganic materials including materials such as clay, sand and 

feldspar. Ceramics are very fragile. The brittle fracture occurs 

with the formation and propagation of cracks. Crack growth 

may be transgranular or intergranular. It is also known that 

ceramic is a very good sound reflector.  

Ceramic is one of the oldest tools used by people. For 

centuries, the superior qualities of ceramics have been utilized, 

especially in the construction of pots and pans. The abundance 

of raw materials, easy processing, simple manufacturing, 

relatively low cost, ease of use etc. with reasons; hardness, 

heat resistance, such as the positive effects of the use increases 

[1-4]. 

Today, the ceramic and porcelain industry are mainly active 

in the kitchen and construction sectors. Many of the damages 

that occur before or after the marketing of ceramic materials 

to end-users are economically costly. In this sense, cracks and 

deformations that may occur in the material during or after 

stacking, which can be seen or not visible, are among the most 

important problems that manufacturers must solve. These 

defects cause economic losses and loss of time. For this reason, 

it is of great importance in the ceramic-porcelain industry that 

defects in damaged materials are solved by pre-sales final 

checks by very fast and simple methods [5, 6].  

Different testing methods are used in the ceramic industry 

after production. It is known that these methods are made with 

large test equipment in the factory environment. X-Ray is the 

most effective method for determining damage, especially in 

ceramic materials. This method provides important and 

effective analyzes of ceramic and porcelain materials in terms 

of their chemical structure and determination of post-

production damage in practice [7, 8]. However, these methods 

are much more effective for raw material analysis and offer 

significant contributions to the development of the chemical 

process. It is used in the diagnosis of cracks in ceramic and 

porcelain materials and in different methods in practice [9].  

In this study; impulse noise method, which can be counted 

among ultrasonic methods, has been used [10, 11]. The 

mechanical system in the experimental study was established 

in order to hit the same impact on ceramic materials 

(pendulum). With the experimental system, the same intensity 

impact can be applied to ceramic materials. The pendulum was 

used for an equal blow. The sound emitted from the material 

by the impact applied to the ceramic material is quaint with the 

microphone. It is aimed to analyze sounds by recording sounds 

applied to ceramic materials with strong and different cracks 

in a similar way [12-14]. 

 One of the spectral analysis methods, Wigner-Ville is a 

time-frequency method. It was derived by Wigner in the field 

of quantum mechanics and later expanded by Ville for signal 

processing [15]. Various methods can be used to design such 

a time-frequency representation, the simplest approach being 

to divide the signal into short time segments and determine the 

spectrum of each segment by Fourier transform. The result of 

this process is the commonly used short-time fourier transform 

(STFT) [16-18]. By analyzing the frequency content of the 

signal as the time window moves, a time-frequency 

distribution called spectrogram (square of the size of the 

STFT) is generated. It has the advantage of being positive, 

easy to interpret, but also has the disadvantage of being 

irreversible. This means that once the spectrogram of a signal 
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is calculated, the original signal cannot be obtained from the 

spectrogram again [18]. The theory of WV, which will be 

briefly discussed in the following sections of the study, gives 

very satisfactory results in this sense. 

In signal processing methods utilizing quadratic statistics 

and / or power spectrum, phase relationships between 

frequency components are not considered; therefore, these 

methods are blind to phase information. In addition, second-

order statistics and power spectra are not sufficient to 

accurately define non-gaussian processes [19, 20]. Second-

order statistics such as autocorrelation and power spectral 

density provide important information in the analysis of gauss, 

stationary and linear processes. The autocorrelation function 

is not sufficient for non-Gaussian processes. In this study, 

more information can be obtained from these processes by 

higher-order spectral analysis (HOSA) methods such as 

bispectrum and trispectrum [19, 21]. The study was supported 

statistically by providing graphs with running minimum and 

maksimum, mean value and peak to RMS graphs of the signals. 

 

 

2. MATHEMATICAL BACKGROUND 
 

2.1 Wigner Ville distribution  

 

Another well-known disadvantage of STFT is the resolution 

limit imposed by the window function. A shorter time window 

results in better resolution but results in poorer frequency 

resolution, and vice versa. One of the most important methods 

to be used here is the analysis known as quadratic or bilinear 

time-frequency distribution. The main member of this class is 

the Wigner-Ville distribution (WVD). All other time-

frequency conversions can be written as a smoothed version of 

WVD [17, 22-24]. WVD provides many of the features 

required for some specific applications of non-stationary 

signal analysis. 

Perhaps the most significant feature of the Wigner 

distribution is the effect it has for the gaussian windowed 

linear chirp signal. 

For the 𝑥(𝑡) = 𝑒−𝑐𝑡
2
𝑒𝑗(𝑎0+𝑎1𝑡+𝑎2𝑡

2)  signal, the wigner 

distribution condenses energy along with the instantaneous 

frequency of the signal. Wigner Distribution of the signal is 

given as 𝑊𝑥(𝑡, 𝑤) = 𝑒−(𝑤−𝑎1𝑡−2𝑎2𝑡
2)/2𝑐𝑒−2𝑐𝑡

2
 [15]. 

In Eq. (1), the WVD expression of an x(t) time signal is 

given [25]. 
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where, x(t) is the time series of the signal, x*(t) is the complex 

conjugate of the signal, t instantaneous time, w instantaneous 

frequency, τ time delay. The most important problem of 

Wigner-Ville distribution is cross terms. The cross-terms 

formed between the two strong frequency components can be 

eliminated using the smoothed Wigner-Ville distribution. 

 

*

( , )

( ) ( )
2 2

jwt

SPW t w

x t x t g v h e dvd
 

 
 

−

− −

=

   
+ −   

   
 

 (2) 

 

where, v is the balancing frequency, g(v) is the softened 

window in the frequency space and h(τ) is the softened 

window in the time-space [26, 27]. 

 

2.2 Bispectrum 

 

The application of higher-order spectral analysis in the 

analysis of signals which are not in the stationary, linear and 

gauss forms is more advantageous than power spectrum 

analysis in terms of revealing phase-related information as 

well as spectral information within the signal. Bispectrum 

analysis, which is one of the higher-order analysis methods, is 

a successful method for detecting quadratic phase coupling 

(QPC) between the components of the signal [28]. Higher-

order statistics are provided with higher-order moments, such 

as (Eq. (3), (4)). The nonlinear combinations of these higher-

order moments are known as cumulants (Eq. (5)-(7)) [29]. 
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Stack equations for the zero-mean process; 
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In addition to suppressing gaussian probability distributed 

activity, the bispectrum reveals data from the nonlinear 

process. Bispectral analysis; it is used to detect low-level, but 

important, diagnostic signals masked by background data [19, 

30]. 

The power spectrum of random signals is defined by the 

discrete fourier transform (DFT), (Eq. (8)). 
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(8) 

 

The 3rd order stack spectrum is called bispectrum.  
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or (if the signal reel is a stationary random process) 

 

)().().(),( 21

*

2121 wwXwXwXwwB +=  (10) 

 

2.3 Trispectrum 

 

The power spectrum of a continuous x(t) signal is expressed 

by the following Eq. (11), where the Fourier transform of the 

signal is X(f). 

 
*( ) ( ) ( )S f E X f X f =  

 (11) 

 

In Eq. (11), * indicates conjugation and E[ ] is the expected 

value. 

Bispectrum B(f1, f2) and trispectrum T(f1, f2, f3). They can 

10



 

be expressed as Eqns. (12) and (13) respectively. 

 

( ) ( ) ( ) ( )*
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The above frequency expression of the bispectrum contains 

three frequency interactions (Eq. (14)). 

 

( ) ( ) ( ) ( )1 2 3 1 2 3, ,B f f f E X f X f X f=   
 (14) 

 

where, 𝑓3 = −𝑓1 − 𝑓2 

Similarly, it can be shown in the trispectrum using four 

frequency notations (Eq. (15)) [31, 32]. 

 

( ) ( ) ( ) ( ) ( )1 2 3 4 1 2 3 4, , ,T f f f f E X f X f X f X f=   
 (15) 

 

where, 𝑓4 = −𝑓1 − 𝑓2 − 𝑓3 

In the study, firstly ARMA parameters of 4th grade 

cumulants were obtained. The auto-regressive moving-

average (ARMA) process is a useful model for time series 

analysis (Eq. (16)) [33]. 
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Then the trispectrum was calculated by taking f3=0.5 by 

using auto-regressive (AR) parameters and moving-average 

(MA) parameters. 

 

2.4 Mean value and peak to RMS 

 

The mean value of a function can be written as in Eq. (17) 

below: 

 

[ ] ( ) ( )
x

E f p x f x=   (17) 

 

where, E in Eq. (17) is the mean value. In fact, the mean value 

calculation is simply a weighted average. In other words, for 

any x value, the result of this value in function f is multiplied 

by the probability of occurrence of this x event [34]. 

The RMS of a signal is calculated from the peak amplitude, 

the peak to peak amplitude value, or the average value of the 

signal. The RMS value for each is calculated based on the 

following statements. 

 

1
* 0.707*

2
rms P PV V V= =  (18) 

 

1
* 0.353*

2 2
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* 1.111*
2 2
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
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where, Vavg is the level of a waveform defined by the condition 

that the area enclosed by the curve above this level is exactly 

equal to the area enclosed by the curve below this level (Eq. 

(20)) [35]. Vrms is the root-mean-square or effective value of a 

waveform (Eq. (18)-(20)). VP is the maximum instantaneous 

value of a function measured from the Zero level (Eq. (18)). 

VP-P, Full amplitude of waveform between positive and 

negative peaks; that is, the sum of the positive and negative 

peaks (Eq. (19)). Vavg, the level of a waveform. This equation 

is equal to this level (Eq. (20)) [35]. 

 

 

3. EXPERIMENTAL MEASUREMENT AND DATA 

COLLECTION SYSTEM 

 

Testing set, developed by Akinci [12], was used in this 

study and the data were obtained from this testing set. 

Pendulum was used in order to produce impact in experimental 

measurement and data collection systems [12, 36]. An impact 

of determined size was inflicted to the ceramic plate through a 

plastic hammer connected to the end of impact pendulum and 

sound, emerged from the plate as a result of the impact, was 

recorded by the microphone and data collection system [12, 37, 

38]. 

 

 
 

Figure 1. Data acquisition and measurement systems [12] 

 

The POE 2000 type Impact Pendulum was used in 

experimental data collection system. Impacts in the same 

severity were applied to the ceramic plates of same type and 

model through pendulum and the sound data, which emerged 

as a result of impact, had been recorded. The output audio 

signal of the amplifier is transmitted to the computer at a 

sampling rate of 0.00001 seconds via Advantech 1716 L 

Multifunction PCI card and data processing is performed by 

using Matlab © (Figure 1) [12, 38]. 

 

 

4. APPLICATION RESULTS 
 

When undamaged plate data is examined, it starts from 0 

and 0.05 max. amplitude up to (2.5 ms), a period of this 

amplitude of the mold after the running maximum close to the 

end by making fluctuations. The running minimum started 

with an amplitude of -0.01, but the signal never came down to 

this level again. The undamaged plate analysis graph draws 

attention with its high amplitude character (Figure 2(a)). 

The first damaged plate data never reached the running max. 

of 0.05 amplitude. After progressing with peaks of 

approximately 0.04 amplitude up to 2.5 ms, it quickly dropped 

to a running min. of -0.01 amplitude up to 6 ms. The running 

minimum amplitude has fallen a little further, ending the 

signal with peaks close to this running (Figure 2(b)). 

The second damaged signal started with a running minimum 

Plate

DAQ

Microphone

Data Analysis System

Impact pendulum
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of -0.01 amplitude, then reduced to a running minimum level 

of -0.3 amplitude, and the rest of the marker ended in progress 

near the running minimum level far from the running 

maximum level of 0.05 amplitude (Figure 2(c)). 

Damaged plate data are noted for their low amplitude 

characteristics, close to the running minimum level. 
 

 
a) 

 
b) 

 
c) 

 

Figure 2. Signal with running Minimum and Maximum (a) 

Undamaged (b) and (c) Damaged ceramic plates  

 

Undamaged ceramic data The WV map contains a large 

formation of intertwined rings (high to low peaks) over a wide 

frequency range and a small formation of two low amplitude 

peaks next to it. The undamaged data is remarkable with its 

simple structure (Figure 3(a)).  

In the WV map of the first damaged signal, the main region 

extending over a long period of time in the narrow frequency 

range and small multi-particle formations spread around the 

region were observed (Figure 3(b)). 

In the second damaged signal WV map, there is an all-time 

(more uniform and thinner) structure in the narrow frequency 

range and around the structure, although not as many as the 

first, fragmented regions. In addition, around the frequency of 

0.03 Hz, there was a bar area consisting of dense small peaks 

extending along the time axis, and there were fragmented thin 

formations around it (Figure 3(c)). 

Damaged data is observed to have multi-part structures. 

 

 
a) 

 
b) 

 
c) 

 

Figure 3. (a) Undamaged (b) and (c) WV maps of the signals 

of damaged ceramic plates 

 

On the equiphase surface of the undamaged plate there is a 

first ring with high peaks, and a second ring with low 

amplitude peaks around it (Figure 4(a)). 

 The first damaged data includes two rings of small 

amplitude peaks in addition to the structures in the undamaged 

data (Figure 4(b)). In the second damaged signal, the main 

formation took place at lower frequencies. Around it is low 

amplitude peaks in more numerous and distorted formations 

than in the first damaged data (Figure 4(c)). 

The 3-dimensional trispectrum map of the signal of the 

undamaged data consisted of a high amplitude peak at its 

origin, with f3=0.5 (Figure 5(a)). 

The trispectrum of the first damaged signal consisted of five 

peaks with a lower amplitude than that of the intact data, one 

at the centre and one at each side of the surface, again with 

f3=0.5 (Figure 5(b)). The three-dimensional trispectrum of the 

second damaged data, on the other hand, was composed of 5 

main peaks, similar to that of the other damaged sign, when 

f3=0.5. Here, the peak amplitudes are very small compared to 

others. In addition, extensions that connect each hill with each 

other are also noteworthy (Figure 5(c)). Damaged signals with 

undamaged plate signal, single peak simple structure and high 

amplitude have 5 peak and low amplitude shapes. 
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a) 

 
b) 

 
c) 

 

Figure 4. a) Undamaged b) and c) Bispectrum maps of data 

on damaged ceramic plates 
 

 
a) 

 
b) 

 
c) 

 

Figure 5. (a) Undamaged (b) and (c) Trispectrum maps of 

data on damaged ceramic plates 

 

In the mean value graph of undamaged plate signals, a curve 

increased to about 0.025 amplitude in about 5 ms, followed by 

a graph that retains the same amplitude to the end of time 

(Figure 6(a)).  

In the first damaged graph, the curve (0.026 amplitude) 

showing a small increase up to 3ms, followed by a graph with 

a decrease in amplitude up to about zero. (Figure 6(b)). On the 

other damaged graph, a curve with a continuous decrease in 

amplitude was detected from the beginning to the end of time 

(Figure 6(c)). 

 

 
a) 

 
b) 

 
c) 

 

Figure 6. (a) Undamaged (b) and (c) Mean value graphs of 

data analysis of damaged ceramic plates 
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In the mean value analysis, the undamaged signal has a 

rising amplitude graph and the damaged signals have a falling 

amplitude graph. 

In the undamaged ceramic plate signal peak to RMS 

analysis, a peak of up to 5 ms is noted. The peak of this hill is 

3.8 amplitude around 1ms. After this peak went down to 1.5 

amplitude, the graph continued at the same level until the end 

of time (Figure 7(a)).  

The first damaged signal forms a graph with a small descent 

of up to 3 ms and then up to 2.15 amplitude by the end of time 

(Figure 7(b)). The second damaged signal produced a graph 

starting at 2.15 amplitude and rising up to 2.4 (Figure 7(c)). In 

Peak to RMS, robust data is characterized by an initial peak 

and a curve that retains its amplitude, while damaged data is 

characterized by rising graphs. 

 

 
a) 

 
b) 

 
c) 

 

Figure 7. (a) Undamaged (b) and (c) Peak to RMS graphs of 

data on damaged ceramic plates 

 

 

5. CONCLUSIONS 

 

In this study, signal analysis of internal or superficial cracks 

in ceramic plates was performed using the impact noise 

method. In particular, ceramic materials produced as kitchen 

utensils show the defects such as deformation under the glazes 

and cracks, in the form of deepening or breaking of the cracks 

by putting hot or cold foods inside. This is shown as unwanted 

errors for manufacturers. In the quality control of ceramic 

materials, tests performed by X-Ray and experts are frequently 

used in practice. In this study, an approach has been obtained 

on whether or not the ceramic plates are deformed by the 

impact noise obtained after the application of impact on the 

ceramic plates. This method can also be shown as a new 

method in practice. In this study, time-amplitude analysis with 

running minimum and maximum were applied to the signals 

obtained by the impact noise method using plates produced 

from the same material. In this analysis, undamaged signal was 

noted for their high amplitude and damaged signals for their 

low amplitude characteristics. Then, the cracks on the material 

were examined on the maps obtained using spectral analysis 

methods. First, Wigner spectra are discussed. The signal of the 

undamaged plate has a simple formation, whereas the 

damaged data is generated by multipartications. In bispectrum 

analysis, the undamaged plate appears as two-ring equiphase 

surfaces in it signals, while the damaged signals have multi-

ring and distorted equiphase surfaces. In the trispectrum 

analysis, another high-order spectral analysis method, the 

undamaged signal appeared as a single high-amplitude peak, 

while the damaged signals were noted for their formation with 

much lower amplitude and a total of five peaks distributed 

over the surface. The data were also subjected to simple 

statistical analysis (time amplitude analysis with running 

minumum maximum, which is at the beginning of the analyzes, 

is actually a simple statistical analysis). Undamaged signal 

was observed with rising mean value graph and damaged 

signals were observed with descending mean value graph 

values. In the Peak to RMS examination, the undamaged 

signal was identified by a peak-peak and a curve that retains 

its amplitude, while the damaged signals were identified by 

their ascending graph. The applied methods have been very 

good at distinguishing between undamaged and damaged 

ceramic plates. 
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