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 The proliferation of underground pipelines is a defining feature of urbanization. Regular 

inspection and maintenance are necessary to reduce the economic loss caused by pipeline 

defects. This paper aims to detect pipeline defects in video images with the aid of computer 

vision. Firstly, the recursive neural network (RNN) was added to the classic convolutional 

neural network (CNN) to acquire various features from the images. Then, the Fisher criterion 

was weighted and improved, and introduced to the least square error cost function, 

enhancing the recognition rate of the improved CNN. Finally, the improved CNN algorithm 

was verified through contrastive experiments on actual underground pipeline images. The 

research results shed new light on the defect detection and maintenance of underground 

pipelines in urban areas.  
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1. INTRODUCTION 

 

The underground pipelines are the lifelines of modern cities. 

As the pipelines gradually approach their age limit, there is a 

growing risk of accidents like leakage and explosion. These 

accidents pose great threats to the environment, social 

economy and personal safety. Therefore, the underground 

pipelines must be inspected and maintained on a regular basis. 

Currently, the most mature pipeline detection systems 

include sonar detection system, ultrasonic guided wave 

detection system, laser scanning 3D reconstruction detection 

system and pipeline closed-circuit television detection (CCTD) 

system [1, 2]. Among them, the CCTD is the most popular 

detection system for underground pipelines: the operator 

controls a robot to take live images of the pipeline, which are 

then recognized by professional inspectors. 

Image recognition plays an important role in various aspects 

of our lives. For example, fingerprint recognition system [3] 

and face recognition system [4] are widely adopted for identity 

recognition; in agronomy, the growth condition and 

pathological changes of plants are judged by the leaf shape and 

spot type in their images [5]. 

Traditionally, image recognition is implemented in three 

steps [6]: image preprocessing, feature extraction and 

classifier training. During image preprocessing, the useless 

information in the original image is filtered out, making the 

useful information more detectable; During feature extraction, 

the items that reflect the class of the original image are 

extracted manually, facilitating image classification; During 

classifier training, the classifier is trained by deep learning 

based on the extracted features, creating a robust classification 

model. 

The traditional image recognition method has achieved 

fruitful results. However, the manually extracted features are 

too subjective to represent all the essential attributes of the 

original image. What is worse, the traditional approach is 

unable to tackle the various defects and complex background 

of underground pipelines. 

These problems can be solved by the deep neural network 

(DNN), whose multi-layer structure can learn the deep features 

that fully represents the original image. Besides, the DNN 

offers simplified forms of complex functions. Compared with 

the traditional approach, the DNN-based image recognition 

method directly inputs the original image into the network, 

without needing to preprocess the image or manually extract 

the features. 

Therefore, this paper designs an improved convolutional 

neural network (CNN) that can accurately recognize images, 

and applies the improved CNN to recognize the defects on the 

images of underground pipelines.  

 

 

2. LITERATURE REVIEW 
 

With the development of machine vision, many scholars 

have attempted to detect pipeline defects through intelligent 

image recognition. Based on corrosion and expansion, Sinha 

and Karray [7] identified the defect parts of pipeline image 

through morphological segmentation, extracted the 

morphological features of these parts, and recognized the 

defects by fuzzy neural network (FNN). Wang et al. [8] 

preprocessed the pipeline image, extracted the edge features 

from the preprocessed image, and classified the defects with 

artificial neural network (ANN). Lu et al. [9] proposed a 

branch intrusion algorithm for defect detection, which 

identifies possible defect areas by comparing the pipeline 

image against a normal pipeline image, and adopts the support 

vector machine (SVM) based on directional gradient 

histogram to confirm the defect areas. 

He et al. [10] proposed a complete video detection 

framework for underground pipelines: firstly, the motion state 

and pose change of pipeline robot and its camera were 

determined through optical flow analysis; next, the video 

frames with a travel speed slower than a certain threshold were 

Traitement du Signal 
Vol. 37, No. 1, February, 2020, pp. 45-50 

 

Journal homepage: http://iieta.org/journals/ts 
 

45

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.370106&domain=pdf


 

extracted as the suspected abnormal frames; finally, the 

suspected frames were classified with a cascade classifier, 

using Haar-like feature. Feng et al. [11] summed up three 

features of pipeline defects, namely, mode uncertainty and low 

probability, and put forward a pipeline defect detection 

algorithm based on hidden Markov model, which fully utilizes 

a small portion of pipeline defect samples. However, the 

proposed algorithm has low detection accuracy, for failing to 

consider the abnormal information. Jia et al. [12] developed an 

effective algorithm for pipeline defect detection with strong 

variability: the local time-frequency features of signals were 

analyzed in turn by the Gabor filter and the window function 

of time localization, and then subjected to recognition and 

extraction. 

The CNN, an excellent tool for visual tasks, has been 

increasingly applied in image recognition. Heiberg et al. [13] 

introduced rectified linear unit (ReLU), a nonlinear activation 

function, to improve the recognition accuracy of the AlexNet 

on the ImageNet dataset. Looe et al. [14] enhanced the ability 

and accuracy of the CNN in image recognition by replacing a 

large convolution kernel with several small kernels and 

increasing the depth of the model. To promote the 

generalization ability of the CNN, Lee and Kwon [15] came 

up with the inception structure, which uses kernels of different 

sizes for feature extraction and multi-scale splicing. Dong et 

al. [16] set up a jump connection to solve the vanishing 

gradient problem induced by the growing number of network 

layers, and thus promoted the generalization ability and 

recognition accuracy of the CNN. 

 

 

3. IMPROVED CNN 

 

3.1 Structure of improved CNN 

 

The CNN can extract features of multiple levels and scales, 

thanks to its unique structure. In this paper, a multilayer RNN 

(Figure 1) is introduced to improve the CNN structure for deep 

feature extraction from varied input images. The multilayer 

RNN can reduce the dimension of each feature by using the 

same weight set on each layer and selecting suitable receptive 

fields. 

 

 
 

Figure 1. Structure of the RNN 

 

In the improved CNN (Figure 2), the shallow features of the 

input image are extracted by the first convolutional layer, 

while the deep features are learned by the second 

convolutional layer and the multilayer RNN; both shallow and 

deep features are fused and then inputted to the classifier. 

As shown in Figure 2, the first RNN (R1) is connected to 

the sampling layer S2 of the CNN. The m×m feature map 

from S2 is inputted into the R1, which has k layers. The 

receptive fields of the first RNN are 1×1 in size, without any 

overlap between them. After passing through R1, the feature 

map becomes m/l×m/l in size, and serves as the input of the 

multilayer RNN (R2). In R2, the m/l×m/l feature map is 

reduced to m/l2× m/l2 in size through the first layer; the 

dimension reduction goes on layer by layer, until the feature 

map becomes 1×1 in size. 

 

 
 

Figure 2. Structure of the improved CNN 

 

The CNN structure was further improved by optimizing key 

parameters like activation function, learning rate and the 

number of kernels. 

In terms of activation function, the commonly used sigmoid 

function was replaced with the ReLU, because the latter is 

suitable for sparse activation of neurons, and capable of 

getting the activation value with only a threshold. As shown in 

Figure 3, if x<0, the output of ReLU is always zero; if x>0, the 

ReLU output increases with x value. 

 

 
 

Figure 3. The curve of ReLU 
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Three activation functions, sigmoid, tanh and ReLU, were 

separately taken as the activation function of the improved 

CNN, and tested on the ImageNet dataset [17], the most 

popular dataset in image recognition. The experimental results 

(Table 1) show that ReLU outperformed the other two 

functions in recognition accuracy. 

 

Table 1. Experimental results of the three activation 

functions 

 
Activation function Sigmoid Tanh ReLU 

False acceptance rate (FAR) (%) 1.75 1.63 1.31 

 

Since the ReLU value increases continuously, the learning 

rate must be set appropriately to control the convergence speed 

in a suitable range.  

The adaptive learning rate algorithm can verify whether the 

network error is reduced through parameter adjustment, and 

ensure that the network is trained at the maximum learning rate. 

Therefore, this algorithm was employed to update the learning 

rate with the training of the improved CNN, speeding up the 

convergence. The adaptive learning rate can be adjusted by: 

 

(n + 1) = {

1.05 (n)          E(n) < E(n − 1)

0.75 (n)   E(n) > 1.05E(n − 1)

(n)                                otherwise

 

 

The recognition accuracy and computing complexity of the 

improved CNN are also affected by the number of kernels. In 

the convolutional layer, each kernel is responsible for 

extracting a feature from the input image, i.e. the number of 

kernels equals that of learned features. 

To identify the optimal number of kernels, ten kernel 

combinations were designed and tested on the ImageNet 

dataset. As shown in Table 2, the improved CNN did not 

achieve a high accuracy, when there were only a few kernels. 

With the growing number of kernels, more and more new 

features were extracted, and the FAR of the network started to 

decline. However, the decline of the FAR was no longer 

prominent, as the number of kernels increased from 9 to 10. 

Further increase in the number of kernels only extended the 

training time, without enhancing the recognition performance. 

 

Table 2. Experimental results of different kernel combinations 

 
(C1, C3) FAR (%) 

(1, 2) 8.41 

(2, 3) 5.53 

(3, 5) 3.49 

(4, 6) 2.77 

(5, 10) 1.87 

(6, 12) 1.76 

(7, 14) 1.73 

(8, 16) 1.70 

(9, 17) 1.68 

(10, 20) 1.68 

 

3.2 Improved CNN training algorithm 

 

In the traditional CNN, the cost function is generally the 

mean square error function. This function needs lots of tagged 

samples and consumes a long time to train the network. To 

solve the problems, this paper proposes an improved CNN 

training algorithm.  

Once the CNN parameters were trained, the Fisher criterion 

was introduced to the error function of the network. The Fisher 

criterion is a classical criterion function in linear discriminant 

analysis, which aims to optimize the projection direction and 

classification effect. Under this criterion, the weights are 

updated iteratively and the network parameters are adjusted, 

thereby minimizing the residual error between actual and 

expected outputs and reducing the distance between samples 

of the same category. 

To improve the classification effect, this paper improves the 

global mean and reduces the proportion of outliers in all 

samples, using the weighted Fisher criterion. Let S={s1, s2,…, 

sN} be a set of original images, with si  being the subset of 

images of category i, and sij be the j-th sample in category i. 

Then, the similarity SB between images in different categories 

and that SW between images within the same category can be 

respectively defined as: 

 

SB = ∑ qi(ai − a)

C

i=1

(ai − a)T 

 

SW = ∑ qi

C

i=1

∑(sij − ai)(sij − ai)
T

ni

j=1

 

 

where, ai is the mean of i-th category samples; a is the mean 

of all samples; qi is the priori probability of i-th category 

samples; ni is the number of samples in the i-th category. Then, 

the Fisher criterion can be defined as: 

 

F(W) =
|WTSBW|

|WTSWW|
 

 

Next, the weighted Fisher criterion was proposed to 

enhance the classification ability of linear discriminant 

algorithm and reduce the leading role of edge category. The 

similarity between images in different categories, a.k.a. the 

inter-category similarity, can also be expressed as: 

 

SB = ∑ ∑ qiqj(ai − aj)

C

j=i+1

C−1

i=1

(ai − aj)
T 

 

Then, the function of weighted inter-category similarity was 

constructed to assign different weights to the means of samples 

in different categories. This function can be written as a 

weighted inter-category scatter matrix: 

 

SB
W = ∑ ∑ σ(dij)qiqj(ai − aj)

C

j=i+1

C−1

i=1

(ai − aj)
T 

 

where, dij=(ai-aj)T(ai-aj) is the distance between the mean of 

the i-th category samples and that of the j-th category samples; 

(dij)is the weight function whose value is negatively 

correlated with dij: 

 

(x) =
1

2x2
f(

x

2√2
) 

 

f(x) =
2

√x
∫ e−t2

x

0

dt 
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Substituting S
W 

B for SB in Fisher criterion, the weighted 

Fisher criterion function can be obtained as: 

 

FW(W) =
|WTSB

WW|

|WTSWW|
 

 

The weighted Fisher criterion was further improved to 

reduce the proportion of outliers in the means of all categories. 

The distances between i-th category samples can be added up 

as: 

 

Di = ∑ dij

C

j=1,j≠i

 

 

where, Qi is the ratio of the distance between i-th category 

samples to the minimum distance between these samples: 

 

Qi =
Di

Dmin

 

 

 

where, Dmin=min{D1, D2,…, Dc}. The improved means of all 

categories can be calculated as: 

 

a∗ =
1

C
∑a(Qi)ai

C

i=1

 

 

a(x) =
1

x
 

 

The new method to calculate the inter-category dispersion 

can be defined as: 

 

SB
∗ = ∑b(Qi)qiqj(ai − a∗)

C

i=1

(ai − a∗)T 

 

b(x) = (x) 

 

Therefore, the improved weighted Fisher criterion can be 

defined as: 

 

F∗(W) ==
|WTSB

∗ W|

|WTSWW|
 

 

In the traditional CNN, the network loss is usually measured 

by the least square error function. Here, the improved 

weighted Fisher criterion is introduced to optimize the 

traditional loss function of the CNN, creating a CNN 

algorithm based on the improved weighted Fisher criterion. 

The mean A(i) of i-th category samples can be calculated as: 

 

A(i) =
1

n
∑ lW,b

n

j=1

(xij) 

 

The mean of the samples from all categories can be 

calculated by: 

 

A′(i) =
1

n
∑a(Qi)

n

i=1

A(i) 

The inter-category similarity MB, i.e. the sum of distances 

of all category means, and the intra-category similarity MW, i.e. 

the sum of distances between all samples and their category 

means, can be respectively calculated by: 

 

MB =
1

2
∑ ∑ ‖(Qi)(A′(i) − A′(j))‖

2
m

j=i+1

m

i=1

 

 

MW =
1

2
∑ ∑‖lW,b(xij) − A(i))‖

2
n

j=1

m

i=1

 

 

Then, the loss of the improved CNN can be described as: 

 

M = M(W, b) − ϑMB + MW 

 

where, ϑ and  are the adjustment coefficients between 0 and 

1; M(W, b) is least square error cost function. 

 

 

4. EXPERIMENTAL VERIFICATION AND RESULTS 

ANALYSIS 

 

To verify its performance, the improved CNN was 

compared with LeNet-5 and backpropagation neural network 

(BPNN) through an experiment on 7,200 samples from the 

underground pipeline image. The samples were divided into a 

training set of 6,000 images and a test set of 1,200 images. 

Figures 4 and 5 are two samples used for our experiment. 

 

 
(a) An image of underground pipeline without defect 

 
(b) An image of underground pipeline with defect 

 

Figure 4. Images of underground pipelines 

 

As shown in Table 3, the improved CNN achieved a higher 

recognition rate than the two contrastive networks. The 

recognition rate of the improved CNN was 1.17% higher than 

that of LeNet-5, which is a traditional CNN, thanks to the RNN 

on the second layer. The results show that the RNN can 

effectively learn deep features. 
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Table 3. Comparison of recognition rate 

 
Model Recognition rate (%) 

BPNN 91.26 

LeNet-5 96.58 

Improved CNN 97.75 

 

 
 

Figure 5. Recognition result of underground pipeline with 

defect 

 

Figure 5 shows the improved CNN’s recognition result of 

Figure 4. It can be seen that our algorithm achieved good 

recognition effect with fewer training samples and iterations 

than the other methods. The good effect is attributable to the 

improved weighted Fisher criterion in our algorithm. 

Another experiment was conducted to explore the 

relationship between the number of iterations and the 

recognition rate. The results in Table 4 show that the improved 

CNN had a much higher recognition rate than the traditional 

CNN, when the number of iterations was small. In this case, 

our algorithm can realize the same recognition effect in a 

relatively short time. When the number of iterations was high, 

the improved CNN was slightly better than the traditional 

CNN in recognition effect. 

 

Table 4. Relationship between the number of iterations and 

recognition rate 

 
Number of iterations 5 10 15 20 

Traditional CNN 85.27% 88.36% 92.61% 95.56% 

Improved CNN 92.23% 93.21% 95.37% 96.87% 

 

 

5. CONCLUSIONS 

 

This paper develops an image recognition method for defect 

detection in urban underground pipelines. The classic CNN 

was improved with multilayer RNN and improved weighted 

Fisher criterion, and verified through contrastive experiments 

on images of underground pipelines. The experimental results 

show that the improved CNN achieved good recognition rate 

with a few iterations and training samples. The proposed 

algorithm can extract diverse features from underground 

pipeline images.   
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