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The capability of Least square (LS) and least minimum mean squared error (LMMSE) 

channel estimation techniques are limited due to one or two factors (inherent additive 

Gaussian noise and Inter Carrier Interference, higher computational complexity). These 

factors tend to be severe when the system grows in terms of numbers of transmitting and 

receiving antennas, channel parameters, noise etc. Accurate channel parameters estimation 

using these techniques is still not possible even with smaller Multi input multi output 

(MIMO) systems at higher signal to noise ratios (SNR) due to complex nature of channel 

parameters. Swarm Intelligence consisting of agents spread in search space having limited 

capabilities and random behaviour when interacts with each other and within their own 

locality are capable of finding solution for a complex problem. When the constructive 

behaviour of such particles in particle swarm optimization (PSO) within the search space 

limited to some constraint is applied to optimize the performance of 3D-Pilot Aided Channel 

Estimation (3D-PACE) of MIMO-OFDM system, results showed that the bit error rate 

(BER) is significantly decreased. The channel parameters at the receiver obtained using LS 

and LMMSE are further optimized using PSO with proper and careful setting of PSO initial 

parameters. 
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1. INTRODUCTION

Swarm Intelligence systems are simply made up of agents 

or boids who interacts with each other locally and with their 

own environment. Their individual behavior is random with 

no centralized control but their constructive behavior leads to 

an intelligent global behavior. Each individual agent has 

limited capabilities and when many such agents are brought 

together, they interact with each other governing simple set of 

rules are able to behave interestingly. Swarm intelligence is a 

behavioral metaphor inspired by biological examples from 

insects such as ants, wasps, bees and termites and by swarm 

such as herds, flocks, fish and birds. Researches have been 

focused on designing proper set of rules for the agents in the 

swarm so that collectively they can be able to solve any 

complex problem. Many real-world applications are 

distributed problems with high computational complexity in 

terms of large number of unknown parameters. Two most 

notable swarm intelligence techniques used for solving 

optimization problems are Ant colony optimization and the 

Particle swarm optimization which are capable to obtain 

approximate solutions in the vicinity of the goal.  

Particle swarm optimization is modeled on the social 

behaviors observed in animals or insects, e.g., bird flocking, 

fish schooling, and animal herding [1] known as population-

based stochastic optimization technique and it was proposed 

by Kennedy and Eberhart [2]. Used by many researchers as an 

optimization tool in vast applications over more than two 

decades, PSO had gained popularity in terms of robustness and 

efficiency. In PSO, every particle is a potential solution and 

moves in the search space to find the optimal solution of the 

problem being subjected. The particle changes its position in 

the Least square (LS) and least minimum mean squared error 

(LMMSE) channel estimation techniques depending on its 

best position so far and the current best particle in the swarm. 

Initially the particles are accelerated with high velocity when 

they are far away from the target and the velocity is gradually 

decreased as the particles approach the target. Each time the 

model iterates, the particles are placed in the search space with 

high promising solution.   

Due to growing technological advancement in the field of 

wireless communication and increasing demand for high data 

rates, researchers are motivated to pursue novel designs and 

techniques in MIMO systems. The advantages of a Multi input 

multi output orthogonal frequency division multiplexing 

system can be effectively used when the channel state 

information (CSI) is known. The performance of the MIMO 

system mainly depends on channel estimation technique, pilot 

arrangements and the channel coefficients. The most 

commonly used channel estimation techniques are the Least 

Square and the Least Minimum Mean Squared Error 

estimation both using Block type pilot arrangement. The LS 

have low computational complexity but suffers from inherent 

additive Gaussian noise and the inter symbol interference. On 

the other hand, LMMSE offers 5-10 dB gain as compared to 

LS for the same signal to noise ratio value but have high 

computational load. Most of the works in the recent are 

therefore oriented over channel statistical properties in various 

MIMO systems including mm Wave and Massive MIMO 

systems. 
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2. RELATED WORK 
 

Aqiel and Seshadri [3] had suggested updating channel 

correlation matrix based on last known CSI and temporal 

properties for MMSE estimation. A two-stage channel 

estimation is proposed to estimate the cascaded channel matrix 

by utilizing special structure of the received signal in the 

destination [4]. Their result showed increase in accuracy. A 

low complexity channel estimation algorithm [5] is presented 

using singular value decomposition and iterative least square 

with projection for covariance matrix and obtained reduction 

in deviation, improved channel estimation accuracy, accurate 

CSI with low computational complexity. Further, researchers 

[6] put forward block low rank channel estimation algorithm 

with low computational complexity for matrix inversion.   

Researchers [7] worked on two issues: pilot contamination 

(PC) and data interference (DI). For PC they proposed block-

diagonal Grassmannian Line Packing and for DI an iterative 

channel estimation method based on Tikhonov regularization 

was presented and were able to improve the accuracy in 

channel estimation and spectral efficiency. The mean square 

error is reduced using the spatial correlation among transmit 

and receive antenna with sparse channel estimation scheme 

through structured comprehensive sensing framework and 

recovered the sparse channel [8]. A novel sparse based k-

nearest neighbor classifier is proposed [9] to estimate the 

unknown activity factor at a high data rate. They also 

suggested an optimal pilot allocation method for optimal pilot 

placement to select the minimum mutual coherence in the 

measurement matrix. Results showed better performance in 

terms of bit error rate, symbol error rate and mean square error.  

A compressed sensing channel estimation method [10] is 

proposed which is based on the accelerated gradient descent 

with adaptive restart algorithm and a modified re-weighted 

compressed-sensing technique without and with L1-norm term 

respectively where in the latter case the weights were adapted 

at each iteration. They considered the mm Wave band with 

MIMO. The comprehensive sensing technology with block 

structuring [11] is used in massive MIMO systems. A block 

sparsity adaptive matching pursuit algorithm was proposed for 

channel estimation. It is proposed and studied the performance 

of scaled LS and relaxed MMSE techniques requiring less 

knowledge of second order statistics [12].  

A novel non-uniform burst-sparsity model is proposed [13] 

to improve the channel estimation performance. The non-

uniform burst-sparsity was exploited using a generic sparse 

Bayesian learning based framework. The system performance 

for Massive MIMO is improved [14] by proposing a non-

orthogonal pilot design based on Nyquist sampling theorem 

and channel estimation schemes under the frame work of 

structured compressive sensing theory. Recent research [15, 

16] had used Genetic algorithm for data aided channel 

estimation and Particle Swarm optimization for MIMO 

detection. 

For massive MIMO systems with complex pilots and 

complex channel coefficients, estimating channel coefficients 

at the receiver is a challenging task and requires more 

computations and increases time complexity. This work is 

concentrated on the above nature of channel parameters 

considering a 2x2 MIMO system and enhancing the 

capabilities of LS/LMMSE estimation techniques using PSO 

in a lucid manner. 

 

 

3. PROPOSED WORK 
 

The following Figure 3 shows the MIMO transmitter system 

for two transmit antennas. The generated 3-dimensional 

random data symbols to allocate 3D-MIMO OFDM system are 

complex (integers) and a 4-ary modulation scheme is 

employed to modulate the data vector. 3D-scattered pilots are 

also complex numbers and are interleaved at odd position 

along the combined data-pilot vector comprising of 128 

symbols including 64 data symbols as shown in the Figure 1 

below. 

 

 
 

Figure 1. 128 symbols after Interleaving of 64 Data symbols 

and 64 Pilot symbols 

 

A guard band of 32 symbols is placed at the beginning of 

128 symbols vector amounting to total 160 complex symbols. 

The 32 complex symbols for cyclic prefix are copied from the 

end of 128 data-pilot symbols. The numbers of symbols for 

cyclic prefix are considered to be the one-fourth of vector 

represented by data-pilots. The arrangement for the same is 

depicted in Figure 2 below. The last 32 symbols from the 128 

symbols represented by the data-pilots are copied at the 

beginning. The arrow in the figure indicates the similarity of 

the symbols. 

 

 
 

Figure 2. 160 symbols after adding cyclic prefix at the 

beginning of data-pilot vector 

 

 
 

Figure 3. MIMO system transmission with two transmitters 

 

After adding the Cyclic Prefix (CP), the signals are 

convolved with the channel parameters h11, h12 and h21, h22 

using the Y=XH standard form. The following equations were 

used for the channel coefficient multiplication. 

 

Y1 = X1 ∗ H11 + X2 ∗ H12 (1) 

 

Y2 = X1 ∗ H21 + X2 ∗ H22 (2) 

 

Further the signals were combined for transmission. The 

final vector of 320 symbols: 160 of Y1 and 160 of Y2 were 

concatenated and then contaminated with additive white 

Gaussian noise. 
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At the receiver, the signals are separated and the guard band 

is removed. The first 160 symbols correspond to transmitter 1 

and remaining 160 for transmitter 2. The first 32 symbols from 

both vectors are discarded owing to cyclic prefix. Both the 

signals containing 128 remaining symbols of data-pilot 

arrangement were undergone through fast Fourier transform.  

The data-pilots were de-interleaved and separated for channel 

estimation. Figure 4 shows the operation performed at the 

receiver. 

 

 
 

Figure 4. The receiver stages 

 

Thus, at this stage, we have 64 symbols for each data and 

pilots for both the receiver. We carried the LS and the LMMSE 

Estimation using the following set of equations. 

Let us consider the following notations: PT – transmitted 

pilots, PR-received pilots, DR- received data vector, then for 

LS estimation [17]. 

 

t1 =  PT’ ∗ PT; 
t2 = inverse (t1); 

t3= PR’ ∗ PT; 
Channel Estimate HLS = t2 ∗ t3; 

(3) 

 

Estimated Data DE1 = inverse (HLS) ∗ DR; (4) 

 

Similarly, for LMMSE estimation [18] 

 

t1 = (PT’ ∗ PT)./(NR ∗ SIGMA); 
t2 = EYE(NT)./(NR ∗ SIGMAH); 

t3=inverse (t1+t2); 
t4=(PT’∗PR) ./(NR∗SIGMA); 

Channel Estimate HLMMSE = t3 ∗ t4; 

(5) 

 

Estimated Data DE2

= (DR ∗ inverse (HLMMSE))’; 
(6) 

 

where, SIGMAH is a constant and the value considered in this 

work is 0.25. SIGMA is given by the following equation: 

 

SIGMA = 10 (SNR/10)   (7) 

 

And the value of signal to noise ratio (SNR) in decibels (dB) 

range in [0:5:40]. Both the estimated data vectors are then 

demodulated. Each value of SNR is iterated 20 times and the 

minimum value of bit error rate (BER) is stored for LS and 

LMMSE estimation. The following Figure 5 shows the 

iterative loop with no optimization for LS and LMMSE. Here 

we have considered only one received signal that is signal 1 

for estimation, demodulation and obtaining BER considering 

that signal 2 will give the same response.   

 

 
 

Figure 5. Complete LS/LMMSE estimation system without 

optimization 

 

 

4. OPTIMIZATION OF CHANNEL COEFFICIENT (H) 

USING PARTICLE SWARM OPTIMIZATION 

 

The velocity a particle acquires and the position it must take 

in the search space during each step are governed by the 

following equations:  

 

VN[ ] = W ∗ V[ ] + C1 ∗ RAND( )
∗ (PBEST[ ] − P[ ])  + C2
∗ RAND( )(GBEST[ ] − P[ ]) 

(8) 

 

PN[ ] = P[ ] +  VN[ ] 
(9) 

 

where, PN and VN are the new position and the velocity of the 

particle. W is the inertial weight factor and used to govern the 

percentage of last velocity a particle should acquire in the 

current iteration. The inertia weight controls the amount of 

recurrence in the particle's velocity so that no two particles 

moving in the search area are at the same place at any instant 

[19]. The first term in the velocity equation is also termed as 

Retarding velocity. 
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PBEST[ ] is the particle best position from all the last 

positions it acquired from initial position to the current 

position. P[ ] is the particle current position.  The second term 

in the velocity equation represents particle local statistics. 

GBEST[ ] is the best position of a particle in the swarm 

among all particles in the current iteration. The third term in 

the velocity equation represents the global statistic 

(Communication with Neighborhood).  

RAND( ) is the stochastic variable in the range [0 1] and can 

be considered same for term 2 and term 3 or may be different. 

C1 and C2 (learning factors) are constants being initialized 

with proper values at the beginning. In most of the research, a 

value of 2 is considered for both constant. The new position of 

a particle is given by the second equation above involves 

addition of the new velocity with the current position. Thus, 

the particle irrespective of the fitness takes the new position in 

the space subjected to some search space boundary conditions 

such as limiting the position and velocity to full dynamic range 

and distance a particle would travel in one step. 

Initially all the particles (Swarm agents) are randomly 

positioned in the search place with some initial velocities. As 

the agents propagates, they acquire new position and velocities 

as per the equation stated above. The search space may be 

small or wide depending upon the complexity of the problem. 

Here we are interested to find value of (optimized) H (for LS 

and LMMSE) so that the bit error rate would be less than that 

obtained from standard LS and LMMSE estimation. From 

Figure 5, we have the last output as the minimum BER values 

for LS and LMMSE for each SNR value. 

 

Table 1. Initial parameter settings for PSO 

 
Sr.No. PSO 

Parameter 

Reference Value/Type 

1. 

Number of 

Particles in 

Swarm 

Number of iterations 

for each SNR value 

20 

2. 

Initial particles 

position 

H values obtained by 

LMMSE 

corresponding to 20 

iterations 

Complex 

3. 
Initial particles 

velocity 

Random complex 

numbers 

Random & 

Complex 

4. 

Initial PBEST 

values 

H values obtained by 

LMMSE 

corresponding to 20 

iterations 

Complex 

5. 

Initial GBEST 

value 

Minimum H obtained 

by comparing H of LS 

and H of LMMSE 

Complex 

6. 

Number of 

epochs for 

PSO 

-  100 

 

7. 

Minimum 

particle 

position limit 

-  0 

 

8. 

Maximum 

particle 

position limit 

-  3√2 

 

9. 
Minimum 

velocity limit 
-  0 

 

10. 
Maximum 

velocity limit 
-  25√2 

 

11. 
Error 

Tolerance 
-  0 

 

Hence by simply comparing the BER values of LS and 

LMMSE, we obtained the minimum BER value for each SNR 

value. The respective channel estimate H (either for LS or 

LMMSE) corresponding to this minimum BER is also 

obtained. The following Table 1 shows the initialization of 

various PSO parameters. 

In Table 1 the reason why initial position of particles is 

initialized to the H values obtained by LMMSE is that 

LMMSE has better performance over LS and is proved in 

literature. The PSO will iterate for searching new value for H 

for which the BER will be less than that obtained earlier after 

comparing BER obtained by LS and LMMSE estimation. 

Since any optimization technique is an approximation, it may 

happen that in some cases PSO will not be able to find a better 

solution as compared to the minimum BER obtained using 

LS/LMMSE estimation due to parameter constraints. In those 

cases, the earlier value is considered. 

 

 
 

Figure 6. Optimized LS/LMMSE based Channel Estimation 

Algorithm using PSO 

 

 

5. RESULTS AND CONCLUSIONS 

 

The novelty of the work lies in how the optimization is 

incorporated. The Figure 7 below shows the optimized 

performance obtained using PSO. The performance is plotted 

for signal to noise ration v/s bit error rate. Line in Green color 

indicates the performance obtained using PSO. After obtaining 

the channel estimate using PSO, the data vector is estimated 

again, demodulated and BER is found. The graphs in the figure 

clearly shows that LS performs better at higher SNR and 

LMMSE performs better at low SNR values. The PSO 

optimized BER scales down as compared to the other two 

standard estimation techniques. 

In Figure 8, the performance of PSO is better at higher SNR 

while LS and LMMSE performance carry their usual 

characteristics. In Figure 9, LS and LMMSE shows similar 

performance, but PSO performs better at higher SNR values. 

Figure 10 is the typical situation where PSO is unable to 

perform better than LS or LMMSE. A stated earlier, it follows 

the best of LS and LMMSE estimation. The optimization was 

applied to small but realistic model of 2x2 MIMO where all 

the parameters were considered to be of complex numbers. 

This was considered owing to the computational and time 

complexity for higher MIMO systems.  
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Figure 7. Performance of PSO optimization over 

LS/LMMSE estimation techniques in 2x2 MIMO systems 

 

 
 

Figure 8. Better Performance of PSO optimization at higher 

SNR 

 

 
 

Figure 9. Better Performance of PSO optimization at higher 

SNR in case where LS and LMMSE shows similarity 

 
 

Figure 10. Performance of PSO optimization follows best of 

LS and LMMSE estimation 

 

Also, a simpler version of PSO [20] was used for 

optimization. Tuning of parameters of PSO was a challenging 

task for such complex environment. Proper and fine tuning of 

parameters can produce good optimization. A good and robust 

PSO variant with local and global search mechanism would 

have perform better. We had used only 20 agents in the search 

space. Increasing number of agents up to 40 can search the 

target early with some permissible error tolerance value (here 

tolerance is set to 0). The initial position of the particles was 

initialized with H of LMMSE obtained after the last 20th 

iteration but not considered the H for the best BER obtained 

with LMMSE. This had initially placed the particle somewhat 

away from the target in the search place with utmost 100 steps 

to achieve it. Similar approach was used by  Vidhya and 

Shankar Kumar [21] where the channel parameters were fine-

tuned using PSO and GA. They showed that such fine tuning 

produced better results than LS/MMSE estimation. 

Researchers [15] used GA in Massive MIMO with Rayleigh 

fading channel for obtaining best channel matrix to minimize 

mean squared error with low complexity. They showed that 

GA-MMSE works well at low SNR, GA-LMMSE at high 

SNR and GA-LS performance was better than MMSE. Latest 

work [16] used PSO with new cost function to reduce the 

computational complexity of Maximum Likelihood detector 

and verified by implementing the system on FPGA. 
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